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Abstract— Autonomous underwater vehicles (AUVs) are an
indispensable tool for marine scientists to study the world’s
oceans. The Slocum glider is a buoyancy driven AUV designed
for missions that can last weeks or even months. Although
successful, its hardware and layered control architecture is
rather limited and difficult to program. Due to limits in its
hardware and software infrastructure, the Slocum glider is not
able to change its behavior based on sensor readings while
underwater. In this paper, we discuss a new programming
architecture for AUVs like the Slocum. We present a new
model that allows marine scientists to express AUV missions
at a higher level of abstraction, leaving low-level software and
hardware details to the compiler and runtime system. The
Slocum glider is used as an illustration of how our programming
architecture can be implemented within an existing system. The
Slocum’s new framework consists of an event driven, finite state
machine model, a corresponding compiler and runtime system,
and a hardware platform that interacts with the glider’s existing
hardware infrastructure. The new programming architecture
is able to implement changes in glider behavior in response
to sensor readings while submerged. This crucial capability
will enable advanced glider behaviors such as underwater
communication and swarming. Experimental results based on
simulation and actual glider deployments off the coast of
New Jersey show the expressiveness and effectiveness of our
prototype implementation.

I. INTRODUCTION AND MOTIVATION

In recent years, autonomous underwater vehicles (AUVs)
have become an indispensable tool for marine scientists
to learn more about our world’s oceans. Traditionally, the
acquisition of oceanic data involved lowering sensors from
surface vessels. AUVs have replaced this laborious process
and are capable of gathering orders of magnitude more data
for a fraction of the overall cost [15]. Not only are they
more cost efficient, but they enable data to be collected in
environments that were historically inaccessible or too dan-
gerous. The advent of underwater vehicles has revolutionized
oceanographic and marine research by allowing scientists
to maintain a constant presence in the world’s oceans. One
such underwater vehicle is the Slocum electric glider, which
is used as our implementation platform and is developed
by Teledyne Webb Research [14]. Unlike propeller driven
vehicles [8], [9], [17], [16], it belongs to a class of AUVs
which achieve forward propulsion by changing its buoyancy
[14], [18], [5], [4]. The Slocum accomplishes this by using
a pump to take in and expel water. The pitch created by the
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Fig. 1. Current glider programming model

change in buoyancy can be refined by adjusting the glider’s
center of gravity through the movement of an internal battery
pack. The vehicle’s wings and control services along with the
change in buoyancy and center of gravity result in a sawtooth
forward trajectory of approximately 35 cm/s [7].

The existing software stack used to program many AUVs,
including the Slocum glider, are based on the layered control
system [3], [6], [2]. Marine scientists specify the actions
they wish the glider to perform through a set of behaviors
written in mission files as illustrated in Fig. 1. Users and their
gliders are thus limited to the actions provided by the set of
behaviors the manufacturer supplies. Writing new behaviors
for the Slocum glider from scratch is a highly error-prone
task and it is often not clear how existing behaviors, let alone
new behaviors, interact with each other within the layered
control system. This leads to a programming approach where
users generally limit themselves to existing missions by
modifying mission parameters, or changing priorities among
existing behaviors. Even then, the resulting new mission
requires the user to go through a lengthy and inherently
unreliable trial-and-error validation process.

The Slocum glider in its current state is also extremely
static in that it cannot react to the dynamic environment
it is in. It can only be re-programmed during its periodic
surfaces via an expensive satellite modem uplink [10]. Some
phenomena are short-lived and so the opportunity to observe
them may have been lost by the time a remote operator is
able to instruct the glider to re-survey the area of interest.
Finally, the number and complexity of sensors that can be
installed and supported is limited by the glider’s two 16MHz
CPUs.

We believe that in order to reach an AUV’s full potential,
it is necessary to allow marine scientists to express their
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mission objectives at a level of abstraction that makes
sense to them. Thus, we introduce a new domain specific
programming language, compiler, and runtime system that
enables easier mission creation and maintenance. This paper
makes the following main contributions:

1) The discussion of a new programming model that
specifies events to make transitions within a finite
state machine. States in the machine may be layered,
allowing control to be returned to previously active
states.

2) The discussion of the implementation of the proposed
programming model as part of a new programming
architecture for the Slocum glider. This implemen-
tation illustrates the challenges of integrating new
software/hardware within an existing system. The new
hardware includes a Linux-based single board com-
puter (SBC). The new software consists of a compiler,
runtime system and two hook interfaces to the existing
system.

3) The evaluation of our prototype system through sim-
ulations and ocean deployments off the coast of New
Jersey. The glider equipped with the new programming
architecture was able to track a thermocline, signif-
icantly enhancing the capabilities of the glider and
illustrating the effectiveness of our new programming
architecture.

The new programming architecture implemented on the
Slocum glider is flexible and allows the integration of new
sensors through standard programming interfaces and corre-
sponding runtime library implementations. Such new sensors
may include underwater acoustic communication which can
be used to share sensor data among a group of gliders,
or to implement tightly coordinated swarming behaviors.
Together with the enhanced computing capabilities, our new
programming infrastructure enables marine scientists to more
effectively use AUVs.

II. DOMAIN SPECIFIC LANGUAGE

The existing software stack is based on Brook’s layered
control system. The writing and modification of mission files
is a non-trivial task. To properly program the AUV, a user
must have detailed knowledge of the concepts of a layered
control system as well as how each behavior changes the
glider’s state. This requires intimate understanding of how a
behavior has been implemented and how they will function
at any time during the mission. In reality, most users do not
wish to be burdened with low level implementation details. A
good domain specific language should provide the user with
programming abstractions that allow them to easily express
their goals. Without an intuitive mechanism to specify the
objectives to be attained, the effectiveness of any tool is
dramatically reduced. Additionally, the current framework
does not allow the AUV to dynamically adapt to its changing
environment.

We have constructed a high level programming language
and compiler that allows users to easily specify their desired

mission sampleMission

state s1
begin
flightroute nav(3910.5, -7349.8058)
flightprofile yo(5.0, 10, .454, .454)
sensors missiontime, depth, pitch
events
case missiontime >= 2000 goto s3
case missiontime >= 500 &&

missiontime < 1500 call s2
end

state s2
begin
flightroute noheading
flightprofile thermotrackyo(5, 20, .454,

.454, 10, 10)
sensors missiontime, depth, pitch, temp
events
case missiontime >= 1500 return

end

state s3
begin
flightroute nav(3910.5, -7349.5058)
flightprofile yo(5, 20, .454, .454)
sensors missiontime, depth, pitch
events
case missiontime >= 2500 exit

end

Fig. 2. An example program written in our domain specific language.

intentions, even if these intentions include reacting to ob-
served phenomena. Our design was guided by requirement
specifications of the Slocum glider engineers at Rutgers
University. Their most basic view of a mission involved
that of states and state transitions. A glider is instructed
to perform an action and should only transition to perform
another action based on events. There are situations were it
is desirable to return to a previous state in order to resume
the mission objective that was present before the phenomena
had been observed and corresponding actions were taken.

Fig. 2 contains an example program written in the current
prototype programming language and compiler system which
resembles a stack based finite state machine The user spec-
ifies a sequence of states that they wish the glider to be in
during a deployment. Each state contains a flightroute
which describes how the vehicle should be navigated. This
could be as simple as having no heading or flying directly to
a waypoint or a more complex sweep of an area specified by
a convex hull. The flightprofile details how the AUV
should glide through the water. Examples here would include
a simple yo action (a series of climbs and dives) or more
elaborate movements such as the tracking of a thermocline as
described in the experimental section. Sensors to be logged
by the system are defined in a comma separated list using
the sensors keyword.

Transitions between glider states occur based on user
defined events. To meet the requirements of our user
group, different transition mechanisms were developed. The
call and return transitions provide a call stack of states.
Thus, it is possible to transition to states temporarily and
return to the calling state much like a sequence of function
calls. In contrast, the goto transition destroys the current
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call stack and is used when there is no need to return to
previous states in the order specified by the call stack.

The program in Fig. 2 begins in state s1. The state instructs
the glider to begin navigating to the waypoints indicated.
The yo flightprofile creates a climbing and diving
sequence between 5 and 10 meters at an angle of .454
radians (26 degrees). When the time sensor indicates the
current mission time to be greater than or equal to 500
seconds, the glider will transition to the state s2. After 1000
seconds of tracking a thermocline (where the two additional
flightprofile parameters indicate a temperature and
depth threshold) the return statement in s2 will cause
control to return back to s1. After 2000 seconds into the
mission a transition to s3 will occur which differs only in
its target depth. Since we know s3 to be our final state, as
indicated by the exit transition, it will never be necessary
to return to s1 and thus a goto is used to transition to s3
from s1.

Our infrastructure is such that flightprofiles and
flightroutes are easily added to the programming
language and compiler. The addition of variables to our
language has also allowed more complex actions to be
constructed based on lower level primitives so modifi-
cation to the compiler are not strictly necessary. The
thermotrackyo (described later), for example, can be
implemented using several states and variables, where the
variables can change the state’s flightprofile param-
eters based on recently collected depth/temperature data
points.

Although quite simple, the provided language can be
extremely flexible. Currently, we are in the process of
stabilizing the compiler infrastructure so that we can perform
a user study of the proposed language with day-to-day
users of Slocum gliders. We would like to use the study
to determine if our programming framework is flexible and
intuitive enough to meet their requirements.

III. IMPLEMENTATION

In order to enable any significant change to the current
architecture, such as reacting to sensor readings, cooper-
ative control of gliders [11] and the support of complex
sensors, new computer hardware is needed as part of the
glider infrastructure. We chose an ARM-based (TS-7800)
and a x86-based (TS-5500) single board computer (SBC)
running Linux as our initial development platform. Table I
contains the hardware specifications of both SBCs [19]. The
reported power measurements were taken under load using
a Tektronix 3014 Oscilloscope. Other SBCs will likely be
considered in the future; depending on mission requirements
it may be advantageous to choose one board over another.

To execute missions written in our programming language,
we must gain control of the current software system. One key
objective of our overall design is to remain as non-intrusive
as possible. The existing system is well designed to deal
with safety issues that ensure the physical integrity of the
glider and we wanted to take full advantage of this. The
glider is also a successful commercial product with many

TABLE I
SBCS THAT HAVE BEEN INSTALLED IN THE SLOCUM GLIDER.

TS-5500 TS-7800
CPU: x86 at ARM9 at

133MHz 300MHz or 500MHz
Memory: 64MB 128MB
Storage: 1 CF 1 FullSD,

1 MicroSD, 2 SATA
USB: 2 2

Serial Ports: 3 Up to 10
Analog to 8 12-bit 5 10-bit

Digital : channels channels
Active Power: 2.7W 3.42W (300MHz),

4.14W (500MHz)
OS: Linux 2.4 Linux 2.6

customers, thus we want to remain backward compatible with
the existing system to allow users to gracefully migrate to
our infrastructure.

The design that satisfies the objectives described above
is shown in Fig. 4. The Slocum AUV’s current processors,
the flight controller and the science computer, communicate
via a 9600 baud serial connection. The flight controller is
responsible for safely piloting the vehicle according to the
mission specifications. Readings from installed sensors are
collected by the science computer and are directed to the
flight controller for logging. The readings along with other
glider state information are stored in the flight controller’s
sensor array. This sensor array can be considered the flight
controller’s data memory and is periodically written to per-
sistent storage (typically every 2-4 seconds).

The SBC which hosts our runtime system can converse
with the science computer through its own 115200 serial
connection. Using the existing infrastructure, which permits
the reading and writing of the flight controller’s data memory,
we have developed a driver layer (hookprog) on the science
computer so that it may act as a proxy for the SBC. Thus,

double min, max, currTemp;
eventList el, retEl;
event iter;
event reachMinDepth = { LEQ, M_DEPTH, &min }
event reachMaxDepth = ...
event tempChange = ...
addEvent(el, reachMinDepth);
addEvent(el, reachMaxDepth);
addEvent(el, tempChange);
min = 5; max = 20;
while(1) {

retEl = gliderRun(el);
while(iter = nextEvent(retEl, iter) {
if(iter == reachMinDepth)

dive();
if(iter == reachMaxDepth)

climb();
if(iter == tempChange)

trackThermo(&min, &max, 10, 10);
}

}

Fig. 3. Compiler-generated skeleton C program that is executed by our
runtime system.
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Fig. 4. The new programming architecture; from left to right: flight controller with skeleton mission and layered control implementation, science computer,
and our SBC with a domain specific programming language, runtime system and compiler.

with the layer in place, our computing system can also read
and write data to the data memory.

Another software hook introduced into the existing system
is the hookbeh behavior. Based on the instructions sent by
the SBC through the sensor array, the behavior dynamically
generates and executes a sequence of sub-behaviors that
perform the glider actions on our behalf. This allows our
software infrastructure to command the glider while remain-
ing backward compatible. If a user decides not to run our
software, they can simply neglect to include the behavior in
their layered control mission file, thus removing the hook.

Finally, the compiler for our new domain specific pro-
gramming language is implemented using the open-source
tools Flex [1] and Bison [12]. The compiler generates C
code for our glider runtime and library system. Fig. 3 shows
the skeleton C code generated by our compiler for state s2
of Fig. 2. Each event the state will react to is declared
and associated with a predefined or custom function and its
required data. All events are then added to an event list which
is passed to the event system gliderRun. The generated
C code is then compiled using GCC [13], targeted for our
particular single board computer installed in the glider.

The runtime system is the software stack which conducts
the necessary communication with the science computer
and presents an event-driven programming interface similar
to our programming language, albeit at much lower level
(as shown in Fig. 3). Along with the glider library, which
provides commonly used routines such as performing a
sequence of dives and climbs, it is easy for programmers
experienced in C to create a mission directly using the
runtime. Users could also implement new routines that allow
access to new sensors, data processing services, or decision
making strategies. It is at this level that the additional

processing power supplied by our single board computers
can be harnessed.

IV. EXPERIMENTS

Most of the development for our programming infrastruc-
ture was made using a “shoe-box” simulator. This simulator
contains a subset of components used in the production
glider. To verify our system’s functionality we used the shoe-
box simulator, a glider on a bench-top, as well as short
deployments in the Atlantic. In the bench-top configuration
the glider performs as it would at sea, by moving motors and
turning sensors on and off, but sensor values such as depth
and temperature are simulated. In all configurations, our SBC
commands the glider software infrastructure by using one of
the science computer’s serial interfaces to communicate with
our software hooks.

Not being able to react to its surroundings can lead the
glider to inefficiently study some ocean phenomena. To
showcase the dynamic capabilities we have added to the
Slocum, we have used our framework to track a thermocline.
A thermocline is a layer of water where temperatures change
drastically, typically within a few meters.

To detect and track such a thermocline, we have developed
a simple algorithm that observes when a threshold has
been met in recent depth/temperature data points. Using
fictitious data loosely based on real thermoclines observed
by previous glider missions off the coast of New Jersey,
and the stated algorithm, we were able to successfully track
a thermocline using a benched glider in simulation mode.
A domain specific program would use a state similar to s2
of Fig. 2 to accomplish this task. Fig. 5 shows a glider’s
depth profile of such an experiment, where the thermocline
is represented by the gradient. The warm surface water is
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Fig. 5. On bench thermocline tracking simulation.

assumed to be 24 degrees Celsius and the cool deep water 7
degrees Celsius. The simulated thermocline has one internal
wave.

With the intent of remaining backward compatible, the
glider was instructed to perform three dive and climb se-
quences with the traditional layered control system. We used
our infrastructure to pilot the tracking of the thermocline
from 260 seconds to 1460 seconds into the mission; after
this it would return to finish its layered control mission. The
profile depicted in Fig. 5 confirms that, although simple, the
tracking algorithm performs well.

As part of the experimental evaluation of our system we
were able to perform two deployments in the Atlantic Ocean
approximately 30 kilometers off the coast of southern New
Jersey. During these deployments, the glider was tethered
to a buoy as a safety precaution. Although the tether may
slightly impact the flight behavior of the AUV, it provides
the advantage of a speedy recovery in the case of unplanned
events.

The overall objectives of the first deployment were to
assess if our architecture was sound and to determine if the
simulations are reflective of true environmental conditions.
During the first run of the day, the glider was programmed
in our language to change its target depth from 15 to 25
meters based on a specific sensor reading. It was successful
in doing so. The second run was the first attempt of tracking
a thermocline. The AUV flew to its desired depth but failed
to detect the thermocline because the algorithm was not prop-
erly provisioned to deal with sensor readings that were not
monotonically increasing (while climbing) or monotonically
decreasing (during diving). Thus, temperature fluctuations
caused the data window to be reset and caused the threshold
to never be reached. Provided that our simulations did
not reveal the error in our algorithm, we considered it a
prosperous deployment.

The focal point of our second deployment was to use
the knowledge obtained from the first mission to track
a thermocline. Minor changes were made to the tracking
algorithm based on the data collected from the previous
deployment. Fig. 6(a) exhibits the day’s water column tem-
peratures as observed using a Sea-Bird CTD profiling sensor.

The thermocline is present at approximately 10-18 meters
where dramatic temperature change can be observed. A
mission nearly identical to the one in the first deployment
was carried out. The vehicle’s depth profile in Fig. 6(b)
indicates that the algorithm successfully detected the thermo-
cline and changed the glider’s target depth range. A dramatic
temperature change was not observed in the climb starting
at approximately 700 seconds into the mission. The loss of
the thermocline was not due to a defect in the algorithm,
but due to the CTD sensor itself. It is possible that an old
water column was not flushed out from the CTD sensor. The
dive immediately following the climb did however detect the
thermocline again.

It is interesting to note that the vehicle leveled out at
15 meters towards the end of the mission. Although our
infrastructure was still in control for a small portion of
this time, it piloted the vehicle to climb. For most of the
hovering period however the glider’s layered control system
was in control and instructed a climb. This type of behavior
has been observed in other deployments for brief periods of
time. Another possibility is that the tether somehow restricted
the glider’s movement. Regardless, we have shown that our
framework has enabled the Slocum to react dynamically
to changes in its environment which was not feasible in
the existing software system. Coming up with a reliable
implementation of a thermocline tracking algorithm was not
the focus of our experiments. We are happy to leave this task
to a knowledgeable marine scientist.

V. CONCLUSION AND FUTURE WORK

The current programming model on the Slocum gliders is
not well suited to react to its environment nor is it trivial
to program for. We have described an initial version of our
programming language based on needs conveyed to us by
engineers which work with the AUV on a daily basis. We
have also presented how we are able to pilot the vehicle using
software hooks that were embedded into the existing system.
Finally, we have demonstrated the power and flexibility
of our system through simulations and deployments in the
Atlantic Ocean.

In the near future, we will extend the current compiler
to handle additional language features to support on-board
power management. To this end, we are in the process
of adding power measurement capabilities to the glider.
The insight we will gather from the energy consumption
of the glider and its sensors during simulation and actual
deployments will give us an idea of possible tradeoffs
between battery consumption, quality of sensor readings
and glider flight profiles. Such tradeoffs are necessary for
missions where not all sensors can be active all the time.
It is the programmers responsibility to specify the desired
tradeoffs through new language constructs. Based on these
specifications, our compiler and runtime system will find
the most effective operation plan that satisfies the desired
tradeoffs.

Additional work needs to be done at the hardware level as
well. For an AUV such as the Slocum glider, designed for
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(a) Thermocline as detected by Sea-Bird CTD (b) Profile of glider programmed using our infras-
tructure to track a thermocline

Fig. 6. Mission to track a thermocline in the Atlantic Ocean.

endurance missions lasting weeks or months, our two SBCs
are too power hungry. We are planning to develop and deploy
an adaptive system that can adjust itself to the particular
computation needs of a given flight profile or sensor set.

A user study with Slocum engineers and undergraduate
students is in the planning stage. Their feedback will help to
determine if the current programming model is sufficiently
flexible and intuitive for creating missions. A port of the
language to a propeller driven AUV is also underway,
giving us the opportunity to evaluate our new programming
architecture on two different AUV platforms with different
hardware and application characteristics.
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