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Abstract— First task robots have to realise is sensing and
acting in the environment. Can a robot learn the way it is
able to sense and act in the world without any hardwired
notions? Is it able to learn it from the only data he has
access to, that is high-dimension sensory inputs and motor
outputs? This paper presents experimental results obtained
on a simulated human listener using a bio-inspired model of
the cochlea and real records from human related transfer
functions (HRTF). These results show that a naive system
that interacts with its environment without knowing the laws
governing these interactions can discover information about
dimensionality of space. Moreover, the laws determining the
sensations of the system as a function of the state of the system
and the environment, called the “sensorimotor law”, are not
simplified as usually in simulations. They are bio-realistic as
they are determined by the HRTF recorded on human beings.

Keywords : sensorimotor contingencies, auditive sensorimo-
tor flow, cochlea, space dimension.

I. INTRODUCTION

In mobile robotics perception is essential to achieve
task such as navigation, obstacle avoidance, source local-
isation, or other task which requires to interact with the
environment. Currently perception for mobile robotics is
mainly passive: the environmental state projects itself on the
robot sensors. This projection will be analysed to extract
information about environnement state. This approach of
perception requires the use of models for the sensors and the
environment. An alternative way to this passive explanation
of perception is the theory of sensorimotor contingencies
proposed by O’Regan and Noe [1]. This theory integrates
action in perception and explains information extraction by
the properties of the dependancies between sensations and
action instead of sensors inputs only. The main interest of
this kind of theory applied to robotics perception tasks is
to find solutions to complex problems in which traditional
perception algorithms fail: fast navigation in complex or
unstructured environments for instance [2] or autonomous
and adaptative comportments in unknown environments (it
should be directly of interest for roboticists concerned with
unsupervised learning).

Poincaré [3] asked the question of what we can extract
from our sensor and motor signals (the sensorimotor con-
tingencies) that can make us understand and move in the
surrounding environment. He wrote: To localize an object
simply means to represent to oneself the movements that
would be necessary to reach it. It is not a question of

C.Couverture is with the ISIR laboratory, UPMC Univ Paris 06, 4, place
Jussieu, 75005, Paris Charlie.Couverture@isir.upmc.fr

B.Gas is with the ISIR laboratory, UPMC Univ Paris 06, 4, place Jussieu,
75005 Paris Bruno.Gas@upmc.fr

representing the movements themselves in space, but solely
of representing to oneself the muscular sensations which
accompany these movements and which do not presuppose
the existence of space. Following this idea Philipona [4]
proposed an algorithm in which the brain of a simulated
organism with arbitrary input and output connectivity can
infer the dimensionality of the rigid group of the space
underlying its input-output relationship, that is the dimension
of what the organism will call physical space.

We propose in this article to extend Philipona’s work [4]
by showing how a system with bio-inspired auditive sensors
can deduce dimension of the space from its interaction with
its environnement. Aytekin et al. [5] demonstrate quantita-
tively that the experience of the sensory consequences of
its voluntary motor actions allows an organism to learn the
spatial location of any sound source. The authors cite the
demonstration made by Philipona et al. but their approach
assumes that in far field auditory space is two dimensional.
By doing that they abandoned the key hypothesis of the
brain having absolutely no a priori information about outside
physical space (whether it exists at all, whether it has a
metric, whether it is euclidean, how many dimensions it
possesses). On the contrary our hypothesis is that according
to Philipona’s and O’Regan work what a biological organism
perceives as the dimensionality of space can be inferred
without any a priori knowledge from the laws linking the
brain’s inputs and outputs.

The article is divided into three parts. We first give some
understanding keys about the mathematical background. Sec-
ondly we describes our system and finally we present our
experimentations.

II. PROBLEM FORMALIZATION

In what follows we consider E as the state of an environ-
ment of dimension e and E as the manifold of all the possible
states of the environment so that E ∈ E . We consider S as
the sensory input vector of dimension s of a robotic system
taking place in this environment and S the manifold of all
the possible sensory input so that S ∈ S. We consider M
the output vector of the robotic system, that is its motors
command vector of dimension m, and M the manifold of
all the possible output of the system with M ∈M.

The sensory input is determined by both the environment
state and the current motor state so that there is a functionnal
relationship between the manifolds E , M and S that is called
“sensorimotor law”:

S = Φ(M,E) (1)
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It means that we are not using a motor control approach
M = φ(S), but on the contrary an approach based on the
observation of sensory consequences of motor commands.
We shall focus on the tangent space {dS} of S at some
point S0 = φ(M0, E0). Following Philipona’s argumentation
two natural subspaces {dS}dE=0 and {dS}dM=0 can be
identified in {dS}:

dS =
∂φ

∂M

∣∣∣∣
(M0,E0)

.dM +
∂φ

∂E

∣∣∣∣
(M0,E0)

.dE (2)

such that {dS} = {dS}dE=0 +{dS}dM=0 where {dS}dE=0

is the vector subspace of sensory input variations due to a
motor change only and {dS}dM=0 the input variations due
to an environment change only. More precisely {dS}dE=0

and {dS}dM=0 are the tangent spaces at the point S0

of manifolds φ(E0,M) and φ(E , M0) of sensory inputs
obtained through variations of respectiveley M only and E
only. Let C(M0, E0) be the intersection of {dS}dE=0 and
{dS}dM=0. A non empty intersection means that their exists
some perceptual changes arround S0 that can be obtained
equally either from dE or from dM , that is the so called
compensable movements of Poincaré. Our main objective is
to determine the dimension d of the space of the compensated
movements.

One has:
dim(C(E0, M0)) = dim({dS}dM=0)

+ dim({dS}dE=0)
−dim({dS})

(3)

which can be writen as d = p + e − b where d =
dimC(E0, M0) that is the dimension of the compensable
movements. When the robot is stationary dimension of sub-
space {dS}dM=0 gives the number e of variables necessary
for a local description of the environment. When the envi-
ronment is stationary dimension of subspace {dS}dE=0 gives
the number p of variables necessary to describe the variations
of input signals due to robot motions. When both M and E
vary certain input changes can be obtained either from dE or
dM such that the dimensionality of {dS} is lower than the
sum of dimension of {dS}dM=0 and {dS}dE=0 (see eq. 3).
We used Principal Component Analysis (PCA) to estimate
those numbers e, p and b.

In Philipona’s simulation [4], [6] perceptual modalities
were both visual, tactile and auditive but with simple simu-
lated sensors. In this article we propose to use much more
realistic datas and sophisticated sensors but only in the
field of auditory sensing with the pending question: can
an organism identify the dimension of the auditory space
throught its interaction with it? Giving a positive answer
to the previous question Aytekin et al. [5] assumed that
the auditory space dimension were known. That is two-
dimensional because only two parameters are necessary to
identify a sound source location in auditory space in the
far field, as we consider an isotropic sound source. As
Aytekin et al. we carry on Philipona’s work by adapting the
example given by Poincaré for visual perception of space
to the auditory perception of space. But our task is not to

localize sound source position. We only want to determine
auditory space dimension since we consider this question as
a preliminar.

III. SYSTEM DESCRIPTION

A. General overview
Our system simulates the audition of multiple sound

sources by a simplified human listener as shown on Fig. 1.
It means that the simulated listener is able to operate move-
ments of its own head and that it perceives the sensations
due to the sound sources in the environment. The sources are
placed on a 1-meter diameter sphere centered on the head.
The position of a source with relation to the reference frame
requires two angles, θ and φ. The orientation of the head with
relation to the reference frame requires three parameters α,
β and γ. The acoustic sensory inputs received by the listener

γ

β

x3

x2x1

α

Fig. 1. View of the head of our simulated listener with the angles of
rotation as parameters for its movements.

are computed as follow. Firstly signal of each sound source
is filtered by the auricle of each ear of the listener. The
filter function operated by the outer ear is a function of the
direction of the incomming signal and is modelized by the
Head Related Transfer Function (HRTF). Secondly the signal
filtered by the HRTF as it appears at the entrance of the canal
is encoded by the cochlea. The model of the cochlea that we
use consists of an array of independent bandpass filters. The
energy output of each filter of both ears is computed on fixed
length frames and constitute the elements of the sensory input
vector S. The HRTF phase information (available to humans
up to 3 kHz) is ignored to simplify analysis.

As described in section II E is the manifold of all the
possible states of the sound sources (time, frequency and
spatial properties). The motor states (e.g. governing the head
orientation) are elements of the manifold M. All the acoustic
sensory inputs received at the ears are parts of the manifold
S.

Our goal is to estimate the intrinsic dimension s of the
sensory input vector S. To achieve this our simulated listener
moves or the environment moves or both while sensory
inputs S are recorded. Dimension s of sensory input is
estimated by computing a Principal Component Analysis
(PCA) on the covariance matrix of all the iterations of S.

In the following sections we describe our simulated lis-
tener with more details.
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B. Head-Related Transfer Function
The Head Related Transfer Function describes the inter-

action between the sound of the source and the outer ear,
the head and the torso of the listener. Due to the physical
geometry of the body of the listener the HRTF depends on
the direction of the incomming sound. Fig. 2 presents left and
right HRTF for a source positioned in front of the listener.
For a given source at azimuth θ and elevation φ the acoustic
responses Sl(f) and Sr(f) received at the left and right ears
respectively are:

{
Sl(f) = A(f).Hl(f, θ, φ)
Sr(f) = A(f).Hr(f, θ, φ) (4)

where the His represent the HRTF of left and right ears and
A(f) represents the spectral composition of the source.

Fig. 2. Left (top) and right (bottom) HRTF corresponding to a source
situated in front of the listener

The CIPIC HRTF Database [7] is a public-domain
database of high-spatial-resolution HRTF measurements for
45 different subjects, including the KEMAR mannequin (a
tool used to analyze how sound waves interact with the
human body) with both small and large auricle. The database
includes 1250 measurements of head-related impulse re-
sponses for each subject. These ”standard” measurements
were recorded at 25 different interaural-polar azimuths (from
−80° to +80°) and 50 different interaural-polar elevations
(from −45° to +230.625°) (see [7] for additional details).

Because we want to estimate the tangent space dimension
(eq. 3) at a point S0 we need to limit the spatial motor actions
to small head movements arround a fixed head orientation.
As a consequence HRTFs need to be interpolated if we want
to retrieve a particular azimuth and elevation which is not
one of the values present in the database. We used for that a
two dimensional linear interpolation method based on matlab
conventional interpolation functions.

C. Cochlear coefficients
The signal filtered by the HRTF is the signal of the source

as it appears at the entrance of the auditory canal of the
ear. According to Patterson’s model [8] the cochlea is seen
as tonotopically organized filters from high frequencies at
the base of the cochlea to low frequencies at the apex. In
Patterson’s model the bandwidth of each cochlear filter is
described by an Equivalent Rectangular Bandwidth (ERB)
[9] using a gamma-tone filter [10]. A critical band or ERB

filter models the signal that is present within a single auditory
nerve cell or channel. Cochlear channels are spaced so that
each filter overlaps its neighbors by the same amount (see
Fig. 3). We used the gamma-tone filter implementation of

Fig. 3. An example of a gamma-tone filter bank with 10 filters from 100
Hz to 8000 Hz.

Malcolm Slaney’s Auditory Toolbox [11], [12]. The lowest
frequency center was 100Hz and the highest was 18 kHz.
We used 40 filters for each ear, leading to a 80 coefficients
vector, each of them representing the energy computed on
the filter output signal (see Fig. 4 for an example of four filter
responses to a gaussian noise input signal). Fig. 5 presents

Fig. 4. Output of filters 8, 15, 22 and 30 (top to bottom) of the cochlea
we use for our experiments. Input signal is a white gaussian noise.

the 40 cochlear coefficients of the left ear computed as the
white noise signal of a sound source is filtered by the left
HRTF corresponding to a position of the source right in front
of the listener.

Fig. 5. Cochlear coefficients of the left ear computed for a gaussian noise
presented as the signal of a sound source positioned in front of the listener.

D. Estimation of the dimension of the movement.
Let us consider {dM} as a set of 10 motor commands

and {dE} a set of 10 environmental positions (which are in
our case sound source positions). Our objective is to observe
whether head movements dimension can be extracted from
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the perceptual flow, e.g. variations of auditive sensations due
to the relative movement between the head and the source.

Motors commands or sound sources movements produce
10 sensory inputs changes each: {dS}dE=0 and {dS}dM=0.
We want to compute eigenvalues of the covariance matrix of
these sample sets. Eigenvalues should fall into two classes
: significant values (non-zero values) and unsignificant values
(near zero). The number of significant eigenvalues gives
an estimation of the intrinsic dimension of the embedded
samples. We used the same method as Philipona in [4] to
distinguish these two classes. Finding the boundary between
the two classes can be done by ordering the λi in decreasing
order, and locating the value of i such that the ratio between
λi and λi+1 is largest (see fig.6). More precisely, we used:

dim = arg max
Eigv(i)

Eigv(i + 1)
(5)

Fig. 6. Top: eigenvalues obtained for 2-D movement (normalized scale).
First seven values are significant while others are not. Bottom: ratio between
eigenvalue i to eigenvalue i+1, where i is the eigenvalue index (normalized
scale). Here the estimated dimension is 7.

IV. EXPERIMENTAL RESULTS

We report here 4 experiments we have conducted to show
that intrinsic dimension of the sensory inputs corresponds
to the dimension of the action of the environment or the
simulated listener. In other words, we aim at showing that
the sensorimotor law, describing the interaction between
a system and its environment, has properties that permit
to retrieve information about the environment without any
model of it.

A. Movement of the head in one direction. One source of
white gaussian noise.

The first experiment consists in moving the head in one
direction, while there is one fixed sound source in the
auditory space. The head moves 10 times by 1° by steps
of 0.1° around its initial position. Thus we have a set {dM}
of ten infinitesimal movements resulting in {dS} sensory
responses available to estimate their intrinsic dimension. The
experience is repeated for several positions of the source
belonging to the interval [−25°; 25°] for θ and [−50°; 50°]
for φ with steps of 2°. We have reported on table I the rate
of good estimation. This experimentation has been realised
three times, one for each direction α, β and γ. The result
obtained for the β direction movement of the head is weaker
than for the two others. Fig. 7 presents the map of sound
source positions which have been correctly estimated, e.g.

TABLE I
RESULTS OF DIMENSION ESTIMATION FOR A MOVEMENT OF THE HEAD

IN ONE DIRECTION WITH ONE MOTIONLESS SOURCE.

Dim. direction
α β γ

1 98.1% 92.0814% 99.3967%
2 1.81% 3.2428% 0.6033%
3 0% 1.810% 0%
4 0% 1.5083% 0%
5 0.08% 1.3575% 0%

6+ 0% 0% 0%

dim = 1. One can notice that the β movement is the
rotation of the head around the axis passing by the centre
of the head and the position of the source at azimuth 0 and
elevation 0. As a consequence, movements of the head when
the source is near the central position result in very small
perceptual variations which could explain why dimension is
badly estimated for source positions around the center of the
rotation. Fig. 8 presents the first 10 eigenvalues extracted

Fig. 7. Map of the positions of the source for a movement of the head in
the direction β. Points represent position for which estimated dimension is
1.

from the covariance matrix of the 80 cochlear coefficients
obtained for ten rotation movements of the head in the
direction α for a position of the source. The dimension is
correctly estimated (dim = 1).

Fig. 8. Eigenvalues obtained for a 1-D movement in α. Estimated
dimension of the movement is 1. Source is positioned at (7, 13).

B. Movement of the head in one dimension. Two sound
sources

The second experiment consists in moving the head in
one direction, as described previously, but with two sound
sources of white gaussian noise instead of one. The dimen-
sion is estimated for each combination of positions of both
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sources. The experiment is repeated for the three possible
movements of the head α, β and γ. This experiment aims at
showing that even if two sources are present, the “dimension”
of the signal is still related to the dimension of the movement
and not to the number of sources. As the sources are static
and the head is moving, the relative movements of the
sound sources with relation to the head are the same. So
the movement can be described by only one parameter and
the expected result of the estimated dimension is dim = 1.
We placed the first source in four random positions while
the second source takes positions in the intervals [−25°; 25°]
for elevation and [−50°; 50°] for azimuth with steps of
2° for each position of the first source. Table II presents

TABLE II
ESTIMATION RESULTS FOR MOVEMENTS OF THE HEAD IN ONE

DIRECTION WITH TWO SOURCES OF NOISE.

Dim. direction
α β γ

1 83.2956% 85.0867% 66.7044%
2 16.6101% 14.6305% 32.8997%
3 0.0943% 0.1320% 0.3959%
4 0% 0.0566% 0%
5 0% 0.0943% 0%

6+ 0% 0% 0%

the obtained results. The dimension has been estimated for
the 5304 combinations of both sources positions. For the
movement of the head in the direction α, we obtain good
estimation of the dimensions (83%). For direction β, 85%
of the sound source positions are correctly estimated. The
movement of the head in the direction γ induced a weaker
score than other directions. Only 66% of the positions give
rise to good estimates while 32% give an incorrect estimate
(dim = 2). The results were totally different between one
position of the first source ((−3°, 8°) leading to 10% of
good estimates) and the three others (leading each of them
to 86.20%, 83.86% and 86.20% of good estimates).

C. Movement of the head in two directions with one source
of white noise.

This experiment consists in moving the head in two direc-
tions, while one source of white gaussian noise is present. It
aims at showing in what extent the algorithm can estimate 2D
movements with only one sound source. The head makes a
movement of 1° in one direction then 1° in another direction
by steps of 0.1°, starting with the “nose” pointing to azimuth
0 and elevation 0. Table III reports results for positions of the

TABLE III
ESTIMATED DIMENSION FOR A HEAD MOVEMENT IN TWO DIRECTIONS

WITH ONE SOURCE OF NOISE.

Dim. % of result
1 11.4630%
2 83.8612%
3 4.6757%

4+ 0%

sound source within [−25°; 25°] for elevation and [−50°; 50°]
for azimuth with steps of 2°. Total number of estimations is
1326. Expected result is dim = 2 because two parameters are
sufficient to describe the movements of the head with relation
to the source. One can see that the ratio of well estimated
dimension is of the same order that the one obtained for 1D
movements of the head (see table II).

Fig. 9. Successive positions of the source with relation to the head for a
2-directions movement of the head. Vertical and horizontal lines are azimuth
0 and elevation 0.

D. Movement of the head in two directions with two sources
of noise.

This experiment is similar to the one with a movement of
the head in one direction and two sources of white noise,
except that the head makes a movement in two directions.
Table IV presents the results.

TABLE IV
ESTIMATED DIMENSION FOR A HEAD MOVEMENT IN TWO DIRECTIONS

WITH TWO SOURCES OF NOISE.

Dim. % of result
1 6.8627%
2 61.7647%
3 28.3560%
4 2.8658%
5 0.1508%

E. Independant movement of two sources of white noise.
Head is motionless.

TABLE V
RESULTS OBTAINED FOR EXPERIMENTS 1 AND 2.

Dim. exp.1 exp.2
1 2.07% 2.9586
2 68.6391% 13.6095%
3 17.4556% 5.6213%
4 11.2426% 46.1538%
5 0.5917% 31.6568%

6+ 0% 0%

The first experiment consists in estimating the dimension
of the signal recorded by our simulated listener when two
sources of white noise are present and move in one direction
each. The head is motionless and its “nose” is pointing
to azimuth 0 and elevation 0. The first source is initially
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positioned at azimuth 10° and elevation 6° and makes a move
of 1° in one direction then in another direction with steps
of 0.1°, while the second source is initialy positioned in an
area delimited by [−50°; 50°] for azimuth and [−25°; 25°] for
elevation with step of 2°. The experiment is repeated for each
position of the second source within this area. Dimension
has been estimated 1326 times. The expected dimension
is 2 because two parameters are required to describe the
variations of the cochlear coefficients occuring due to the
movement of the sources. In other words, two parameters
are enough to describe the position of the two sources as
they move in only one direction each. In more than 68%,
the dimension estimated is 2.

The second experiment is similar to the first one, except
that the movement described by the sources is in two
directions. The expected dimension is 4 because 4 parameters
are enought to describe the position of the sources. Thus,
the variations induced by the movement should require four
parameters to be described. Table V presents results obtained
for experiments 1 and 2. In 46% of the positions of the
second source, the dimension is well estimated. But for
54% of the positions, a wrong dimension is estimated. We
postulate that this is due to the too large amplitude of
movements.

V. CONCLUSIONS — PERSPECTIVES

We used a model of the human cochlea and records of
head-related transfert function of a human subject to simulate
the audition by a listener of moving sources. We used an
algorithm to extract spatial information from the auditive
modality flow. The conducted experiments have shown that
property of the action of a simulated system can be retrieved
from the sensory inputs only. This is of direct interest for
roboticists since this approach of perception does not rely
on a model of the sensor, of the environment, or of the
morphology of the system. Not having a model to update
but on the contrary look for information every time the agent
need it, permits to have up-to-date datas.

Moreover, as there is no assumption on the structure of
the datas, multimodal fusion is potentially easier to achieve.
Input sensory datas from each modality are all related to
action of the agent, and to the state of the environment in a
coherent way, e.g. a movement of the head has consequences
on auditive, visual, tactile, proprioceptive inputs.

We are currently working on estimation of the dimension
with multimodal signals. Future results will give us the op-
portunity to show wether the Poincaré hypothesis concerning
space dimension can be verified from real audio and video
datas.
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