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Abstract— Spring drive amplifiers utilize the natural induc-
tive properties of a DC motor to produce stronger position
feedback than is achievable with traditional current amplifiers.
Impedance-type haptics devices can leverage these amplifiers
to render superior contacts with higher contact stiffness. Use
of these amplifiers, however, requires the virtual environment
to specify motion commands for each motor.

This work extends the recently developed 1-DOF integrated
approach to multi-DOF applications. It presents a motion
controller working with spring drive amplifiers, together pro-
ducing the maximum achievable isotropic Cartesian stiffness.
Isotropy is necessary to guarantee that haptic contact forces are
rendered in the correct direction. The system is implemented
on a PHANTOM 1.0 haptic device and analytic performance
is verified by experiment.

I. INTRODUCTION

Kinesthetic force rendering on impedance-type haptic de-

vices is characterized by excellent free space transparency,

while simulation of rigid contact remains a challenge. This

issue has been explored extensively and is generally at-

tributed to the difficulty of producing high stiffness with dig-

ital springs while maintaining stability. Energy leaks caused

by non-idealities in the digitization of state measurements

and force commands ultimately limit achievable stiffness

gains [1], [9], [3], [4].

Motivated by the importance of high stiffness over the full

bandwidth of human haptic sensitivity for clear conveyance

of rigidity [8], a method of stiff motion control for haptics

was recently proposed[5], [10]. It uses load-compensated

voltage drives for dc motors to utilize the analog inductive

stiffness as a stiff, stable haptic coupling. This motion control

approach requires a quasi-static virtual environment that is

completely motion-based[11].

In this paper, the controller, which we will refer to as the

spring drive approach, is extended to multi-DOF devices. In

particular, this generalization addresses the need for a high-

level motion controller to produce haptically accurate force

directions in Cartesian space. Here, the Jacobian transpose

solution to the inverse kinematic problem is adopted and

shown to provide a uniform stiffness in Cartesian space.

The paper begins by discussing the operation of a dc

motor as a motion source through the combination of a load-

compensated voltage drive and mid-level position feedback

controller in Sections II and III. In Section IV the one-DOF

motion control approach is reviewed before generalizing to

multi-DOF in Section V. Section VI presents an experimen-
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tal implementation on the PHANTOM 1.0 and concluding

remarks are provided in Section VII.

II. SPRING DRIVE DESCRIPTION

In [5] the use of a voltage drive with resistive load

compensation, which we will refer to as a spring drive

for brevity, is shown to improve the haptic rendering of

rigid contact when compared to standard current drive motor

amplifiers. The key idea underlying this improvement is

slowing the electrical dynamics and allowing the inductance

to be utilized as a high-stiffness haptic coupling. This concept

and the corresponding notation are covered briefly in this

section.

The electrical dynamics of a typical brushed dc motor are

eA(t) = Ri(t) + L
di(t)

dt
+ eB(t) (1)

with coupling equations

eB(t) = kT θ̇(t) (2)

τ(t) = kT i(t), (3)

where eA is the applied voltage, eB is the back-EMF, kT

is the torque/speed constant, τ is the motor torque, i is the

winding current, θ̇ is the rotor velocity, and R and L are the

winding resistance and inductance, respectively. In order to

pursue a haptic perspective on the effects of driving a motor

with the spring drive, it is useful to interpret R and L as an

equivalent mechanical spring KL

KL =
k2

T

L
(4)

and damper BR,

BR =
k2

T

R
, (5)

where KL and BR are connected in series. The spring drive

approach couples the haptic device to the virtual environment

through KL, which is available at all frequencies, inherently

stable, and very stiff for small L. It proposes to lock and

eliminate BR by canceling the winding resistance.

Resistance cancellation is accomplished by setting

eA = R̂i + eW (6)

which effectively cancels the voltage drop across the winding

resistance, while allowing additional voltage inputs eW .

Implementation of (6) is accomplished by closing a positive

current feedback loop with gain R̂ around a voltage drive in

analog circuitry.
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Fig. 1. MOTOR INDUCTANCE AND RESIDUAL RESISTANCE ARE
MAPPED FROM THE ELECTRICAL DOMAIN TO THE MECHANICAL
DOMAIN

Since the motor resistance R varies with temperature and

brush commutation, a residual uncanceled resistance

dR(T, θ) = R(T, θ) − R̂, (7)

will remain. It corresponds to the residual series damper

BdR =
k2

T

dR
. (8)

Fig. 1 shows the mapping of winding inductance L and

residual resistance dR into the mechanical domain, leaving R̂
to be canceled by (6). By the electromechanical coupling (2),

the intermediate voltages eW and eS relate to the velocities

θ̇W and θ̇S , respectively; where eW is the applied node

voltage between the series resistances R̂ and dR, eS is

the node voltage between R and L, θ̇W is the velocity

of the setpoint of the mechanical equivalent series spring-

damper, and θ̇S is the velocity of the connection point

between the series spring and damper. With the inductance

and residual resistance interpreted in the physical domain,

voltage commands to the spring drive are equivalent to

velocity commands to the set-point of the series spring-

residual damper

eW = kT θ̇W . (9)

Therefore, the spring drive operates the dc motor as

an approximate motion source. This is in contrast with

the current drive motor amplifiers typically used in haptic

devices, which speed up the electrical dynamics and operate

the motor as a torque source. By recasting the motor as a

motion source, it becomes necessary to design the digital

controller as a motion controller, again in contrast to the

impedance control typically paired with the current drive.

III. MID-LEVEL DRIFT COMPENSATION

Before any high-level controller can be successfully im-

plemented, the fact that a residual damper BdR exists be-

tween the commanded location θW and the output must be

addressed. Without compensation, BdR will allow θS and θ
to drift unboundedly under low frequency external loads. In

haptic applications this drift will degrade the simulation by

making sustained rigid contacts feel like dampers. Therefore,

position feedback with PD compensation is added digitally

to combat drift and yields the control law

eW = kT θ̇Sd
+ KD(θ̇Sd

− θ̇) + KP (θSd
− θ), (10)

where KP and KD are the error gains. We assume a first

order filter with cutoff frequency λ on the differentiated

velocity signal θ̇. This constitutes a mid-level controller

interface between the analog inductive stiffness of the spring

drive and the high-level motion controller described in the

next section.

Implementation of this mid-level controller establishes a

hybrid coupling between the user and the virtual environment

consisting of the physical motor dynamics, analog electronics

modifying those dynamics, and digital drift compensation.

The combined physical and analog components comprise

the series spring-damper shown in Fig. 1, while the digi-

tal component connects the parallel spring-damper of (10)

between θ and θSd. Functionally, the analog stiffness KL

dominates for high frequency deflections, while the digital

mid-level controller provides low to mid frequency stiffness.

The frequency-dependent stiffness transfer function for the

complete coupling is found by substituting (10) into the

resistance-canceled motor dynamics

eW (t) = dRi(t) + L
di(t)

dt
+ eB(t) (11)

and is

Kθ(s) =
τ

θ
(s) = −

kT

Ls + dR

λ

s + λ
[

(

(kT + KD +
KP

λ
)s + KP

)

+
kT s2

λ

]

. (12)

For a detailed derivation and analysis of this result, see [11].

The magnitude Bode plot of (12) shown in Fig. 2 illus-

trates the combination of several factors that shape stiffness

over frequency. Starting from the natural motor dynamics

represented by the dotted curve, the spring drive lowers

the corner frequency from R/L to dR/L. The proportional

term in the mid-level controller then pulls the low frequency

rolloff caused by BdR up to a dc stiffness

KDC =
kT KP

dR
, (13)

while the derivative term boots stiffness at midrange fre-

quencies before the filter rolls it off to the high frequency

stiffness

KHF = KL =
kT

2

L
. (14)

While not discussed here in detail it is worth noting that,

KL may be increased by electrically reducing L in addition

to R. This can be accomplished by replacing the positive

feedback gain R̂ in (6) with lead compensation as described

in [6].
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Fig. 2. FREQUENCY-DEPENDANT RENDERED STIFFNESS OF THE
COMBINED SPRING DRIVE AND CONTROLLER. THE UNMODIFIED
MOTOR DYNAMICS (DOTTED CURVE) ARE INCLUDED FOR COM-
PARISON

Thus, for a given motor the spring drive approach calls for

the robustly stable minimization of dR and maximization

of KP and KD in order to achieve the highest possible

maximum stiffness at all frequencies. This tuning is then

locked in place and the resulting Kθ(s) is treated as a passive

coupling between the rotor angle θ and the setpoint θSd
.

This Kθ(s), which we will refer to as the coupling stiffness,

represents the stiffest contact that the virtual environment can

render on this actuator.

IV. MOTION CONTROL OF HAPTIC DEVICES:

ONE-DOF

By treating the spring driven dc motor and the mid-

level drift compensator as a black-boxed motion source that

accepts setpoint motion commands θSd and θ̇Sd, we now

describe a high-level motion controller in the form of a quasi-

static virtual environment (VE). Originally proposed for a

single degree of freedom (DOF) in [11], this approach com-

bines the excellent free-space performance of an impedance-

type device with the improved contact performance of an

admittance-like controller. The structure of this VE is de-

veloped here for the one-DOF case before generalization to

multiple degrees of freedom in the next section.

As described in Section III, θSd and θ̇Sd command the

setpoint of the coupling stiffness Kθ(s). Thus, it is suffi-

cient for the haptic simulation to implement a very simple,

purely motion-based VE that uses a virtual proxy or tool

to determine θSd, effectively using the coupling stiffness as

the connection between the user and the VE. Rigid contact

is easily rendered by commanding zero motion and locking

the coupling stiffness

θ̇Sd
= 0 θSd

= θ0, (15)

where θ0 is the location of the contact constraint.

Freespace is accomplished by setting the desired motion

to track the user

θ̇Sd
= θ̇ θSd

= θ. (16)

A slight lag in filtering the velocity may cause the system to

create slight non-zero forces, equivalent to an added mass.

Given the low bandwidth of human actions compared to the

speed of filtering, however, any added mass tends to fall far

below perceptible levels.

Finally, compliant contact is achieved by setting the de-

sired motion to a fraction of the user motion. The full

dynamic range of the VE can be represented by

θ̇Sd
= ηθ̇ θSd

= ηθ + (1 − η)θ0, (17)

where 0 ≤ η ≤ 1, and η = 0 and η = 1 correspond to

rigid contact and freespace, respectively. The low-frequency

output stiffness is reduced by the factor η.

As a motion-based VE, no absolute force values are

available, either explicitly via measurement or implicitly

by commanding motor current. Output stiffnesses, therefore,

may no longer be programmed exactly, but must be specified

as a fraction of the device’s maximum achievable stiffness.

Knowledge of Kθ(s), particularly KDC , can be used to

estimate values. Additional discussion of this high-level

controller may be found in [11].

V. MOTION CONTROL OF HAPTIC DEVICES:

MULTI-DOF

In extending the above approach to multi-DOF haptics,

we recognize the application’s requirements. Though we

wish to display the maximum achievable stiffness, force

directions need to be rendered accurately to convey proper

geometric surface properties. For example, forces should

always fall perpendicular to frictionless surfaces. To support

this requirement, perceived output stiffnesses need to be

spatially uniform.

Given an n-DOF device, one drift-compensated spring

drive is used to drive each joint motor. Thus, each joint

independently replicates the one-DOF system described in

Section III, acting as a joint motion source with a stiffness

described by (12). We assume here that all joints exhibit the

same stiffness, though relative scaling between joints could

be incorporated if necessary. We define a desired Cartesian

location ~xSd and velocity ~̇xSd, and collect the individual

joint values into a joint position vector ~q and velocity vector

~̇q with equivalent desired position ~qSd and velocity ~̇qSd,

~qSd = invkin(~xSd) ~̇qSd = J
−1~̇xSd (18)

obtained by inverting the mechanism’s kinematics. This will

produce joint torques

~τ = Kq∆~q (19)

via a diagonal joint stiffness matrix

Kq = Kθ(s)I, (20)

which maps to a Cartesian stiffness of

Kx
inv = J

−T
KqJ

−1 = Kθ(s)(JJ
T)−1 (21)

remembering that

~F = Kx
inv∆~x ~τ = J

T ~F ∆~x ≈ J∆~q. (22)
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We denote the stiffness matrix with ’inv’ to indicate the joint

values were set by an inverse Jacobian kinematic algorithm.

Unfortunately, this Cartesian stiffness is non-spherical

such that forces are not necessarily generated along displace-

ment vectors. Fig. 3 depicts such a stiffness ellipsoid for a

simple 2-DOF case. Proper haptic rendering of force requires

that the multi-DOF motion controller reshape this ellipsoid

into a sphere.

We instead propose to calculate

~qSd = ~q + αJ
T(~xSd − ~x) (23)

and approximate the set-point derivative as

~̇qSd = ~̇q + αJ
T(~̇xSd − ~̇x), (24)

where we ignore the Jacobian’s derivative. By construction

this simplification only affects forces rendered at high ve-

locities and high frequencies with minimal impact on user

perception as discussed at the end of this section. This

delivers a Cartesian force ~F of

~F = J
−T

KqαJ
T∆~x (25)

and the Cartesian stiffness

Kx
trans = αJ

−T
KqJ

T. (26)

Since Kq is the scaled identity matrix, Kx
trans collapses to

the diagonal

Kx
trans = αKθ(s)I. (27)

Effectively, the transpose algorithm (23) has reshaped the

ellipsoid into a sphere and restored the force directions to

parallel any deflections.

Having resolved the force direction problem, there is now

the issue of what value to select for α. To address this,

first recall that each joint is tuned for a maximum joint

stiffness Kθ(s). Also note that locking each joint results

in the Cartesian stiffness Kx
inv. Thus, Kx

inv represents

the maximum achievable Cartesian stiffness for a given

configuration, limited by the stability of each joint. Using

the Jacobian transpose solution to the inverse kinematics has

reshaped Kx
inv into the Cartesian stiffness ball Kx

trans,

which must now be appropriately scaled by α. Intuitively,

Kx
trans cannot be scaled arbitrarily large, as this would

allow the effective Cartesian stiffness to be increased without

bound. Indeed, if the magnitude of Kx
trans exceeds that of

Kx
inv in any direction, we would be asking for a stiffness

beyond the stable maximum. Doing this would effectively

increase the gains of one or more joint controllers and

compromise their stability. Therefore, taking Kx
inv as the

upper bound to maintain stability, the eigenvalues of Kx
trans

must satisfy

λmax(Kx
trans) ≤ λmin(Kx

inv). (28)

Substituting (27) and (21), this condition simplifies to

α ≤ λmin[(JJ
T)−1], (29)

where λmin[(JJ
T)−1] may be computed on the fly to

maximize Kx
trans independently for each configuration, or

Kx
inv

Kx
trans

Fig. 3. CARTESIAN STIFFNESS ELLIPSES Kx
inv AND Kx

trans

WITH α = λmin[(JJT)−1] FOR A 2-DOF MANIPULATOR (PHAN-
TOM WITH LOCKED BASE JOINT).

computed over the entire workspace offline to select the

global minimum for a consistent Kx
trans at all configura-

tions.

Fig. 3 illustrates the ellipses Kx
inv and Kx

trans with

α = λmin[(JJ
T)−1] for a PHANTOM constrained to 2-

DOF by locking its base motor. This configuration will be

revisited experimentally in the next section.

The stiffness shape compensation performed by this mult-

DOF VE does not have infinite bandwidth. As a result

Kx
inv will still exist at high frequencies, and impulsive force

vectors may be directed incorrectly. Since these direction

discrepancies exist only at high frequency, however, the user

will likely be unable to detect them kinesthetically, due to

a low perceptual bandwidth of 20Hz to 30Hz [7]. Tactile

detection of the discrepancy may fare better, but [2] indicates

that the direction discrimination threshold is only about

25◦, determined for perception of low frequency forces.

Informal experience with a multi-DOF implementation on

a PHANTOM 1.0 suggests that these discrepancies are not

perceptible, and certainly not disruptive to the haptic simu-

lation, however, further investigation of human sensitively to

impulse force direction may be interesting.

Similar to the one-DOF case, compliant surfaces and free

space may be obtained by setting

~̇xSd = η~̇x ~xSd = η~x + (1 − η)~x0, (30)

with 0 ≤ η ≤ 1.

VI. EXPERIMENTAL IMPLEMENTATION

The multi-dof motion control approach described above

was implemented on a PHANTOM 1.0 haptic device in order

to confirm the generation of correct force vectors.

Evaluation of force direction was accomplished by mount-

ing a six-axis force sensor to the end effector of the PHAN-

TOM and then fixing both the PHANTOM base and the sen-
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Fig. 4. EXPERIMENTAL SETUP: BOTH THE PHANTOM AND FORCE
SENSOR ARE FIXED TO THE TABLE. THE DIRECTION OF STATIC
FORCES IS MEASURED.

sor to ground. This effectively locked the PHANTOM into

a fixed configuration, holding all configuration-dependent

variables constant. Fig. 4 is a photo of the setup, which

features the same configuration as shown in Fig. 3. With

the PHANTOM locked, virtual surfaces were then specified

so that the device was already in a penetration state and the

resulting force direction was recorded.

The results in Fig. 5 compare the realized reaction forces

under both the Jacobian inverse and proposed Jacobian

transpose control for a horizontal wall placed above the

device. Here, the device is represented by the black circle,

and the dotted line indicates the correct reaction force vector.

As expected, the Jacobian transpose produces an accurately

directed force while Jacobian inverse control exhibits signif-

icant deviation.

Fig. 6 reflects the results of repeating this experiment

for additional virtual surfaces. These surfaces are specified

tangentially around the unit circle in the 2-D plane of Fig. 5

with a radial spacing of 15◦. The plot displays the angular

error between the measured and correct force directions in

each case. As expected, Jacobian transpose control provides

low errors. Additionally, it is not well correlated with the an-

gle of the surface normal, which suggests the corresponding

Cartesian stiffness is circular. Jacobian inverse control, on

the other hand, produces large errors that are strongly and

periodically correlated with the normal direction, indicative

of an elliptical Cartesian stiffness.

VII. CONCLUSION

Generalization of one-DOF motion control of impedance-

type haptic devices to multiple degrees of freedom is

achieved through the use of Jacobian transpose control. The

system acts to regulate the Cartesian stiffness to a uniform
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Fig. 5. 2-DOF FORCE VECTORS PRODUCED BY DIFFERENT IN-
VERSE KINEMATIC SOLUTIONS. THE CORRECT REACTION FORCE
FOR PENETRATION OF THE VIRTUAL WALL IS SHOWN BY THE
DOTTED LINE.

0 45 90 135 180 225 270 315 360
−45

−30

−15

0

15

30

45

Correct Force Angle (deg)

A
n

g
u

la
r 

D
ir
e

c
ti
o

n
 E

rr
o

r 
(d

e
g

)

Fig. 6. ANGULAR FORCE DIRECTION ERROR OF JT CONTROL
( ) AND J

−1 CONTROL (2). THE PERIODIC ERROR OF J
−1 CON-

TROL RELECTS THE CORRESPONDING ELLIPTICAL CARTESIAN
STIFFNESS

sphere. The resulting haptic simulation produces accurately

directed force vectors in response to motion constraints,

while taking advantage of the high analog stiffness of load-

compensated voltage motor drivers.

This spring drive approach contrasts with traditional haptic

impedance control by setting a maximum stiffness in the

low-level actuator and using high-level control to scale the

rendered stiffness between freespace and this maximum.

While the loss of force calculations in the virtual envi-

ronment prevents the coding of absolute virtual stiffnesses,

this limitation is traded off by the improved perceptual

performance.

We hope extending the spring drive’s superior performance
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to a commercial multi-DOF haptic device will enhance future

haptic applications and improve the user’s experiences.
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