
  

  

Abstract— This paper discusses the extension of sample-

based planning methods to the application of sensor planning 

for a partially unknown, moving target. This is achieved by 

modeling the target as a time-varying stochastic process with 

known mean and variance. Using the unscented transform, the 

target’s statistics are then propagated through a user-supplied 

sensing effectiveness metric.  The planner is demonstrated for 

a dynamic X-ray imaging platform tasked with viewing the 

human knee-joint center during normal, over-ground walking. 

I. INTRODUCTION 

N the last two decades, the use of fluoroscopy or X-ray 

images as a means to measure in-vivo bone and implant 

motions has matured to a reliable biomechanical technique. 

Beginning with work by Banks et al. [1, 2], programs 

worldwide have since been established to pursue technical 

development and clinical applications of registration-based 

image measurements of in-vivo bone and implant motions. 

Despite these positive developments, clinical application 

and broadened research utilization of these measurement 

techniques are fundamentally limited by available imaging 

hardware. Existing fluoroscopy equipment provides superb 

images of anesthetized patients resting on an operating 

table, but these systems were not designed for large volume 

dynamic motion capture on moving subjects. Our group, 

along with others across the globe, has been developing 

novel dynamic imaging platforms which can move with 

patients to capture diagnostically insightful views of their 

joints during normal activity (Fig 1). 

Our solution to the hardware problem is to mount light-

weight X-ray equipment onto commercially available 

robotic manipulators. However, the coordination of two six 

DOF robot arms for the purpose of X-ray photography is not 

trivial. Even before permitting a patient within the 

reachable workspace of the robots, we need to 1) prove the 

feasibility of the measurement activity considering the 

geometric and dynamic constraints of the robots and 2) 

quantify the relative safety of the patient and efficiency of 

the sensing activity. Methods to answer these preliminary 
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questions are found in the realm of motion planning and 

specifically in the specialized domain of view or sensor 

planning.  

Even within the domain of sensor planning there are 

many different research thrusts of which only a few are 

applicable to our problem statement. Excellent surveys of 

automated 3D modeling and object inspection exist [3, 4]. 

These techniques focus on computing either the minimal 

number of views required to reconstruct a static object or, 

given the required views, the optimal path to visit these in 

minimal time or effort. An interesting tangent to this 

problem is the combined exploration/navigation problems of 

unknown environments (e.g. [5, 6]). While both research 

thrusts are interesting, our object of interest is moving 

(possibly with limited a priori knowledge of its motion) in a 

known environment. 

A more relevant application area can be found in pursuit-

evasion games. A short survey by Cheng summarizes a 

variety of techniques that have been developed to address 

different facets of this problem [7]. While recent work has 

focused on incorporating more realistic sensor models (e.g. 

[8]) or limitations on the kinematics or dynamics of the 

robotic agents (e.g. [9]), these methods often rely on the 

geometric properties of planar problem domains for their 

solutions. 

Randomized or probabilistic motion planning algorithms 

are well-suited to solving high-dimensional planning 

problems [10]. A sample-based algorithm has been 

developed by Kehoe for sensor planning of stationary 

ground targets in cluttered environments by aerial vehicles 

[11]. By combining the rigorous development of a sensing 

metric with the adaptation of randomized dense tree (RDT) 

methods [12, 13], Kehoe was able to generate useful 

solutions for real-world sensor planning problems. 

This paper discusses a novel extension to the method 

previously reported by Kehoe. We will present an algorithm 

for sensor planning of a moving target with partially known 

state information. Section II formalizes our problem 

definition. Section III gives a general overview of the 

algorithm and then details our novel contributions. Section 

IV details the application of this work to our dynamic X-ray 

imaging platform. Finally, sections V and VI provide 

experimental results and concluding remarks. 
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II. PROBLEM DEFINITION 

A. Problem domain 

To assist with further discussions, we will formally define 

the problem domain. Let 
73 )3( RTSORV ⊂××=   

represent a standard, six dimensional Cartesian space 

augmented by time. A point in V  represents the location 

and orientation of a generic 3D frustum at a particular 

instance in time. Let 
p

RF ⊂  represent the parameter 

space of the frustum so that a point in F  uniquely defines 

the size and shape of the frustum. Then the sensor space, Χ  

is simply
pRFV 7⊂×=Χ .  

The planning algorithm operates directly in Χ , however 

functional mappings for a point Χ∈x  into corresponding 

points in both the Cartesian workspace 
6RW ⊂  of the 

robots as well as the joint spaces 
6RC

i
⊂  for each robot 

i
ℜ  are assumed to exist. 

B. Target model 

To account for a non-stationary target, we will define the 

target as a family of trajectories which belong to a specific 

trajectory population relevant to the sensing application. 

More specifically, we will treat the state time-history of the 

target as a time-varying stochastic process, )(tY , where 

 

y j = E Y t( )[ ]
t= t j

 (1) 

Py j
= E Y t( )− y j( )Y t( )− y j( )

T[ ]
t= t j

 (2) 

 

where y j  and Py j
 are the mean and covariance of Y (t j )  

respectively. 

C. Sensor effectiveness 

Next we assume there exists a scalar function taking as 

input a realization of the target’s time-history and a 

configuration of the sensing system. This function generates 

a measure of the sensing effectiveness of the configuration 

for the particular target realization. Mathematically, we 

assume there exists a real-valued function 

( ) [ ]1,0,: →yxf . 

D. Problem statement 

The objective of the sensor planning algorithm is to find 

an open-loop control strategy which maximizes the 

expected sensing efficiency across the entire path. 

III. ALGORITHM DESCRIPTION 

A. Overview 

Sample-based motion planning algorithms are recognized 

by the greater robotics community as viable methods to 

solve complex, high-dimensional planning problems. All 

sample-based methods share one common feature – they 

only implicitly model the problem space by sampling it at 

discrete points. This feature allows them to efficiently 

model very complex and high dimensional problem spaces 

using a finite amount of computer memory. 

In general, RDT methods take as input a set S of 

randomly sampled points from the problem space. The 

algorithm then incrementally builds a tree data structure 

from an initial sample and returns a simply connected 

graph ),( ENG of S where the nodes N are the sample 

points of S and the edges E represent collision free paths 

between the nodes. The graph G approximates the collision 

free topology of the problem space. 

There are four major components to the algorithm: node 

selection, vantage point generation, extension, and solution 

check [11]: 

1. Node selection: A node, Ni, from the existing 

search tree is selected probabilistically based on the 

node’s fitness or weight. 

2. Vantage point generation: Vantage points, xj, are 

pseudo-randomly generated for a target (if 

stationary) or target segment (if moving) which has 

not yet been sensed. 

3. Extension: Candidate paths are generated using a 

user-specified local planning method to connect the 

selected node, Ni, and the generated vantage points, 

xj. Each candidate path is evaluated for its sensing 

effectiveness. The best candidate is chosen and then 

added to the search tree as a new branch.  

4. Solution check: The new branch is checked to 

determine if it completes the sensing objective. If 

so, a trajectory is planned to the terminal 

configuration and the solution upper bound is 

updated. 

Figure 1. Prototype imaging platform that will be used 

for dynamic X-ray imaging as well as cone-beam 

computed tomography and traditional imaging tasks. 
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B. Node selection and fitness evaluation 

The probability of selecting any particular node for 

expansion is proportional to that node’s fitness. More 

specifically, the stochastic universal sampling (SUS) 

algorithm, developed originally for use in genetic 

optimization routines [14], was chosen for node selection.  

To aid discussion, Fig 2 illustrates the metric evaluations 

along two fictitious paths from a search tree. The first path 

has an average metric score above a user specified 

minimum. The second path has a lower average metric 

score; however it is close to a completed sensing solution. 

For our purposes, a node fitness rubric which penalized 

long, low-average metric paths and rewarded short, high-

average metric paths was desired. Through a series of 

simple experiments we developed a node fitness equation, 
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where,  

 

( )∫=

it

i
dtyxfF ,  (4) 

( ) min0min fttF f −=  (5) 

 

And maxd  and avgd  are the maximum and average path 

lengths in the search tree, respectively, and 
N

d  is the path 

length up to node i. The free parameter, α, allows one to 

manipulate the overall behavior of the search tree. Setting 

α=1 removes the penalty on long paths and therefore results 

in a greedy or depth-first search type of behavior. 

Conversely, by setting α=0, node sensing effectiveness is 

ignored and only shorter paths will be favored for selection 

and subsequent expansion, resulting in breath-first search 

behavior. 

C. Sensing effectiveness for a partially known target 

As stated in the problem definition, the target time-

history is modeled as a family of trajectories with a mean 

i
y  and covariance

iyP . The goal is to understand how this 

target information (or target uncertainty) is propagated 

through the sensing effectiveness metric. The unscented 

transformation (UT), a technique often found in non-linear 

Kalman filters, can be used for this purpose. By 

computation of a set of 2N+1 carefully chosen sigma points 

{ }
jjj WS χ,= , where N is the dimension of our target’s 

state vector, we can propagate the statistics of the target 

data [15]. The sigma points are calculated as follows, 

  

i
y=0χ  

( )κκ += NW0  
0=j  

( )( )
j

yij i
PNy κχ ++=  

( )( )κ+= NW j 21  

Nj K1=  

( )( )
j

yij i
PNy κχ +−=  

( )( )κ+= NW j 21  

NNj 21K+=  

 

where κ   is a scaling parameter and ( )( )
j

yi
PN κ+   is 

the jth row of the matrix square root of ( )
iyPN κ+ . These 

sigma points are then propagated through the sensing 

metric, 

 

 ( )
jij xFf χ,, =  (6) 

 

When the propagated points are combined with the sigma 

weights, the estimated mean and covariance of 
i

f  can be 

computed as,   

 

∑=
j

ijji fWf ,  (7) 

( )( )T

j

iijiijjf ffffWP
i ∑ −−= ,,  (8) 

 

Maximizing this expected sensing effectiveness is then 

the focus of sensor planning algorithm. 

ft  
t  

f  

minf  

0t  

Path 

Path 

Figure 2. Illustrative example of two fictitious paths 

and their expected sensing efficiency. 
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IV. APPLICATION 

A. Overview 

We have begun early testing of a new imaging platform 

which, in addition to standard fluoroscopy and cone-beam 

computed tomography tasks, could provide the ability to 

move with patients to capture diagnostically insightful 

views of their joints during normal activity (Fig 1). With 

these abilities to acquire dynamic images of joints in motion 

and tomographic scans, this novel platform could provide 

all the required information needed to implement routine 

image-based measurement of dynamic 3D skeletal motion. 

Application of the sensor planning algorithm presented in 

this paper relies heavily on the existence of a meaningful 

sensing effectiveness metric. In what follows, we will 

develop a metric for this dual-arm robotic imaging system.  

B. Metric description 

The goal of this metric is to evaluate the utility of a 

particular robot configuration. The metric can be broken 

into three components. The first two components evaluate 

the alignment of a configuration’s actual imaging axis, 

sensrcP → , to the target’s desired view vector, tZ . The 

angles φ  and θ , between the desired view vector and the 

actual viewing axis and the source to target vector, tgsrcP → , 

and actual viewing axis respectively, are parameters to 

Gaussian radial basis functions centered at zero degrees 

(Fig 3). 

 

fφ = gaussian _ rbf φ,0( ) (9) 

( )0,_ θθ rbfgaussianf =  (10) 

 

Note that no explicit constraint is set on the alignment of 

the X-ray source and detector (e.g. the alignment of Zsrc and 

Zsen). This equipment is mounted to robotic manipulators 

that have excellent spatial resolution. Therefore the location 

and orientation of this equipment is assumed to be 

measurable at the moment of image acquisition. If that 

assumption holds true and the angles θ  and φ  are 

minimized, then we will be able to deduce the 3D spatial 

kinematics of the target object using standard registration 

methods. 

The third component attempts to evaluate the remaining 

imaging parameters by approximation of the image area 

projected by the object of interest. The objects we want to 

image range from the small bones in the human ankle joint 

system to total hip replacements. To capture such a diverse 

set of potential targets, we define a 3D sphere and 

associated reference diameter, Dref , which is meant to 

bound our region of interest (Fig 3). 

For a first-order approximation, we assume that the 

projection of our reference sphere is a perfect circle with 

diameter Dimg . Utilizing the properties of similar triangles, 

the relationship between Dref  and Dimg  is, 

 

Dimg

Dref

=
d

r *cos θ( )
 (11) 

 

where d = Psrc →sen  is the distance between the source 

and sensor robots, r = Psrc →tg  is the tracking distance, 

and θ is,  

 








 ⋅
=

→→

dr

PP sensrctgsrc

*
arccosθ  (12) 

 

Using (5) and normalizing by the total area of the detector 

(in units of pixels2), we can write an approximation of the 

projected image area of the reference object as a function of 

the sensor’s configuration: 

 

( )

2

cos**4
ˆ









== refimg

total

img
D

rS

d
A

A

A

θ

π
 (13) 

 

Finally to finish the image area metric, the normalized 

image area is passed as a parameter into a Gompertz 

function. 

 

( )imgarea Agompertzf ˆ=  (14) 

 

This class of function traditionally is used to model time 

series data where growth is slowest at the start and end of a 

time period but rapid in the middle. This maximizes 

function sensitivity when the desired object fills much, but 

Xsrc 

d 

θ 

Zsrc 

Ysrc Xsen 
φ 

Ysen 

Zt 

Dimg 
Dref 

Figure 3. Illustration of the various parameters which 

comprise the sensing effectiveness metric. 
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not all (e.g. %80ˆ >imgA ), of the sensor.  The final metric 

is computed as the product of the three components, 

 

( ) θφ fffyxf areatg **, =  (15) 

 

To demonstrate the metric in operation, we selected the 

NDI-160-20 solid-state X-ray detector (Varian Medical 

Systems, Palo Alto, CA) where 179.0=S meters. 

Choosing 09.0=refD  meters, which can bound the 

geometry of a standard total knee replacement, we 

generated a contour map of the metric (Fig 4a). The map 

was generated for a target with no uncertainty located at the 

origin with a desired view vector of (0,-1,0). The actual 

image axis was arbitrarily constrained to align with the 

global –y direction and the separation distance between the 

source and sensor robots was fixed at 1.0 meters. Metric 

evaluations were then performed over an X-Y grid with a 

uniform spacing of 0.02 meters. 

V. RESULTS 

A twelve-camera passive-marker motion camera system 

(Motion Analysis Corporation, Santa Rosa, CA) was used to 

measure one subject’s body motion during normal-speed, 

over-ground walking. Data from several trials were 

averaged together and fit with third-order, piece-wise cubic 

splines to yield a mean position and velocity of the knee-

joint center. Desired orientation of the target frame, which 

determines the desired view vector of the object, was chosen 

to be normal to the sagittal or X-Z plane. The covariance of 

the target state information was chosen arbitrarily. The 

target’s state variables were assumed to be independent and 

normally distributed with the following standard deviations,  

01.0=== zyx σσσ  meters 

5=== ϕφθ σσσ  degrees 

1.0=== zyx &&&
σσσ  m/s 

0=== ϕφθ
σσσ

&&&  degrees/s. 

Figure 4b demonstrates the effect this uncertainty has on 

the metric. The contour map was generated under the same 

conditions as Figure 4a except with the target deviations 

defined above. 

To limit the computational requirements of the planner’s 

execution, connection of states during the extension step 

simply used a straight line in the joint space of the 

manipulators and assumed every path was collision free. 

The planner was run three times (n=3) for 500 iterations. 

The free parameter, α, was chosen to be 0.5 and the 

minimum sensing effectiveness from (5) was chosen to be 

0.85. Figure 5a shows the maximum and mean node weight 

at the completion of each iteration. The maximum node 

weights exhibited monotonically increasing values with 

greater slope than the mean node weights. Figure 5b shows 

the best normalized sensing efficiency over all potential 

paths at the completion of each iteration. The error bars in 

Figure 5b represent the 95% confidence interval. Sensing 

effectiveness also increased monotonically. 

VI. CONCLUSION 

We have demonstrated the extension of sample-based 

planners to the application of sensor planning for partially-

known moving targets. The node weighting scheme 

proposed in (3) yields nice node weight population behavior 

as demonstrated in Figure 5a. The ability of the algorithm 

to maximize the expected sensing efficiency is demonstrated 

in Figure 5b. 

Figure 4. Contour map of the example sensing effectiveness metric for a target located at the origin with a desired view 

vector in the -Y direction. The contour was calculated for a target with (a) no uncertainty and (b) with uncertainty. 

(a) (b) 
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From the standpoint of the algorithm’s power to prove 

the existence or non-existence of a solution, the advantages 

of probabilistically representing the target state information 

is clear. In one single pass, we are able to replicate what 

would require a Monte Carlo experiment for a non-

probabilistic target framework to achieve the same 

sensitivity analysis. Performing such an experiment could 

be expensive computationally since most real-world motion 

planning problems require significant computational time, 

especially when using sample-based methods. 

Another less obvious advantage of the probabilistic target 

definition is that it allows the application designer more 

freedom in defining their planning query. For instance, the 

probabilistic framework can be used to model not only the 

variability of human motion from one subject or population 

group to the next; but the same framework also allows 

freedom in the definition of the desired view vector. By 

choosing appropriate variances for the target’s orientation, 

one can simultaneously check for the existence of any path 

which might, for instance, use a desired view cone instead 

of a single view vector. 

Future efforts will be directed towards continual 

characterization of the algorithm for different levels of 

target uncertainty. We also plan to use a more sophisticated 

local planner which accounts for the robot’s kinematic and 

dynamic constraints. Finally, for our application, we intend 

to build a database of common activities and desired 

viewing constraints to assist clinicians in planning use the 

dynamic imaging platform. 
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Figure 5. n=3 runs of the sensor planning algorithm for 500 iterations. (a) The average and maximum node weights at the 
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each planning iteration. Error bars represent the 95% confidence interval. 
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