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Abstract—We present a high-speed planning method with
compact precomputed search trees using a new pruning
method and evaluate the effectiveness and the efficiency of
our precomputation planning. Its speed is faster than an A*
planner in maps in which the obstacle rate is the same as
indoor environments. Precomputed search trees are one way
of reducing planning time; however, there is a time-memory
trade off. Our precomputed search tree (PCS) is built with
pruning based on a rule of constant memory, the maximum
size pruning method (MSP) which is a preset ratio of pruning.
Using MSP, we get a large precomputed search tree which
is a reasonable size. Additionally, we apply the node selection
strategy (NSS) to MSP. We extend the outer edge of the tree and
enhance the path reachability. In maps less than 30% obstacle
rates on a map, the runtime of precomputation planning is
more than one order of magnitude faster than the planning
without precomputed search trees. Our precomputed tree finds
an optimal path in maps with 25% obstacle rates. Then our
precomputation planning speedily produces the optimal path
in indoor environments.

I. INTRODUCTION

To accept mobile robots in human-inhabited environments,

it is necessary for mobile robots to offer services for humans

in a timely manner. A* grid-based search is a commonly

used algorithm for path planning that can find the optimal

path through a search space. A* search algorithms in artificial

intelligence [1] have been typically applied to path planning

problems using grid-based maps for moving robots. Path

planning with grid-based shortest path algorithm using A*

or Dijkstra searches all adjacent grid cells of a current node,

so it computes the optimal and complete trajectory [2].

However, as the map size grows larger, these algorithms

have the problem of spending an exponential amount of time

collision checking against static obstacles.

The idea of precomputation of the data and processes

that take a long time is especially used in the field of the

image processing and the creation of a motion with computer

graphics and vision [3], [4], [5], [6], [7]. This idea isn’t

particularly new; in other words, as preprocessing, it is used

to create a model using a huge dataset [8].

In the planning problem area, [9], [10] used the prepro-

cessing of configuration space for path planning for robots

with many degrees of freedom and for articulated robots

moving in static environments. This method used a prepro-

cessing to speed up planning by paying a preprocessing cost.
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In this paper, the amount of node expansions is determined

by examination. It used a heuristic scheme and tried to

add more effective nodes, and this prespecified number

reached about six thousand. It was also mentioned that these

enhanced precomputations to enlarge the node graph are

expensive.

The key idea that to precompute a search tree is a practical

way to reduce planning time [11], [12] was implemented in

motion generation for animation [3]. One property of pre-

computed search trees is that collision checking is not greatly

required while growing the nodes. Precomputed search trees

are one of the ideas for reducing planning time; however, it

is a time-memory trade-off. Creating an exhaustive tree built

from an FSM [13] with 21 behavior states required 220,000

nodes. However, this huge tree consumes a great deal of

memory. A pruning method was used as a way to reduce the

memory usage.

Our precomputed search tree is built with pruning based

on a rule of constant memory. We have acquired a compact

precomputed search tree which is a reasonable size using a

new pruning method. Moreover, our precomputed search tree

quickly plans the optimal path in indoor environment maps.

This paper describes high-speed planning with a precom-

puted search tree using a novel technique to reduce planning

time and memory. In Section II, we describe the precompu-

tation search with an A* Planner. Section III shows our new

pruning technique. Furthermore we define the dispersion in

real indoor environments in Section IV. In Section V, we

present the effectiveness and high-speed performance of our

precomputation planning based on experimental results.

II. PRECOMPUTED SEARCH TREES WITH AN A*

PLANNER

This section describes the branches of the extended A*

planner which is grown to 5 neighboring gridcells to create

our precomputed search tree.

A. Extended A* Search

A* grid-based search is a commonly used algorithm for

path planning that can find the optimal path through a search

space.

The exhaustive growing of branch nodes will consume

exponential time for collision checking the growing branches

and use a huge amount of memory to store this exponentially

grown tree. It has a problem increasing the time of a collision

checking for static obstacles as the search map size becomes

bigger. We will reduce the exponential time for collision
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checking by growing branches using precomputed search

trees.

We make a precomputed search tree using a path plan-

ning with an efficient version of extended A* grid-based

search [14]. The extended A* which is a simple technique is

described to speed up optimal path planning on Euclidean-

cost grids and lattices. The technique applies to grids and

lattices with edges between diagonally-adjacent grid points

whose relative costs obey the triangle inequality. Then we

use the 5 neighbors branch (Fig.1) based on the extended

A* planner to create the precomputed search tree.

Fig. 1. Branch of Extended A*

we use these 5 neighboring branches based on the extended A* planner to

create the precomputed search tree

B. Precomputed Search Trees with A* Planner

We build a tree of the A* search up to a certain depth. If

we build the complete tree, its size increases exponentially

and its memory usage exceeds the upper limit of the physical

memory size. The total number of tree nodes is expressed

by Equation (1) with depth level d.

The total number of nodes =

d

∑
k=0

BranchFactorCountk (1)

Whereas Lau et al. [3] is pruned after building the

exhaustive tree, we prune the tree at the same time as

growing branches automatically. Using our pruning method,

it is necessary to manually reduce redundant nodes. We will

explain our pruning method in greater detail on Section

III. After building the tree, we set a start position in the

environment map on the root node of the tree and a goal

position on a branch node that is in geometrical relation from

the root node. Each node of our precomputed search tree has

a position, a link to a parent node, a state flag and cost as the

path length up to that node starting from the root node. Each

node has only one parent, then the precomputed planner can

trace back the path to the root node. We use the tree map to

manage the precomputed trees and the nodes that came from

every direction. When backtracking the nodes, our planner

checks for the collision between a node and the obstacles on

the environmental map.

C. Path Finding: Alternate Branch BackTracking

In the paper [3], the path finding algorithm takes a goal

position as input, and returns the tree node that represents

the solution path. As they trace back towards the root (Fig.2

Top), they mark each node with the blocked flag, if it is

not already blocked or not obstructed by an obstacle (the

red circle in Fig.2 Top). The one position on the tree has

the list of sorted nodes towards the root node. If the node

is obstructed the an obstacle (1 in Fig.2 Top), they set the

blocked flag all tracked back nodes and select the next node

to track in the list of the goal (2 and 3 in Fig.2 Top).

But this returning to the list of the goal consumes the time

unfortunately, if the tree has a massive number of sorted

nodes on each node position.

We introduce new backtracking which is named Alter-

nate Branch BackTracking (ABBT) to resolve the time

consuming problem above. If the node hits an obstacle (1 in

Fig.2 Bottom), we get the next tracking node from the list

of neighbors node which is a predecessor of the obstructed

node. The main contributions of “ABBT ” includes reducing

the flag setting time and cutting down on the repetition of

returning at the list of the goal for selecting a next node to

start fresh.
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Fig. 2. Alternate Branch BackTracking

In our backtracking method (Bottom), the planner selects the next node

from the list of neighbors node which is a predecessor of the obstructed

node with an obstacle when starting fresh.

III. PRUNING METHOD

This section describes a method to create a practical

precomputed search tree with pruning based on a ratio, max-

imum size pruning and a technique for search enhancement,

the node selection strategy.

A. MSP: Maximum Size Pruning Method

The new pruning method is named “maximum size prun-

ing (MSP),” which uses a preset ratio for pruning. Using

this preset ratio, it is not necessary to manually reduce

redundant nodes after growing branches and to get a large

precomputed search tree, which is a feasible memory size

in current computers. Our search tree grows in depth first

order and this method uses the memory usage ratio for each

depth to control the growing node count at each depth. The

preset ratio is calculated back based on the system memory

size and a node size. We predefine the maximum memory

size of each generation. Reducing the total memory usage,

the ratio is set for pruning more accumulated points as the

node counts of deep depth increase exponentially.

We use a random number to decide the node to prune

with the presetting above. Mersenne Twister (MT) ([15],

[16]) is used as a random number generator in our pruning

method. The MT pseudo-random number generator is a long

period random generator and is distributed evenly over high-

dimensions. MT brings the same pattern random number,

and we constantly get a pruned tree with the same rate and

geometry using this random number generator.
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This preset is defined as beginning the pruning at the 4th

generation and 20 [KB] of memory usage at each generation

as the ratio of the maximum memory size in this research.

Futhermore, one node of this tree occupies 20 bytes of

memory and the tree grows branches for a depth of 40. The

length of one branch is about 1 gridcell. One grid cell is 10

cm in a real environment. Figure 3 shows the configuration of

a PCS expanded on a 2-dimensional space; the z-axis refers

to the number of nodes that reach each position of the grid.

The shape of the branch is the extended A* [14] that has

five branches in one step. The total memory usage of this

tree is about 15 [MB]. If the tree grows all branches without

pruning, the memory usage for retaining all node data is

3.6×1020 [GB]. Using MSP, we have successfully realized

a lightweight tree which is diminished to 4.1×10−24 times

the size of the fully expanded tree. Our pruning method is

excellently efficient at reducing the memory usage compared

to Lau’s result [3] that reduced the tree to 3% of the original

tree size.
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Fig. 3. Precomputed Search Trees with a depth of 40 grown using MSP

B. NSS: Node Selection Strategy

Our search branch spreads radially in five directions.

Several nodes grown from different parent nodes reach the

same position of the grid. Therefore, the grown tree acquires

a heaped central shape (Fig. 3), and the tree starts to extend

a branch on the center of the precomputed search tree. These

turning-around expansions decrease the amount of nodes that

will be far from the root position. Even though it uses the

other branches in the grid-based planning, search branches

extend 4 or 8 directions on the grid map and the shape of

the precomputed search tree will resemble a mountain as in

Fig. 3.

To improve this predisposition to heaping, we introduce

the Node Selection Strategy (NSS), which is a node selection

algorithm to put a node in the open list for precomputation

using MSP. The NSS is based on the distance from the root

node and the node exchange ratio between pruning and not

pruning, which is preset stochastically for nodes in the same

generation. The pseudo code of the NSS is Table I.

The node exchange ratio that is used by R in the pseudo

code above can be modified arbitrarily before growing the

precomputation tree. An exchange ratio of 1:2 means that

one node that will turn around will be pruned and two nodes

will grow at the far end from the root node. We show the

PCS with the MSP using the NSS in Fig. 4. The green heap

is the PCS with the MSP not using the NSS, and the red one

TABLE I

NODE SELECTION STRATEGY

Pseudo code Node Selection Strategy
Performs the Precomputed Search Tree with MSP

Data: n: the nodes of the extending branch
R: the exchange ratio

Result: a boolean value indicating pruning

Distance = GETDISTANCEFROMROOT(n)
Threshold = n.Generation ∗ n.StraightLength

if STATISTICALPRUNING (n) then
ifDistance ≥ Threshold then

if ISEXCHANGE (R) then
else return false;

else return ture;
end

else

ifDistance < Threshold then

if ISEXCHANGE (R) then
else return true;

else return false;
end

end

is using the NSS with an exchange ratio of 1:2 . The effect of

the NSS changes the form of two parts of the trees. First, the

heap in the center of the PCS using the NSS (the red one in

Fig. 4) decreases compared with not using one (the green in

Fig. 4), and its maximum height becomes lower than without

the NSS. Second, the verge of the tree using NSS expands

farther than the other. Because of the even exchange ratio

used by the NSS and five factors of one branch, the memory

usage increases; in the case of Fig. 4, its size is 117 [MB].

Using this NSS, the number of nodes in the central heap

decreases by about 35,000 total and the distance from root

node reaches out about 19 [gridcells] at the maximum. The

maximum number of increasing nodes at verge of the tree is

about 5,000. The improvement in finding paths to far goals

by this strategy will be shown in Section V.
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Fig. 4. Precomputed Search Tree with NSS

IV. DISPERSION IN REAL INDOOR ENVIRONMENTS

We defined the dispersion of real indoor environments with

a grid based map.

The dispersion is expressed by the “obstacle rate,” de-

termined by the percentage of the number of obstacle cells

divided by the total cell count in a map.

Figure 5 shows the grid based map which is generated by

the mapping data using a laser range finder on the robot in

one floor of a building. Its grid resolution is 10 [cm] and the

map size is 1310×393 [cells].
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Fig. 5. Floor Map

The area framed by green lines is the map of the living

room (Fig.6) and its obstacle rate is 5.1 %. The other area

enclosed by a red rectangle is an experimental station and its

obstacle rate comes out to 1.8 %, and the obstacle rate of the

other area delimited by a big orange rectangle is 4.5 %. The

obstacle rate of this total floor map (Fig.5) is 4 %. Therefore,

it is likely that the obstacle rate of real indoor environments

is less than 5%.

Fig. 6. Living Room and its Grid-Based Map

V. EXPERIMENTS

In this section, we describe the experimental results to

verify the accuracy of A* planner using PCS and the effect

of MSP and NSS. Additionally, we confirm the speed-up

and path optimality comparing an A* planner with the

precomputation planning.

A. Experimental Setup

In this experimental simulation, a PCS is made with forty

generations. We put the root node at the center of the map

and let trees grow using A* which has five branches. The

length of one branch is about 1 gridcells. PCS is applied

to the prune processing based on the predefined tree limits

of 20 [KB] each generation after the 4th generation. The

experimental map is a square map of 55 grids on one side,

which is similar to living room size in real environments (ex.

Fig.7). The map includes static grid obstacles. The number

of obstacles in a map was based on the predefined ratio to

the environmental map size. We prepared experimental maps

with obstacle ratios from 0 % to 31 % according to the

dispersion that we define in Section IV and we placed the

obstacles scattered with random numbers on the map. The

starting position of planning was specified as the origin point

of the experimental map, and we randomly selected about

700 goal positions on the map. We use the ABBT in this

experiments.

The CPU was used for these experiments the Intel(R)

Core2 X6800 2.93 [GHz] with 4 [GB] of memory and the

simulator runs on Linux. All of the experiments below were

executed with the same hardware and software.

Fig. 7. Random Number Map with 10% Obstacle Rates

B. Success Rate: Effect of MSP

This subsection describes the execution of a precomputed

search tree that was pruned using MSP.

Figure 8 shows the result of the path planning using PCS

with MSP, giving the percentage of goals reached for random

goals. We call this the “success rate.” In Fig.8, the vertical

axis is the “obstacle rate” and the horizontal axis is the

distance from the start node. The success rate is shown by

the difference in color. The bright yellow means 100% of

the attained level, and the darker color, the lower success

rate. The light blue vertical line drawn at the horizontal axis

indicates the position of the beginning of pruning which

converts the generation based on MSP settings into the

distance of the path.

Even though the precomputed tree is incomplete being

pruned by the MSP, the planner reliably generates a path

and its success rate is 100% for an obstacle rate of 0%

to 31% on a map and up to 27 grids of the distance from

root position. As Fig.8 shows, the success rate decreases in

the case of a large distance on a map. It is believed that

the inefficient spread nodes caused by the turning around

expanded branches decrease the nodes at far from the root

node.
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Fig. 8. Success Rate of the Precomputation Planning using MSP
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C. Improved Success Rate: Effect of NSS

This subsection shows the effect of the strategic selection

of nodes NSS applied to MSP.

In this experiment, the exchange ratio of NSS is 1:2.

The other settings for goal counts and maps is the same

as above. Figure 9 shows the result of the success rate of the

path planning using PCS applied NSS to MSP. Comparing

the success rate using NSS (Fig.9) with its rate not using

NSS (Fig.8), After 27 grids of distance in the Fig.8, the

color of the success rate is brightens than its results without

NSS. Using NSS to correct the success rate, it especially

contribute to improving its performance on the map with

much obstacles and on the far goal points. The success rate

with NSS is 100% from 0% to 31% of the obstacles rate

on a map, whereas the success rate is 0% in a case of the

unused NSS. Applying NSS to MSP, therefore, it is useful

for upgrading the performance of the path planning using a

precomputation tree.
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Fig. 9. Success Rate Improved with NSS

D. Limitation of PCS

Figure 10 shows the success rate using PCS applied NSS

to MSP is the same as in subsection V-A above. In this

experiment, the square map is 65 [gridcells] on one side; the

goal area is wider than PCS. The reach of the PCS from the

root node is 45 [gridcells]. Our planner finds paths to the

goals within the reach of the tree.

Under a map obstacle rate of 37% on a map in the current

work, the success rate is 100% within the distance of 45

[gridcells]. The obstacle rate of real indoor environments is

typically less than 5%; hence the precomputation planning

creates a path in the real world and its success rate is 100%.
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Fig. 10. Success Rate in the case of Big Map

E. Speeding Up of Searching

This subsection relates the effect of the speeding up of

searching for our precomputation planning.

Figure 11 shows the extracted results of the planning time

for the experiment that is executed as a subsection V-C

above and the runtime of the path planning without any

precomputational techniques. It is a semi-log plot of planner

runtime; the vertical axis is planning time in milliseconds

and the horizontal axis is the distance. The red and pink

lines show the runtime of the A* planning in conditions of

0% and 31% of obstacles rate on a map; the others indicate

the precomputed planner runtimes of 0%, 5%, 30% and 31%

obstacle rate. The value of the precomputed planner runtime

less than or equal to 30% is constantly below the value of

the A* planning. In those case the precomputation planner

runtime can increase. We found that the planning using our

searching method is sped up compared to the A* planning

which does not use precomputed trees as seen in Fig.11.

In maps with less than a 30% obstacle rate on a map in

this experimental condition, the runtime of precomputation

planning is more than one order of magnitude faster than an

A* planning method without precomputation.
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Fig. 11. Computation Time of Planning

F. Path Optimality

This subsection describes an evaluation of the optimality

of the paths that are provided by the precomputation plan-

ning.

The optimality is defined by the percentage of the path

length of the precomputation planning as compared to the

path length of the existing planning. The extended A*

planning [14] produces the shortest path, then we use its

path length as the reference value when the optimality value

is calculated. The experimental setting is the same as the

above V-A and using 700 random goals. Figure 12 shows the

path optimality for every obstacle rate from 0% to 30% on

the experimental maps. The horizontal axis is the obstacle

rate and the vertical axis is the path optimality. The blue

dot is the average path optimality and the dotted-line is the

standard deviation. The red dot is the mode value.

As shown in the average optimality in Fig.12, the precom-

putation planning finds a path which is the same in length

as the shortest path on the maps with less than 25% obstacle

rate. On maps with 26% obstacle rate to less than 29%
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obstacle rate, our planner finds a path which is an average

less than 115% of the length of the shortest path.

Every mode value is 100% of the length of the shortest

path in the all trials.
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Fig. 12. Path Optimality of the Precomputation Planning with A* Planner

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a high-speed planning

method with compact precomputed search trees using a new

pruning method and shown the effectiveness and high-speed

performance of this precomputation planning. Its speed is

faster than an A* planner in the maps in which the obstacle

rate is the same as indoor environments. Our precomputed

search tree is built with pruning based on a rule of constant

memory, the maximum size pruning method (MSP), which

is a preset ratio of pruning. Using MSP, we achieved a large

precomputed search tree that is of reasonable memory size.

Additionally, by applying the node selection strategy (NSS)

to MSP, we extended the outer edge of the tree and enhance

the path reachability.

We conducted experiments and analyzed the success rate,

the speeding up of path searching and the path optimality.

As shown in the experiments, our precomputed search tree

finds the paths in the map at an obstacle rate of 31%.

When the goal position was even set on an incomplete

tree which is pruned, the precomputation planning could

successfully finds a path. We evaluated the speed and the

path optimality comparing the result of the A* planning to its

of the precomputed searching. In the current work, under an

obstacle rate at 31% on a map, the runtime of precomputation

planning was more than one order of magnitude of faster than

the planning without a precomputed search tree. We found

paths that were as same in length of the shortest path on the

maps with less than 25% obstacle rate. Every mode value

was 100% of the length of the shortest path in all the trials.

The obstacle rate of real indoor environments is less than

5%; hence the precomputation planning quickly acquires a

path in the real world and its path optimality is 100%. Then

our precomputation planning produce speedily the optimal

path in real indoor environments.

In these experiments, we used a tree with depth of 40

and a square map of 55 gridcells on the each side, which

is similar to a living room in a real environments. We made

its grid resolution 10 [cm] in our experiment, but the map

resolution is variable. Therefore, our new planning may have

applicability to a huge environment map. Since we know the

performance of the precomputed search tree, we will estimate

its runtime and its path optimality in other environments.

Also, we will speedily obtain the optimal path in a vast

environment not using one big tree but using the compact

tree repeatedly.

In future work, we will apply the precomputation planning

to a huge environment and implement our planning on the

real robot (Fig.13).

Fig. 13. Real Wheeled Robot
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