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Abstract— Traditional legged runners and climbers have
relied heavily on gait generators in the form of internal clocks
or reference trajectories. In contrast, here we present physical
experiments with a fast, dynamical, vertical wall climbing robot
accompanying a stability proof for the controller that generates
it without any need for an additional internal clock or reference
signal. Specifically, we show that this “self-exciting” controller
does indeed generate an “almost” globally asymptotically stable
limit cycle: the attractor basin is as large as topologically
possible and includes all the state space excluding a set
with empty interior. We offer an empirical comparison of
the resulting climbing behavior to that achieved by a more
conventional clock-generated gait trajectory tracker. The new,
self-exciting gait generator exhibits a marked improvement in
vertical climbing speed, in fact setting a new benchmark in
dynamic climbing by achieving a vertical speed of 1.5 body
lengths per second.

I. INTRODUCTION

Two interconnected problems arise in the design and

control of legged climbing robots: attachment and force

production [1]. Attaching to the wall requires a mechanism

which allows the robot both to cling to a vertical surface

(while producing forces tangent to that surface) and then

to release its grip rapidly and smoothly in order to re-

circulate for the next touchdown. Substantial progress has

been made toward developing attachment mechanisms for a

range of substrates. Specialized approaches using magnets

or a vacuum [2], [3], [4], have recently given way to more

general purpose mechanisms such as microspines [5], [6],

dry adhesives [7], [8], dactyls [6], and bracing/friction [9]

to provide robust, reliable attachment to an ever growing

diversity of vertical surfaces when driven appropriately by

a well tuned, algorithmically controlled set of actuators

[10]. The second challenge, given a functional attachment

mechanism, is to achieve a force pattern which results in

desirable climbing behavior. Here again, growing empirical

evidence indicates that the generation of robust and efficient

force patterns requires both passive mechanical and active

algorithmic design. Just as legged walking and running

machines require a combination of tuned passive mechanisms

and algorithmically controlled actuators to locomote quickly

and efficiently [11], [12], the first legged machines to achieve

mobility on unstructured outdoor walls and trees rely on

a combination of passive mechanical and actively powered

sources of force patterns [1]. This paper addresses the second

aspect of the second problem: the development of algorithms

for actively powering force patterns in dynamical climbing.

The past few years have seen the development of a small

number of climbing robots that rely on their body dynamics

to generate the motions and forces necessary for climbing.

These robots have utilized their body dynamics to climb

more efficiently [13] and to augment friction-only based

contacts to generate upward forces [9]. Our dynamic climber,

DynoClimber, depicted in Fig. 1, was inspired by biological

studies which document remarkable similarities in the force

patterns generated by rapidly climbing animals of different

species [6], [14]. These findings suggest that animals employ

large lateral in-pulling forces and body rotations to achieve

fast, self-stabilizing gaits [14], [15]. DynoClimber was de-

signed to isolate the dynamics of climbing force production

from the attachment problem. As such, it was built to ascend

a prepared (carpeted) vertical surface using curved aluminum

claws which grip the substrate during leg retraction, but can

freely slide during leg recirculation. By yawing as it pulls it-

self upwards, DynoClimber reproduces the force and motion

profiles shown in animals and demonstrates self-stabilizing

upward motions. The combination of an appropriate body

morphology, series passive compliance introduced to mediate

attachment impacts, and parallel passive compliance intro-

duced to smooth the power draw on the actuators was shown

to generate favorable body dynamics, allowing climbing at

documented speeds approaching 1 bodylength per second (30

cm/s) [15].

Though impressive, the performance of this climber had

not yet reached the levels predicted by scaled versions of

the animal-based dynamical “template” [14]. One cause of

this previously documented performance gap is that the robot

exceeded its design weight. In the present revised design we

have tuned the drive mechanism and passive spring constants,

as well as increased actuator power, to address this. More

fundamentally, under scrutiny it became clear that there were

inefficiencies in the patterns of actuator recruitment and coor-

dination developed by the machine’s control algorithm. Here,

we replace the work-directed self-exciting hybrid controller

presented in [15] with one that is based on similar principles,

but implemented in a more rational manner as a smooth

vector field. Our new smooth controller permits an analytical

proof of stability, and it improves performance by reducing

former inefficiencies. Indeed, DynoClimber has proven to

be an ideal platform for developing and testing alternative

legged control paradigms: whereas the resultant climbing

behavior is strongly dependent on the dynamical interactions

between the electromotive and mechanical subsystems, its
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Fig. 1. Picture of the robot with annotations.

state space is sufficiently low dimensional to promote ana-

lytical tractability.

This paper is organized as follows. A comparison of

various alternative algorithms used in the active control of

legged locomotion is summarized in Section II. Section III

introduces the central focus of this paper, the work-directed

controller, and presents a proof of the stability of this new

family of active legged climbing force production algorithms.

Section IV offers our first, preliminary experimental results

comparing a more traditional clock-based reference position

generating controller to the new paradigm implemented on

the DynoClimber platform. Section V summarizes the results

and discusses future work.

II. CONTROLLERS FOR ACTIVE PRODUCTION OF

CLIMBING FORCES

In this paper, we examine two extremes of the

feedforward-feedback spectrum in gait generation. The new

class of controllers constructed here explores the feedback

end of the spectrum [16], [17]; in our instantiation, the robot

computes a pair of actuator terminal voltages solely as a

function of the instantaneous limb positions (as measured

by the instantaneous motor shaft angles) with neither the

intermediating construction of a reference trajectory nor

with any recourse to an internal clock. In this sense, our

construction bears closest resemblance to the work-directed

algorithms of Raibert’s hoppers [18] or Buehler’s Scout [19]

that scheduled actuator energy expenditures as a function of

limb state, using no additional clock state. Feedback-based

excitation (“self-excitation”) has also been explored outside

the realm of legged robots in the context of dynamically

dexterous manipulation [20], [21], [22]; this work is charac-

terized, as are [18] and [19], by a scheduled and intermittent

application of force. The central difference between these

earlier work-directed locomotion schemes and ours is that

our use of discrete event-triggered hybrid control is limited

to the introduction of a smooth, piecewise analytic function

applied to a very general actuator model rather than a more

extensive (and generally non-smooth) “case-based” logic

applied to a specific body model.

Many of the most successful dynamic legged robots have

occupied the other end of the spectrum, in which the gait

is primarily excited by a feedforward Central-Pattern Gen-

erator (CPG). At the heart of these gait generation schemes

lies a periodic signal generator, whether a CPU-originated

reference phase trajectory [23] or a combination of neural

oscillators [24]. This signal, the clock, is “shaped” to produce

a position- (and, often, velocity- and acceleration-) based

a reference signal for the limbs which, in consequence of

their actuators’s efforts to track the reference signal, transmit

the appropriate ground reaction forces to the mass center as

they interact with the substrate during the stance phase of

a stride. Mechanical limb compliance modulates the feed-

forward based energy input to produce self-stabilizing be-

havior. Running robots such as Tekken[25], RHex [12], and

Sprawlita [26] have all utilized variants of this approach to

run effectively, and feedforward approaches scale readily to

systems of higher dimensions. CPGs also facilitate the incor-

poration of both gait transitions and feedback into a robot’s

behavioral repertoire. However, it has proven challenging and

time-consuming to tune up highly optimized peformance in

these systems because: (i) the use of position tracking errors

to call up actuator torques represents an indirect approach to

recruiting the active power available within a robot’s energy

reservoir; (ii) the appropriate timing and magnitude of the

errors that achieve this indirect recruitment require significant

empirical tuning [27] because the analytical basis for their

stability remains imperfectly understood [28], [29], [30]; and

(iii) small variations in the clock-generated reference signal

have large and somewhat unintuitive effects on the resulting

behavior [28], [31], [32].

Our controller is further differentiated from those dis-

cussed above by its flexibility in specifying a desired work

outcome. Specifically, we attempt to encode the control task

“apply the maximum possible mechanical power while main-

taining synchronization”. This “work-directed target” can not

be achieved explicitly with the above schemes. Buehler’s

Scout, for instance, relies on a feedforward torque controller

when a leg is in ground contact, partially accomplishing

the explicit work goal, but then relies on a PD controller

to track a reference position signal designed to encode the

coordination task during the robot’s flight phase [19]. The

recourse to reference signal tracking mitigates against a ma-

chine’s achieving maximal power output. In our experience,

with extensive tuning, errors generating near-optimal power

output can be engineered throughout the gait. However, the

dependence of actuator power output upon tracking error

precludes the direct specification of a work-target, as tracking
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error can not be neatly forced to the desired level.

A. DynoClimber’s Control Space

Dynoclimber’s electromechanical state space is quite sim-

ple as it possesses only two actuators - one motor per leg.

The extension of the leg is slaved to the rotation of the motor

via the kinematics of a crank-slider four-bar mechanism [15].

The kinematic configuration space of its actuators, then, is

S
1 × S

1, the 2-torus, T
2. Of course, its motors have inertia

and its limbs have mass, so the full configuration space is

the tangent bundle TT
2 ≈ (S1×R

1)× (S1×R
1). The robot

itself has many more degrees of freedom (body rotations

and passive deformation of elastic elements among them),

but the electromechanical state space just described is most

immediately affected by the control policy while reflect-

ing back enough of the “load” (body-substrate) mechanics

to present a useful abstraction of the machine’s climbing

state. In contrast, a careful analysis of the complete, hybrid

switched, high degree of freedom, compound pendulum that

couples this electromechanical abstraction to the physical

environment goes well beyond the scope of our present

understanding. The output of the controller is specified as

a pair of voltages applied to the two motor terminals of the

robot at each time step. The position of each limb is sensed

by a high-resolution optical encoder attached to each joint,

and the velocity of each limb is computed by smoothing the

computed changes in limb positions.

B. Baseline Controller

To provide a basis of comparison for our exclusively

feedback-driven controller, we construct a benchmark feed-

forward controller. This controller is adapted from [14], in

which the legs of the robot in simulation are kept exactly 180

degrees out of phase. Specifically, we command a constant

frequency trajectory in motor shaft space (T2):

r(t) =
[

mod(2πft + π, 2π) − π
mod(2πft, 2π) − π

]
(1)

This trajectory moves both reference legs at a constant

velocity through motor-shaft space such that the shafts rotate

with frequency f , while keeping both leg targets 180 degrees

out of phase. The reference trajectory specified here is

geometrically identical, for some f , to the emergent limit

cycle generated by our self-exciting controller, making this

reference trajectory the exact feedforward analog of our

feedback controller.

In order to track the reference trajectory, the following

control inputs are used, where Θ(t) is a 2 × 1 vector

containing the motor shaft angles at time t:

[
V1(t)
V2(t)

]
= kp(r(t) − Θ(t)) + kd(ṙ(t) − Θ̇(t)) (2)

The gains kp and kd are empirically chosen to yield desirable

behavior and tracking of the reference trajectory, while Vi(t)
is the voltage applied across the ith motor terminal. The

tracking controller presented here does not claim to provide

asymptotically exact tracking. In order to do so, it would

require an accurate model of the system parameters. Given

the difficulty of establishing an accurate system model in the

context of a legged robot, we implement and empirically tune

this PD controller. Indeed, the application of a carefully tuned

PD controller is a routine practice, applied to the tracking

of a periodic reference trajectory on both the RHex[11] and

RiSE[6] platforms.

C. Self-Exciting Controllers

The first controller used on DynoClimber was a “mirror

law” [15]. Inspired by an earlier generation of juggling robots

[33], [22], the controller generated periodic motion of the

legs without using an internal clock. Moreover, this algorithm

guaranteed that the robot’s stance leg would be commanded

to apply the maximum possible voltage. However, the hy-

brid controller was specified by a non-smooth function that

switched based upon the stance and swing states of the limbs,

which sometimes resulted in jerky, halting motions during

certain hybrid state transitions when climbing.

We now “replace” the hybrid mirror-style excitation with

a smooth family of controllers which is similarly self-

excited, yet incorporates a number of relative advantages.

Our new controller admits an analytical proof of stability

with a very general system model and, unlike its mirror-

style predecessor, does not require any gain tuning to

insure tracking. Because the mirror-law employed a PD

tracking controller to generate motor voltages during leg

recirculation, an inadequately tuned controller would result

in a recirculation which is either too slow or too abrupt,

affecting the phase difference between the legs as well as

the overall velocity of the system. In contrast, the work-

directed scheme only requires tuning to alter the transient

behavior of the system, without affecting the eventual limit

cycle, as demonstrated by our proof of stability. Moreover,

we note that simply pulling “as hard as possible” in stance –

as the former controller did – does not guarantee maximum

phase velocity, as a recirculating leg can (and often did) “lag”

the opposing stance leg. To increase overall phase velocity

and therefore climbing speed, our new framework does not

prioritize stance over recirculation and instead attempts to

enforce an antiphase relationship between the legs, limiting

power to the leading leg, as necessary. A user must specify

only a base voltage; from this base voltage, the controller

will generate a limit cycle with some constant velocity (the

actual velocity depends on physical parameters of the motors

and mechanisms). We hypothesized, in consequence, that a

user could achieve higher performance dynamical climbing

(higher velocities) with reduced time spent tuning.

III. THE WORK-DIRECTED, SELF-EXCITING

CONTROLLER

A. Control Objective

There are three principles at work in our new controller

for DynoClimber. First, we aim to maintain antiphase orbits

of the robot’s legs. This is not strictly necessary, as we really

only need the assurance that at least one leg will maintain

ground contact at all times (the leg in “flight” can vary

633



speeds with impunity). However, an antiphase relationship

should, given our passive mechanical energy storage (each

leg stretches a spring to store energy during recirculation

[15]), be a solution which generates nearly constant motor-

shaft velocity at a constant motor power output level. Second,

we want to generate the most rapid climbing possible by

injecting as much energy at the highest rate possible. Third,

given the machine’s target speeds and dynamic environment,

we strive to build a controller which is largely model-

independent; speaking practically, the less a controller design

relies upon inevitably imperfect and uncertain dynamical

plant models, the easier it will be to implement in any

dynamic environment.

We demonstrate below that our work-directed (”pull as

hard as possible”) controller generates the desired limit cycle,

and requires little knowledge of specific plant parameters.

B. Motor Model

We first introduce a simplified model of the physical motor

system in order to provide some analytical basis for the

success of our controller. This model is not intended to be

highly accurate to our specific robot - rather, we construct

a very general actuator model and prove that our controller

functions as desired if applied to any actuator chosen from

the general class.

The robot has two legs, each with its own identical motor,

and we will denote the pair of motor shaft angles as Θ =
(θ1, θ2) ∈ T

2, subject to the traditional second-order linear

motor model:

θ̈iJR

kτ
+

θ̇i

kv
= V (3)

where θ is output shaft angle, J is the moment of inertia

of the commutator, output shaft and mechanism, R is the

winding resistance of the motor, kτ is the torque constant

of the motor, kv is the speed constant of the motor (the

back-emf term), and V is the terminal voltage. This is an

equivalent model to that employed in [34], with the caveat

that we base our analysis on a system which supplies voltage,

not current, to the motors. It is important to note here that

variable loading and frictional effects from the dynamics

of climbing (manifested as substantial time variations in

J and kv) dominate the behavior of the system, and any

forces applied to the foot are reflected through a highly

backdriveable mechanism as torques applied to the motor. As

we design a controller, then, we do not want to be heavily

dependent on an accurate system model, as the parameters

of this model could vary widely based on the operating

regime of the robot. We therefore generalize the motor model

from Eq. 3 to include all constant inertia, Rayleigh-damped,

Hooke’s Law spring potential mechanical systems of the

form

k2θ̈ + k1θ̇ = V (4)

where k1, k2 > 0. We construct a controller which will

achieve its goals regardless of the choice of k1 and k2,

and believe that the generality of the model given here

reinforces the connection between theoretical guarantees and

the behavior of the robot in a dynamic environment.

In order to represent our robot, we use two identical but

independent actuator models, each standing in for one of the

robot’s motors and linkages:

k2Θ̈ + k1Θ̇ =
[

V1(Θ)
V2(Θ)

]
(5)

The controller is designed to dynamically “couple” these

putatively independent motors through a memoryless nonlin-

ear output feedback law that respects their terminal voltage

magnitude constraints and guarantees that in the absence

of external perturbations they will converge as a coupled

system to the desired limit cycle on the torus of paired

shaft angles and its tangent space of paired velocities from

almost every initial condition. In employing this abstrac-

tion we admittedly neglect the motors’ crucial mechanical

coupling through the body, and relegate the actual task-

related properties of body state to the role of “noise” felt

as unmodeled “load” perturbations on independent motor

shafts. We turn to the mechanical design of DynoClimber

[15] to demonstrate effective climbing as long as its legs are

maintained in a roughly antiphase relationship. In further

defense of our coarse abstraction we observe that these

models are sufficiently complex that so far the only analytical

results for work-directed controllers encompassing physical

actuator models explicitly coupled to the physical body state

model have been obtained for one degree of freedom bodies

(e.g. such as [35]) and that we see the present analysis as

a first step along the way to that more informative but far

less tractable problem. We also observe that no smooth work-

directed scheme has heretofore been shown to converge even

on T
2.

C. Controller Definition

Formally, letting V := (V1, V2) be the voltage command

signal and δ := θ1 − θ2 we take

V (Θ) = VMax

[
1
1

]
− h(δ) ·

[
u ◦ sin(−δ)
u ◦ sin(δ)

]
(6)

where the unit step function, u, outputs the scalar value 1

if its argument is positive and outputs 0 elsewhere, while

h : S
1 → R

1 is any smooth, even, positive function that

vanishes if and only if its argument is 0 or π. Conceptually,

the step functions serve to retard exactly one leg of the robot

at a time, choosing to weaken the leading leg as necessary

to guarantee convergence of the two legs into a limit cycle.

For purposes of the present implementation we have chosen

the specific “weakening” function

h(δ) := kdiff sin2(δ)

as it is simple, tunable (giving a choice of 0 < kdiff ≤ 2),

and meets the criteria imposed upon h(·).
Combining controller and plant, our system is

k2Θ̈ + k1Θ̇ = VMax

[
1
1

]
− h(δ) ·

[
u ◦ sin(−δ)
u ◦ sin(δ)

]
(7)
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To verify that our control input is smooth, we show that our

term containing step functions,

v(δ) = h(δ) ·
[
u ◦ sin(−δ)
u ◦ sin(δ)

]

is differentiable. First, for δ ∈ (0, π)), noting that u◦sin(δ) =
1 and u ◦ sin(−δ) = 0,

dv

dδ
|δ∈(0,π)= dh/dδ ·

[
0
1

]

and for δ ∈ (−π, 0), similarly,

fracdvdδ |δ∈(−π,0)= dh/dδ ·
[
1
0

]

Because h is nonnegative and smooth with isolated zeroes

when its argument is 0 or π, v(0) = v(π) = 0, and dh/dδ →
0 as δ → 0 orπ from either side. Since the derivative of

a step function is undefined at 0, we define (dv/dδ)(0) =
(dv/dδ)(π) = 0. This makes dv/dδ continuous everywhere

and demonstrates that our control input is smooth despite the

presence of step functions.
A final informal observation about our controller: since the

controller specifies motor voltages directly, it keeps at least

one motor operating along its speed-torque curve at all times.

Our present implementation provides no guarantee that it will

not exceed the motor’s sustainable current rating; using this

control framework to specify voltages, as we have done here,

can indeed require the motors to overheat. In DynoClimber,

this has not been a problem throughout our testing, a trait

we attribute to appropriate gearing and sufficiently powerful

motors. In a more general case, identical analysis to that

presented here can be used to specify motor current, with

the substitution of a maximum desired current IMax, for

VMax. Given this substitution, the present analysis carries

through in a substantially similar manner, presuming the

system contains mechanical damping (ie. it is crucial that the

motor model is damped), as it surely does. In such a scenario,

motor safety is guaranteed at the expense of maximal power

output; we do not apply this approach on DynoClimber, as

controlling for maximum power has not damaged our motors.

D. Proof of Correctness
For α ∈ S

1 denote the α-translate of the diagonal in T
2

as

Δα := {(θ, θ + α) | θ ∈ S
1}.

Proposition 1: The anti-diagonal tangent space,

TΔπ := {(θ1, θ2, θ̇1, θ̇2)|θ1 = θ2 + π, θ̇1 = θ̇2} (8)

is an attracting invariant set whose domain includes T (T2)−
TΔ0.

Proof: Rewrite (7) in the new coordinates,[
ρ1

ρ2

]
=

[
θ1 − θ2

θ1 + θ2

]
(9)

yielding[
V1(Θ)
V2(Θ)

]
=

[
ρ̈1+ρ̈2

2
ρ̈2−ρ̈1

2

]
k2 +

[
ρ̇1+ρ̇2

2
ρ̇2−ρ̇1

2

]
k1 .

Solving for ρ̈2 in the second equation, substituting it into the

first, and simplifying yields

ρ̈1k2 + ρ̇1k1 = − h(ρ1) · u ◦ sin(−ρ1)
+ h(ρ1) · u ◦ sin(ρ1) (10)

ρ̈2k2 + ρ̇2k1 =V1(Θ) + V2(Θ) (11)

Noting that ρ1 is decoupled from ρ2, we introduce a

LaSalle function over TS
1,

E(ρ1, ρ̇1) =k2 · ρ̇2
1

2
− H(ρ1);

H(ρ1) :=
∫ |ρ1|

0

h(x) dx (12)

h(ρ1) goes to 0 smoothly as ρ1 → 0, so H is smooth.

By construction, h(x) > 0∀x ∈ S
1 − {0, π}, and h(0) =

h(π) = 0. H(ρ1) is strictly decreasing in |ρ1|, and therefore

takes its minimum at π and its maximum at 0, with no other

critical point. It follows that (π, 0) is the unique minimum

of H .

Taking the time derivative of E along the motions of the

system, and recalling that h(·) is an even function, we find

Ė(ρ1, ρ̇1) =
k2ρ̇1ρ̈1 + h(ρ1)ρ̇1(u ◦ sin(−ρ1) − u ◦ sin(ρ1))

(13)

After substituting ρ̈1 from Eq. 10 and cancelling terms,

we obtain

Ė(ρ1, ρ̇1) = −k1ρ̇
2
1 (14)

Thus, Ė is negative semidefinite and E is a suitable LaSalle

function.

Examining the inverse image,

Ė−1(0) = {(ρ1, 0)|ρ1 ∈ S
1} (15)

we find the only invariant subsets of Ė−1(0) occur at the

zero section corresponding to the critical points of H , i.e.,

when ρ̇1 = 0 and h(ρ1) = 0, which implies that ρ1 = 0
or ρ1 = π. Since (π, 0) is a minimum of E, while (0, 0)
maximizes E in ρ1, the former is an attractor and the latter

a repellor, and the result follows.

QED
Corollary 1: The restriction dynamics on the attracting

invariant submanifold TΔπ ≈ TS
1 gives rise to an almost

globally asymptotically stable limit cycle.

Proof:
On TΔπ we have (ρ1, ρ̇1) = (π, 0), hence, the restriction

dynamics are given by ρ̈2k2+ρ̇2k1 = 2VMax , and the system

yields a single attracting limit cycle of the form

(ρ2, ρ̇2)(t) = (ρ2(0) + ωt, ω) (16)

where ω := 2VMax/k1.

QED
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IV. EMPIRICAL VERIFICATION

A. Robot Overview

In order to establish the potential practical value of this

new controller, we compare its performance to that of the

baseline CPG-clock controller on our experimental platform,

DynoClimber. As shown in Fig. 1, DynoClimber is an

improved version of the climber described in [15].

The most significant changes to DynoClimber v1.0 as

used here, are an increase in mass to 2.6kg due to the

addition of new electronics designed to improve data logging

capabilities, improve robustness, and allow operation of

the motors at voltages up to 35 volts. The basic physical

parameters are summarized in Tab. I.

It bears note that DynoClimber employs a roll-stabilization

bar. Excessive rolling can cause the robot to lose attachment

from the wall, and the robots roll dynamics are not actively

controlled. A horizontal bar is affixed to the bottom of

DynoClimber, which dramatically reduces the magnitude of

roll generated and improves attachment.

TABLE I

PHYSICAL PARAMETERS FOR THE ROBOT

Body size 400 × 116 × 70 mm (excluding cables)
Body mass 2.6 kg
Wrist Spring Stiffness 640 N/m
Arm Spring Stiffness 140 N/m
Motor Maxon RE 25 118752
Gear head Maxon Planetary Gearhead GP 32A 114473

33:1 Gear ratio
Encoder Maxon digital encoder HEDS55 110515

500 count/turn
Bevel Gear 2:1 reduction
Leg stroke 120 mm

B. Experimental Procedure

Experiments were conducted on a 12 foot vertical carpeted

climbing surface. The robot utilized a tethered power supply

at 32v with a peak current capacity of 11A. The external

power supply was utilized rather than onboard batteries in

order to generate repeatable and controlled runs. Further-

more, in order to facilitate robust and rapid data collection,

an ethernet cable was tethered to the robot from a nearby

laptop. Finally, the robot was also belayed using a 3mm

diameter compliant rope in order to reduce the impulsive

force on the robot in the event of a fall. This safety rope also

supported both tethers; as the rope was hoisted as the robot

climbed, the cables were pulled upward alongside the robot,

minimizing the effect of the tethers on the dynamics of the

climber. All control computation was conducted on-board,

and a controlling laptop was used only to send high level

commands and collect data. The robot was labeled with a

center of mass marker; video was post-processed to compute

the robots trajectory.

C. Specific Controller Chosen

The baseline controller was chosen, as described in section

II-B, to be a PD controller driving the system toward a

reference trajectory. The reference was a constant-velocity

path in motor-shaft coordinates with the two legs exactly

180 degrees out of phase (see Eq. 1), resulting in near-

sinusoidal motion of the robot’s wrists. Both the frequency

of the trajectory and the gains used by the PD controller

were chosen empirically to maximize climbing speed. A

driving frequency of 3.25hz was determined to be the peak

achievable frequency of oscillation of the legs of the robot

with this trajectory (while climbing), and the PD gains used

to achieve this maximum frequency were kp = 0.9, kd =
0.25.

The self exciting controller described in Section III-C

was implemented, as described, with the retarding function

h(x) = kdiff · sin2(x). The retarding gain, kdiff , determines

the transient behavior of the system - a larger kdiff forces the

system to converge more quickly, at the expense of speed

of oscillation during the transient period and any time the

system is perturbed from its limit cycle. With a kdiff near

0, on the other hand, the system returns more slowly to its

limit cycle during any transient period, but both motors are,

on average, commanded higher voltages while the system

is away from its limit behavior. As shown in section III-

D, regardless of the choice of kdiff , the system provably

converges to a limit cycle with a velocity which does not

depend on the retarding gain. Moreover, the controller, as

long as kdiff is kept between 0 and 2, will not exceed

the specified maximum voltage, VMax . For the following

experiments kdiff = 0.5.

D. Experimental Results

The first result worthy of note is a confirmation that the

controller induces the desired behavior from the system.

Figure 2 plots the configuration space of the robot, T
2, and

shows actual encoder data from the robot while climbing

(single datapoints) against the control vector field (arrows on

graph). The torus is subdivided into quadrants, each quadrant

corresponding to a different combination of left and right

leg-states and is labeled as such. The beginning of the run is

3

2

Flight - Flight
1

Flight – Stance

0

Stance – Flight

�2

-1

Stance - Stance

3

-2

-3 -2 -1 0 1 2 3

-3

�1

Fig. 2. The control vector field and a real trajectory
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given by the stray ‘strand’ just above the middle of the plot.

Rapidly, the encoder angles hone in on the solid red line in

the plot - this is the line at which θ1 − θ2 = π. Although

the controller was only demonstrated analytically to function

for a simplified model, the generality of that model lent

enough strength to the result that it holds quite well on

the actual robot. These data were taken while the robot

was accelerating from a standstill to full speed dynamical

climbing, and despite this the legs converge quickly to the

neighborhood of the limit cycle specified by the controller.

It bears note that several factors are at work in preventing

exact convergence to the limit cycle. First, the robot’s legs

are subjected to large periodic disturbances as the robot

climbs (any unmodeled loading of the motors); hence, we

see systematic and periodic differences between the desired

limit cycle and the limit cycle achieved. Secondly, the kdiff

chosen is fairly low - this causes the controller to retard the

leading leg less forcefully and effectively places a premium

on absolute speed over rapid convergence of the legs to

the limit cycle. This trade-off does well for the robot, as

demonstrated by its steady-state climbing speed.

Having established that the controller functions as in-

tended, we turn our attention to a comparison between this

self-exciting controller and a traditional feedforward alterna-

tive. In establishing a basic benchmark with the feedforward

controller, we found that at leg frequencies above 3.25hz,

the controller faltered. However, using the self-exciting con-

troller, the robot climbed smoothly with leg frequencies up

to 3.9hz. This increase in frequency is a demonstration of

the judicious use of power in the self-exciting controller.

By permitting the legs to spin “as hard as possible,” a very

substantial increase in stride frequency is achieved.

Finally, the CPG based controller achieved a maximum

speed of 54cm/s, while the self-exciting controller reached

a top speed of 66cm/s. Thus, the self-exciting controller

managed to exceed the traditional controller’s performance

with 20% faster leg movement and a corresponding 22%

increase in top speed. Figures 3 and 4, give a center of

mass trace for the climber, and its vertical displacement and

velocity, respectively.

V. CONCLUSION AND FUTURE WORK

We have presented a controller which has enabled Dyn-

oClimber to break into new climbing regimes. By stripping

the controller of any internal states and and attempting to

encode in it the task of performing maximal possible work

against gravity, our robot achieves the fastest dynamical

legged climbing yet seen: vertical locomotion at speeds up

to 1.5 body lengths/second (66cm/s).

In order to examine the behavior of the system more

thoroughly as well as continue to expand DynoClimber’s per-

formance, additional comparisons between this new family

of controllers and more traditional schemes are necessary.

An experiment examining the robot’s behavior under varied

payload weights will be used to examine our hypothesis that

the self-exciting controller requires less tuning for higher

performance. Similarly, the comparative energy efficiency

Fig. 3. Self exciting controller center of mass. Elapsed time = 4.4s

Fig. 4. Self exciting controller vertical displacement and velocity
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of the competing control paradigms may be studied by

monitoring power usage during rapid climbing. Finally, the

behavior of the robot after an unanticipated perturbation is

also of interest and will be tested experimentally.

We believe the self-exciting control scheme presented here

holds substantial promise as a controller for other legged

platforms. The controller is able to both generate a desired

limb coordination pattern and encode the desire for optimal

power output, while requiring no parametric knowledge of

the motors or system it is controlling. The promise of reduced

tuning time coupled with improved performance as well as

analytical guarantees make the self-exciting control paradigm

an appealing option for other robots as well.
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