The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

High-Speed Planning and Reducing Memory Usage
of a Precomputed Search Tree Using Pruning

Yumiko Suzuki'?, Simon Thompson? and Satoshi Kagami®

Abstract— We present a high-speed planning method with
compact precomputed search trees using a new pruning
method and evaluate the effectiveness and the efficiency of
our precomputation planning. Its speed is faster than an A*
planner in maps in which the obstacle rate is the same as
indoor environments. Precomputed search trees are one way
of reducing planning time; however, there is a time-memory
trade off. Our precomputed search tree (PCS) is built with
pruning based on a rule of constant memory, the maximum
size pruning method (MSP) which is a preset ratio of pruning.
Using MSP, we get a large precomputed search tree which
is a reasonable size. Additionally, we apply the node selection
strategy (NSS) to MSP. We extend the outer edge of the tree and
enhance the path reachability. In maps less than 30% obstacle
rates on a map, the runtime of precomputation planning is
more than one order of magnitude faster than the planning
without precomputed search trees. Our precomputed tree finds
an optimal path in maps with 25% obstacle rates. Then our
precomputation planning speedily produces the optimal path
in indoor environments.

I. INTRODUCTION

To accept mobile robots in human-inhabited environments,
it is necessary for mobile robots to offer services for humans
in a timely manner. A* grid-based search is a commonly
used algorithm for path planning that can find the optimal
path through a search space. A* search algorithms in artificial
intelligence [1] have been typically applied to path planning
problems using grid-based maps for moving robots. Path
planning with grid-based shortest path algorithm using A*
or Dijkstra searches all adjacent grid cells of a current node,
so it computes the optimal and complete trajectory [2].
However, as the map size grows larger, these algorithms
have the problem of spending an exponential amount of time
collision checking against static obstacles.

The idea of precomputation of the data and processes
that take a long time is especially used in the field of the
image processing and the creation of a motion with computer
graphics and vision [3], [4], [5], [6], [7]. This idea isn’t
particularly new; in other words, as preprocessing, it is used
to create a model using a huge dataset [8].

In the planning problem area, [9], [10] used the prepro-
cessing of configuration space for path planning for robots
with many degrees of freedom and for articulated robots
moving in static environments. This method used a prepro-
cessing to speed up planning by paying a preprocessing cost.

1: Faculty of Graduate School of Information Science, Nara Institute of
Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192,
Japan. yumiko-s@is.naist.jp

2: Digital Human Research Center, National Institute of Advanced

Industrial Science and Technology, 2-41-6, Aomi, Koto-ku, Tokyo, 135-
0064, Japan. {simon.thompson, s.kagami}eaist.go.jp

978-1-4244-3804-4/09/$25.00 ©2009 IEEE

1

In this paper, the amount of node expansions is determined
by examination. It used a heuristic scheme and tried to
add more effective nodes, and this prespecified number
reached about six thousand. It was also mentioned that these
enhanced precomputations to enlarge the node graph are
expensive.

The key idea that to precompute a search tree is a practical
way to reduce planning time [11], [12] was implemented in
motion generation for animation [3]. One property of pre-
computed search trees is that collision checking is not greatly
required while growing the nodes. Precomputed search trees
are one of the ideas for reducing planning time; however, it
is a time-memory trade-off. Creating an exhaustive tree built
from an FSM [13] with 21 behavior states required 220,000
nodes. However, this huge tree consumes a great deal of
memory. A pruning method was used as a way to reduce the
memory usage.

Our precomputed search tree is built with pruning based
on a rule of constant memory. We have acquired a compact
precomputed search tree which is a reasonable size using a
new pruning method. Moreover, our precomputed search tree
quickly plans the optimal path in indoor environment maps.

This paper describes high-speed planning with a precom-
puted search tree using a novel technique to reduce planning
time and memory. In Section II, we describe the precompu-
tation search with an A* Planner. Section III shows our new
pruning technique. Furthermore we define the dispersion in
real indoor environments in Section IV. In Section V, we
present the effectiveness and high-speed performance of our
precomputation planning based on experimental results.

II. PRECOMPUTED SEARCH TREES WITH AN A*
PLANNER

This section describes the branches of the extended A*
planner which is grown to 5 neighboring gridcells to create
our precomputed search tree.

A. Extended A* Search

A* grid-based search is a commonly used algorithm for
path planning that can find the optimal path through a search
space.

The exhaustive growing of branch nodes will consume
exponential time for collision checking the growing branches
and use a huge amount of memory to store this exponentially
grown tree. It has a problem increasing the time of a collision
checking for static obstacles as the search map size becomes
bigger. We will reduce the exponential time for collision

3918

checking by growing branches using precomputed search
trees.

We make a precomputed search tree using a path plan-
ning with an efficient version of extended A* grid-based
search [14]. The extended A* which is a simple technique is
described to speed up optimal path planning on Euclidean-
cost grids and lattices. The technique applies to grids and
lattices with edges between diagonally-adjacent grid points
whose relative costs obey the triangle inequality. Then we
use the 5 neighbors branch (Fig.1) based on the extended
A* planner to create the precomputed search tree.

Fig. 1. Branch of Extended A*
we use these 5 neighboring branches based on the extended A* planner to
create the precomputed search tree

B. Precomputed Search Trees with A* Planner

We build a tree of the A* search up to a certain depth. If
we build the complete tree, its size increases exponentially
and its memory usage exceeds the upper limit of the physical
memory size. The total number of tree nodes is expressed
by Equation (1) with depth level d.

d
The total number of nodes = Z BranchFactorCount® (1)
k=0

Whereas Lau et al. [3] is pruned after building the
exhaustive tree, we prune the tree at the same time as
growing branches automatically. Using our pruning method,
it is necessary to manually reduce redundant nodes. We will
explain our pruning method in greater detail on Section
III. After building the tree, we set a start position in the
environment map on the root node of the tree and a goal
position on a branch node that is in geometrical relation from
the root node. Each node of our precomputed search tree has
a position, a link to a parent node, a state flag and cost as the
path length up to that node starting from the root node. Each
node has only one parent, then the precomputed planner can
trace back the path to the root node. We use the tree map to
manage the precomputed trees and the nodes that came from
every direction. When backtracking the nodes, our planner
checks for the collision between a node and the obstacles on
the environmental map.

C. Path Finding: Alternate Branch BackTracking

In the paper [3], the path finding algorithm takes a goal
position as input, and returns the tree node that represents
the solution path. As they trace back towards the root (Fig.2
Top), they mark each node with the blocked flag, if it is
not already blocked or not obstructed by an obstacle (the
red circle in Fig.2 Top). The one position on the tree has
the list of sorted nodes towards the root node. If the node
is obstructed the an obstacle (1 in Fig.2 Top), they set the

blocked flag all tracked back nodes and select the next node
to track in the list of the goal (2 and 3 in Fig.2 Top).
But this returning to the list of the goal consumes the time
unfortunately, if the tree has a massive number of sorted
nodes on each node position.

We introduce new backtracking which is named “ Alter-
nate Branch BackTracking (ABBT) ” to resolve the time
consuming problem above. If the node hits an obstacle (1 in
Fig.2 Bottom), we get the next tracking node from the list
of neighbors node which is a predecessor of the obstructed
node. The main contributions of “ABBT ” includes reducing
the flag setting time and cutting down on the repetition of
returning at the list of the goal for selecting a next node to
start fresh.

Existing Backtracking O\%}
Root

1
Goal a Obstacle
ABBT 2
Goal ! Queue Root
Obstacle

Fig. 2.
In our backtracking method (Bottom), the planner selects the next node

Alternate Branch BackTracking

from the list of neighbors node which is a predecessor of the obstructed
node with an obstacle when starting fresh.

III. PRUNING METHOD

This section describes a method to create a practical
precomputed search tree with pruning based on a ratio, max-
imum size pruning and a technique for search enhancement,
the node selection strategy.

A. MSP: Maximum Size Pruning Method

The new pruning method is named “maximum size prun-
ing (MSP),” which uses a preset ratio for pruning. Using
this preset ratio, it is not necessary to manually reduce
redundant nodes after growing branches and to get a large
precomputed search tree, which is a feasible memory size
in current computers. Our search tree grows in depth first
order and this method uses the memory usage ratio for each
depth to control the growing node count at each depth. The
preset ratio is calculated back based on the system memory
size and a node size. We predefine the maximum memory
size of each generation. Reducing the total memory usage,
the ratio is set for pruning more accumulated points as the
node counts of deep depth increase exponentially.

We use a random number to decide the node to prune
with the presetting above. Mersenne Twister (MT) ([15],
[16]) is used as a random number generator in our pruning
method. The MT pseudo-random number generator is a long
period random generator and is distributed evenly over high-
dimensions. MT brings the same pattern random number,
and we constantly get a pruned tree with the same rate and
geometry using this random number generator.

3919

This preset is defined as beginning the pruning at the 4th
generation and 20 [KB] of memory usage at each generation
as the ratio of the maximum memory size in this research.
Futhermore, one node of this tree occupies 20 bytes of
memory and the tree grows branches for a depth of 40. The
length of one branch is about 1 gridcell. One grid cell is 10
cm in a real environment. Figure 3 shows the configuration of
a PCS expanded on a 2-dimensional space; the z-axis refers
to the number of nodes that reach each position of the grid.
The shape of the branch is the extended A* [14] that has
five branches in one step. The total memory usage of this
tree is about 15 [MB]. If the tree grows all branches without
pruning, the memory usage for retaining all node data is
3.6x10%° [GB]. Using MSP, we have successfully realized
a lightweight tree which is diminished to 4.1x1072* times
the size of the fully expanded tree. Our pruning method is
excellently efficient at reducing the memory usage compared
to Lau’s result [3] that reduced the tree to 3% of the original
tree size.

3000
2000
1000

Without NSS

Fig. 3. Precomputed Search Trees with a depth of 40 grown using MSP

B. NSS: Node Selection Strategy

Our search branch spreads radially in five directions.
Several nodes grown from different parent nodes reach the
same position of the grid. Therefore, the grown tree acquires
a heaped central shape (Fig. 3), and the tree starts to extend
a branch on the center of the precomputed search tree. These
turning-around expansions decrease the amount of nodes that
will be far from the root position. Even though it uses the
other branches in the grid-based planning, search branches
extend 4 or 8 directions on the grid map and the shape of
the precomputed search tree will resemble a mountain as in
Fig. 3.

To improve this predisposition to heaping, we introduce
the Node Selection Strategy (NSS), which is a node selection
algorithm to put a node in the open list for precomputation
using MSP. The NSS is based on the distance from the root
node and the node exchange ratio between pruning and not
pruning, which is preset stochastically for nodes in the same
generation. The pseudo code of the NSS is Table I.

The node exchange ratio that is used by R in the pseudo
code above can be modified arbitrarily before growing the
precomputation tree. An exchange ratio of 1:2 means that
one node that will turn around will be pruned and two nodes
will grow at the far end from the root node. We show the
PCS with the MSP using the NSS in Fig. 4. The green heap
is the PCS with the MSP not using the NSS, and the red one

TABLE I
NODE SELECTION STRATEGY

Pseudo code Node Selection Strategy
Performs the Precomputed Search Tree with MSP
Data: n: the nodes of the extending branch
R: the exchange ratio
Result: a boolean value indicating pruning

Distance = GETDISTANCEFROMROOT(n)
Threshold = n.Generation * n.StraightLength

if STATISTICALPRUNING (n) then
ifDistance > Threshold then
if ISEXCHANGE (R) then
else return false;
else return ture;
end
else
ifDistance < Threshold then
if ISEXCHANGE (R) then
else return true;
else return false;
end
end

is using the NSS with an exchange ratio of 1:2 . The effect of
the NSS changes the form of two parts of the trees. First, the
heap in the center of the PCS using the NSS (the red one in
Fig. 4) decreases compared with not using one (the green in
Fig. 4), and its maximum height becomes lower than without
the NSS. Second, the verge of the tree using NSS expands
farther than the other. Because of the even exchange ratio
used by the NSS and five factors of one branch, the memory
usage increases; in the case of Fig. 4, its size is 117 [MB].
Using this NSS, the number of nodes in the central heap
decreases by about 35,000 total and the distance from root
node reaches out about 19 [gridcells] at the maximum. The
maximum number of increasing nodes at verge of the tree is
about 5,000. The improvement in finding paths to far goals
by this strategy will be shown in Section V.

With NSS
Without NSS

7000
5000
3000
1000

0

0

10 :
20

30 4040

Fig. 4. Precomputed Search Tree with NSS

IV. DISPERSION IN REAL INDOOR ENVIRONMENTS

We defined the dispersion of real indoor environments with
a grid based map.

The dispersion is expressed by the “obstacle rate)” de-
termined by the percentage of the number of obstacle cells
divided by the total cell count in a map.

Figure 5 shows the grid based map which is generated by
the mapping data using a laser range finder on the robot in
one floor of a building. Its grid resolution is 10 [cm] and the
map size is 1310x393 [cells].

3920

Fig. 5.

The area framed by green lines is the map of the living
room (Fig.6) and its obstacle rate is 5.1 %. The other area
enclosed by a red rectangle is an experimental station and its
obstacle rate comes out to 1.8 %, and the obstacle rate of the
other area delimited by a big orange rectangle is 4.5 %. The
obstacle rate of this total floor map (Fig.5) is 4 %. Therefore,
it is likely that the obstacle rate of real indoor environments
is less than 5%.

Fig. 6.

Living Room and its Grid-Based Map

V. EXPERIMENTS

In this section, we describe the experimental results to
verify the accuracy of A* planner using PCS and the effect
of MSP and NSS. Additionally, we confirm the speed-up
and path optimality comparing an A* planner with the
precomputation planning.

A. Experimental Setup

In this experimental simulation, a PCS is made with forty
generations. We put the root node at the center of the map
and let trees grow using A* which has five branches. The
length of one branch is about 1 gridcells. PCS is applied
to the prune processing based on the predefined tree limits
of 20 [KB] each generation after the 4th generation. The
experimental map is a square map of 55 grids on one side,
which is similar to living room size in real environments (ex.
Fig.7). The map includes static grid obstacles. The number
of obstacles in a map was based on the predefined ratio to
the environmental map size. We prepared experimental maps
with obstacle ratios from 0 % to 31 % according to the
dispersion that we define in Section IV and we placed the
obstacles scattered with random numbers on the map. The
starting position of planning was specified as the origin point
of the experimental map, and we randomly selected about
700 goal positions on the map. We use the ABBT in this
experiments.

The CPU was used for these experiments the Intel(R)
Core2 X6800 2.93 [GHz] with 4 [GB] of memory and the

Floor Map

simulator runs on Linux. All of the experiments below were
executed with the same hardware and software.

Fig. 7. Random Number Map with 10% Obstacle Rates

B. Success Rate: Effect of MSP

This subsection describes the execution of a precomputed
search tree that was pruned using MSP.

Figure 8 shows the result of the path planning using PCS
with MSP, giving the percentage of goals reached for random
goals. We call this the “success rate.” In Fig.8, the vertical
axis is the “obstacle rate” and the horizontal axis is the
distance from the start node. The success rate is shown by
the difference in color. The bright yellow means 100% of
the attained level, and the darker color, the lower success
rate. The light blue vertical line drawn at the horizontal axis
indicates the position of the beginning of pruning which
converts the generation based on MSP settings into the
distance of the path.

Even though the precomputed tree is incomplete being
pruned by the MSP, the planner reliably generates a path
and its success rate is 100% for an obstacle rate of 0%
to 31% on a map and up to 27 grids of the distance from
root position. As Fig.8 shows, the success rate decreases in
the case of a large distance on a map. It is believed that
the inefficient spread nodes caused by the turning around
expanded branches decrease the nodes at far from the root
node.

30 T T T T T

20

Obstacle Rate [%]
G
T

0 1 1 1 1 1
5 10 15 20 25 30 35 40
Distance [gridcell]

Fig. 8. Success Rate of the Precomputation Planning using MSP

3921

C. Improved Success Rate: Effect of NSS

This subsection shows the effect of the strategic selection
of nodes NSS applied to MSP.

In this experiment, the exchange ratio of NSS is 1:2.
The other settings for goal counts and maps is the same
as above. Figure 9 shows the result of the success rate of the
path planning using PCS applied NSS to MSP. Comparing
the success rate using NSS (Fig.9) with its rate not using
NSS (Fig.8), After 27 grids of distance in the Fig.8, the
color of the success rate is brightens than its results without
NSS. Using NSS to correct the success rate, it especially
contribute to improving its performance on the map with
much obstacles and on the far goal points. The success rate
with NSS is 100% from 0% to 31% of the obstacles rate
on a map, whereas the success rate is 0% in a case of the
unused NSS. Applying NSS to MSP, therefore, it is useful
for upgrading the performance of the path planning using a
precomputation tree.

30 T T T T T T T T

25 - —

S

3 20 - 80
= 70
S 15 | 7 60
5]

o] 50
2 10 = -1

¢}

0 | | | | | | | |

5 10 15 20 25 30 35 40
Distance [gridcell]

Fig. 9. Success Rate Improved with NSS

D. Limitation of PCS

Figure 10 shows the success rate using PCS applied NSS
to MSP is the same as in subsection V-A above. In this
experiment, the square map is 65 [gridcells] on one side; the
goal area is wider than PCS. The reach of the PCS from the
root node is 45 [gridcells]. Our planner finds paths to the
goals within the reach of the tree.

Under a map obstacle rate of 37% on a map in the current
work, the success rate is 100% within the distance of 45
[gridcells]. The obstacle rate of real indoor environments is
typically less than 5%; hence the precomputation planning
creates a path in the real world and its success rate is 100%.

100
g0 ¢ %
[—

% 40
o 20 = 20
o
215 0
3
O 10

S f—

ol v v i

5 10 15 20 25 30 35 40 45
Distance [grid]

Fig. 10. Success Rate in the case of Big Map

E. Speeding Up of Searching

This subsection relates the effect of the speeding up of
searching for our precomputation planning.

Figure 11 shows the extracted results of the planning time
for the experiment that is executed as a subsection V-C
above and the runtime of the path planning without any
precomputational techniques. It is a semi-log plot of planner
runtime; the vertical axis is planning time in milliseconds
and the horizontal axis is the distance. The red and pink
lines show the runtime of the A* planning in conditions of
0% and 31% of obstacles rate on a map; the others indicate
the precomputed planner runtimes of 0%, 5%, 30% and 31%
obstacle rate. The value of the precomputed planner runtime
less than or equal to 30% is constantly below the value of
the A* planning. In those case the precomputation planner
runtime can increase. We found that the planning using our
searching method is sped up compared to the A* planning
which does not use precomputed trees as seen in Fig.11.
In maps with less than a 30% obstacle rate on a map in
this experimental condition, the runtime of precomputation
planning is more than one order of magnitude faster than an
A* planning method without precomputation.

Preéomputa‘tion 0%
Precomputation 5%
Precomputation 30%
Precomputation 31% . v ve e

T
A* 0%
A*31% s

01 4

Planning Time [ms]

001 [|

5 10 15 20 25 30 35 40
Distance [gridcell]

Fig. 11. Computation Time of Planning

F. Path Optimality

This subsection describes an evaluation of the optimality
of the paths that are provided by the precomputation plan-
ning.

The optimality is defined by the percentage of the path
length of the precomputation planning as compared to the
path length of the existing planning. The extended A*
planning [14] produces the shortest path, then we use its
path length as the reference value when the optimality value
is calculated. The experimental setting is the same as the
above V-A and using 700 random goals. Figure 12 shows the
path optimality for every obstacle rate from 0% to 30% on
the experimental maps. The horizontal axis is the obstacle
rate and the vertical axis is the path optimality. The blue
dot is the average path optimality and the dotted-line is the
standard deviation. The red dot is the mode value.

As shown in the average optimality in Fig.12, the precom-
putation planning finds a path which is the same in length
as the shortest path on the maps with less than 25% obstacle
rate. On maps with 26% obstacle rate to less than 29%

3922

obstacle rate, our planner finds a path which is an average
less than 115% of the length of the shortest path.

Every mode value is 100% of the length of the shortest
path in the all trials.

340 rrTTT Ts
I Precomputation Search / A* #==3¢-==t H
300 Mode Value —x— o
250
£ 200
2
£ 150
o
O 100 FRHHFIIFRA R AN AR H
50
0
0 5 10 15 20 25 30
Obstacle Rate [%]
Fig. 12. Path Optimality of the Precomputation Planning with A* Planner

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a high-speed planning
method with compact precomputed search trees using a new
pruning method and shown the effectiveness and high-speed
performance of this precomputation planning. Its speed is
faster than an A* planner in the maps in which the obstacle
rate is the same as indoor environments. Our precomputed
search tree is built with pruning based on a rule of constant
memory, the maximum size pruning method (MSP), which
is a preset ratio of pruning. Using MSP, we achieved a large
precomputed search tree that is of reasonable memory size.
Additionally, by applying the node selection strategy (NSS)
to MSP, we extended the outer edge of the tree and enhance
the path reachability.

We conducted experiments and analyzed the success rate,
the speeding up of path searching and the path optimality.
As shown in the experiments, our precomputed search tree
finds the paths in the map at an obstacle rate of 31%.
When the goal position was even set on an incomplete
tree which is pruned, the precomputation planning could
successfully finds a path. We evaluated the speed and the
path optimality comparing the result of the A* planning to its
of the precomputed searching. In the current work, under an
obstacle rate at 31% on a map, the runtime of precomputation
planning was more than one order of magnitude of faster than
the planning without a precomputed search tree. We found
paths that were as same in length of the shortest path on the
maps with less than 25% obstacle rate. Every mode value
was 100% of the length of the shortest path in all the trials.
The obstacle rate of real indoor environments is less than
5%; hence the precomputation planning quickly acquires a
path in the real world and its path optimality is 100%. Then
our precomputation planning produce speedily the optimal
path in real indoor environments.

In these experiments, we used a tree with depth of 40
and a square map of 55 gridcells on the each side, which
is similar to a living room in a real environments. We made

its grid resolution 10 [cm] in our experiment, but the map
resolution is variable. Therefore, our new planning may have
applicability to a huge environment map. Since we know the
performance of the precomputed search tree, we will estimate
its runtime and its path optimality in other environments.
Also, we will speedily obtain the optimal path in a vast
environment not using one big tree but using the compact
tree repeatedly.

In future work, we will apply the precomputation planning
to a huge environment and implement our planning on the
real robot (Fig.13).

Fig. 13. Real Wheeled Robot

REFERENCES

[1] N. Nilsson. Principles of Artificial Intelligence.
Company, 1980.

[2] Steven M. LaValle. Planning Algorithms, chapter 5, pp. 185-186.
Cambridge University Press, 2006.

[3] Manfred Lau and James J. Kuffner. Precomputed search trees: Plan-
ning for interactive goal-driven animation. In 2006 ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation, pp. 299-308,
September 2006.

[4] Doug L. James and Kayvon Fatahalian. Precomputing interactive
dynamic deformable scenes. ACM Transactions on Graphics (SIG-
GRAPH 2003), Vol. 22, No. 3, pp. 879-887, July 2003.

[5] Jehee Lee and Kang Hoon Lee. Precomputing avatar behavior from
human motion data. Graph. Models, Vol. 68, No. 2, pp. 158-174,
2006.

[6] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shad-
ows using non-linear wavelet lighting approximation. ACM Trans.
Graph., Vol. 22, No. 3, pp. 376-381, 2003.

[7] Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John Snyder.
Bi-scale radiance transfer. In SIGGRAPH "03: ACM SIGGRAPH 2003
Papers, pp. 370-375, New York, NY, USA, 2003. ACM.

[8] Henry Rowley, Shumeet Baluja, and Takeo Kanade. Neural network-
based face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 20, No. 1, pp. 23-38, January 1998.

[9] Lydia Kavraki and Jean-Claud Latombe. Randomized preprocessing
of configuration space for path planning: Articulated robots. In
IEEE/RSJ/GI International Conference on Intelligent Robtots and
Systems(IROS), pp. 1764-1772, 1994.

[10] L. E. Kavraki and J.-C. Latombe. Randomized preprocessing of
configuration space for fast path planning. pp. 2138-2139, San Diego,
CA, 1994. IEEE Press.

[11] Jared Go, Thuc Vu, and James J. Kuffner. Autonomous behaviors
for interactive vehicle animations. International Journal of Graphical
Models, 2005.

[12] Emilio Frazzoli, Munther A. Dahleh Y, and Eric Feron. Real-time
motion planning for agile autonomous vehicles. 4144 Journal of
Guidance, Control, and Dynamics, Vol. 25, pp. 116-129, 2002.

[13] Manfred Lau and James J. Kuffner. Behavior planning for character
animation. In 2005 ACM SIGGRAPH / Eurographics Symposium on
Computer Animation, pp. 271-280, August 2005.

[14] James J.Kuftner. Efficient optimal search of euclidean-cost grids and
lattices. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, September 2004.

[15] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random number
generator. ACM Trans. Model. Comput. Simul., Vol. 8, No. 1, pp.
3-30, 1998.

[16] Mutsuo Saito and Makoto Matsumoto. Monte Carlo and Quasi-Monte
Carlo Methods 2006, chapter 2, pp. 607 — 622. Springer Berlin
Heidelberg, 2008.

Tioga Publishing

3923

