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Abstract— This paper presents an indoor localization system
for the visually impaired. The basis of our system is an
Extended Kalman Filter (EKF) for six degree-of-freedom (d.o.f.)
position and orientation (pose) estimation. The sensing platform
consists of an Inertial Measurement Unit (IMU) and a 2D
laser scanner. The IMU measurements are integrated to obtain
pose estimates which are subsequently corrected using line-to-
plane correspondences between linear segments in the laser-
scan data and known 3D structural planes of the building.
Furthermore, we utilize Lie derivatives to show that the system
is observable when at least three planes are detected by the laser
scanner. Experimental results are presented that demonstrate
the reliability of the proposed method for accurate and real-
time indoor localization.

I. INTRODUCTION

For a human, safe and efficient navigation requires obsta-

cle avoidance, path planning, and determining one’s position

and orientation (pose) with respect to the world. For a visu-

ally impaired person, these tasks may be exceedingly difficult

to accomplish, and there are high risks associated with failure

in any of them. To address these issues, guide dogs and white

canes are widely used for the purposes of wayfinding and

environment sensing. The former, however, has costly and

often prohibitive training requirements, while the latter can

only provide cues about one’s immediate surroundings. On

the other hand, commercially available electronic navigation

systems designed for the visually impaired (e.g., Humanware

Trekker and Sendero BrailleNote1) rely on GPS signals, and

cannot be utilized indoors, under tree cover, or next to tall

buildings where reception is poor. Other existing navigation

systems utilize body-mounted sensor packages which require

the user to wear an electronic vest, or belt, fitted with sensing

devices [1]. Unfortunately, these must be calibrated for each

person’s body, they often interfere with regular activities, and

they may prevent a person from comfortably wearing certain

articles of clothing (e.g., a jacket).

In contrast to these systems, we have recently presented an

indoor localization aid utilizing a sensor package mounted

on a white cane [2]. The main advantages of employing

such a platform are: (i) the sensor package is unobtrusive

to the user, (ii) there is no need to calibrate the system to

specific body types, and (iii) the person maintains the ability
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Fig. 1. As the IMU-laser sensor platform moves, the laser scan plane
intersects a known planar surface, Πi, described by Gpi, with respect to the
global frame of reference, {G}. The shortest vector in the laser scan plane
from the origin of the laser frame, {L}, to Πi has length ρi and direction
Lℓi, with respect to {L}. The line of intersection has direction, Lℓ

⊥

i
, with

respect to {L} and is described by the polar parameters (ρi, φi). The vector
from the intersection of Gpi and Πi to the intersection of ρi

L
ℓi and Πi, is

Gdi. The known IMU-laser transformation is denoted by (IpL,Iq̄L), while
the IMU pose with respect to {G} is (GpI ,Gq̄I).

to physically touch the environment with the white cane.

The sensor package included a 3-axis gyroscope and a 2D

laser scanner providing attitude information about the cane,

as well as a foot-mounted pedometer measuring the person’s

walking speed. A two-layered estimator was employed to

fuse the measurements and, by exploiting a known map of

the environment, provided a 2.5D pose estimate of the person

(i.e., 3 degree-of-freedom (d.o.f.) orientation and 2 d.o.f. po-

sition). Despite the novelty and success of the 2.5D system, it

has certain limitations. First, estimating only 2 d.o.f. of the

position prohibits the tracking of nonplanar motions (e.g.,

climbing stairs). Second, mounting the pedometer on the

person’s shoe, while the IMU and the laser scanner are

mounted on the cane, results in an unknown, time-varying

transformation between the sensors which prevents optimal

fusion of their measurements.

To address these issues, in this work we replace the shoe-

mounted pedometer and the gyroscopes with a cane-mounted

Inertial Measurement Unit (IMU), which measures linear ac-

celerations and rotational velocities (cf. Fig. 1). Additionally,

we employ an Extended Kalman Filter (EKF) to integrate
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the IMU measurements and provide 6 d.o.f. pose estimates.

However, without corrections, the IMU measurement noise

and bias drift would cause the pose estimation errors to grow

unbounded over time. To mitigate this issue, we update the

pose estimates using straight-line features extracted from the

2D laser scans. In particular, as the person moves, the laser

scanner’s attitude changes which allows its scanning plane

to intersect a variety of structural planes of the building (i.e.,

walls, floor, and ceiling), whose map is available a priori.

Furthermore, in order to initialize the EKF pose we extend

Chen’s algorithm [3] for line-to-plane pose determination

so that it can utilize measurements from the laser scanner

and the IMU. In addition, we present a study of the system

observability based on Lie derivatives [4] which shows that

the sensor measurements provide sufficient information for

accurate pose estimation when three planes are observed.

Experimental results are presented from a 120 m test run to

validate the proposed method and quantify its accuracy.

The remainder of the paper is organized as follows.

In Section II, we begin with an overview of the related

literature. Section III presents the EKF-based pose estimator,

while Section IV describes the initialization phase. The

system observability is studied in Section V. The proposed

method is validated with experimental results in Section VI,

and we conclude the paper and present future directions in

Section VII.

II. RELATED WORK

Recent work has focused primarily on developing hazard-

detection aids for the visually impaired. These employ

sensors for obstacle avoidance such as hand-held laser

pointers [5], and sonars on a wheelchair [6], or on a robot

connected at the tip of a white cane [7]. Cameras have also

been used for object description (in terms of color and size)

in addition to obstacle detection [8]. While these devices

augment the perceptual abilities of a blind person and reduce

the probability of an accident, they cannot be directly used

as wayfinding aids without the development of appropriate

algorithms for localization.

In contrast to the above systems, navigation aids have been

designed that explicitly track a person’s location and heading

direction. Most relevant efforts have primarily addressed

GPS-based outdoor navigation which cannot be used inside

a building [9], [10]. Indoor navigation is more challenging,

since pose information can only be inferred from the en-

vironment. Indoor navigation methods can be divided into

three categories:

1) Dead-reckoning systems: These methods track a per-

son’s pose without any external reference. The most common

approaches are based on foot-mounted accelerometers [11].

As a person walks, their position is computed by double

integration of the acceleration measurements. Unfortunately,

the integration of accelerometer bias and noise causes the

position error to grow unbounded. Even if the rate of

position-error increase can be reduced with static-period

drift corrections [12], dead-reckoning systems still remain

unreliable over long time intervals.

2) Beacon-based systems: Unlike dead-reckoning ap-

proaches that have no external references, these methods can

infer position information by detecting uniquely identifiable

beacons (or tags) installed in known locations throughout

the building (e.g., by an elevator or bathroom). For example,

in [13], a robot is attached at the end of a leash as a substitute

for a guide dog, and localizes using odometry and a network

of Radio Frequency IDentification (RFID) tags. Legge et al.

presented another approach in which a hand-held camera

identifies retro-reflective digital signs [14]. Similar methods

also exist based on ultrasound [10] and infrared [15] beacons.

In many cases the position estimates are only available when

the person is in close proximity to a beacon and the person is

left to navigate on their own during the inter-beacon periods.

Another drawback of these approaches is the significant time

and cost spent installing and calibrating beacons.

3) Feature-based systems: To mitigate the issues of

beacon-based localization, commonly-occurring indoor fea-

tures (e.g., doors, lamps or walls) can be exploited for

localization with the help of appropriate sensors. Cameras

are frequently used for this purpose as they can measure

color, texture, and geometric shapes. Dellaert and Tariq [16],

for example, proposed a multi-camera rig for 6 d.o.f. pose

estimation for the visually impaired. Vision-based methods

for pose estimation with portable fish-eye and omnidirec-

tional cameras are described in [17] and [18], respectively.

However, cameras require good lighting conditions, and the

computational cost of high-dimensional feature extraction

and processing is typically prohibitive for implementation

on a portable device.

Unlike cameras, laser scanners can be utilized in a wide

variety of lighting conditions and robustly detect low-level

features (e.g., straight lines and corners) which can be

efficiently matched. In the robotics community, 2D laser

scanners have been employed for the purpose of 2D pose

estimation (e.g., [19], [20]). Planar robot motion has also

been tracked using a rotating 2D laser scanner (to emulate a

3D scan) [21]. In this case, the 3D information is also utilized

to build a 3D representation of the world. While dense

3D laser scanning provides significantly more information

for pose estimation, it is inappropriate for use on a navigation

aid for the visually impaired due to weight limitations and

computational cost.

For this reason, we have focus on 2D laser-based systems.

We extend our previous work in [2], with a new navigation

aid that estimates the 6 d.o.f. pose of a visually impaired

person. We utilize an IMU and a 2D laser scanner along

with a known map of structural planes in the building to

track the person’s pose. To the best of our knowledge, this

is the first work on 3D pose tracking using a 2D laser

scanner. The advantages compared to our previous work are:

(i) tracking non-planar motions, thus allowing the visually

impaired to traverse a wider variety of locations, (ii) the

sensors are rigidly connected, which increases the accuracy

of the pose estimate by removing the unknown, time-varying

transformation from the system, (iii) we prove that the

system is observable (i.e., we can accurately estimate the
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pose) when three walls are detected, and (iv) we provide an

automated method to initialize the system using laser-scanner

measurements.

III. LOCALIZATION ALGORITHM DESCRIPTION

We hereafter address the problem of 6 d.o.f. pose estima-

tion for localizing a visually-impaired person in an indoor

environment. We assume that the position and orientation

of the structural planes of the building are known from the

blueprints. The visually-impaired person is equipped with an

IMU and a 2D laser scanner, which are rigidly connected.

The measurements from these two sensors are combined by

an EKF estimator for tracking the pose of the person walking

indoors. In the following section, we present the state and

covariance propagation and update models used by the EKF,

while the filter initialization is discussed in Section IV.

A. Filter Propagation

The EKF estimates the IMU pose and linear velocity

together with the time-varying biases in the IMU signals.

The filter state is the 16 × 1 vector:

x =
[

I q̄T

G
bT

g
GvT

I
bT

a
GpT

I

]T

, (1)

where I q̄G(t) is the unit quaternion representing the orienta-

tion of the global frame {G} in the IMU frame, {I}, at time

t. The frame {G} is an inertial reference frame affixed to

the building, while {I} is attached to the IMU (cf. Fig. 1).

The position and velocity of {I} in {G} are denoted by the

3 × 1 vectors GpI(t) and GvI(t), respectively. The biases,

bg(t) and ba(t), affecting the gyroscope and accelerometer

measurements, are modeled as random walk processes driven

by the zero-mean, white Gaussian noises nwg(t) and nwa(t),
respectively.

1) Continuous-time model: The system model describing

the time evolution of the state is (cf. [22], [23]):

I ˙̄qG(t) =
1

2
Ω(ω(t))I q̄G(t) (2)

GṗI(t) = GvI(t) , Gv̇I(t) = Ga(t) (3)

ḃg(t) = nwg(t) , ḃa(t) = nwa(t). (4)

In these expressions, ω(t) = [ω1(t) ω2(t) ω3(t)]
T is the

rotational velocity of the IMU, expressed in {I}, Ga is the

IMU acceleration expressed in {G}, and

Ω(ω) =

[
−⌊ω×⌋ ω

−ωT 0

]
, ⌊ω ×⌋ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

The gyroscope and accelerometer measurements, ωm and

am, used for state propagation, are:

ωm(t) = ω(t) + bg(t) + ng(t) (5)

am(t) = C(I q̄G(t)) (Ga(t) − Gg) + ba(t) + na(t) (6)

where ng and na are zero-mean, white Gaussian noise

processes, and Gg is the gravitational acceleration. The

matrix C(q̄) is the rotation matrix corresponding to q̄.

Linearizing about the current estimates and applying the

expectation operator on both sides of (2)-(4), we obtain the

state estimate propagation model

I ˙̄̂qG(t) =
1

2
Ω(ω̂(t))I ˆ̄qG(t) (7)

G ˙̂pI(t) = Gv̂I(t),
G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t) + Gg (8)

˙̂
bg(t) = 03×1 ,

˙̂
ba(t) = 03×1 (9)

with

â(t)=am(t)−b̂a(t), and ω̂(t)=ωm(t)−b̂g(t). (10)

The 15×1 error-state vector is defined as:

x̃ =
[

IδθT

G
b̃T

g
GṽT

I
b̃T

a
Gp̃T

I

]T

. (11)

For the IMU position, velocity, and biases, an additive error

model is utilized (i.e., the error in the estimate x̂ of a

quantity x is x̃ = x − x̂). However, for the quaternion a

different error definition is employed. In particular, if ˆ̄q is

the estimated value of the quaternion q̄, then the attitude

error δθ is implicitly defined by the error quaternion:

δq̄ = q̄ ⊗ ˆ̄q−1 ≃
[

1

2
δθT 1

]T

(12)

where δq̄ describes the (small) rotation that causes the true

and estimated attitude to coincide. The main advantage of

this error definition is that it allows us to represent the atti-

tude uncertainty by the 3×3 covariance matrix E{δθδθT }.

Since the attitude corresponds to 3 d.o.f., this is a minimal

representation.

The linearized continuous-time error-state equation is:

˙̃x = Fcx̃ + Gcn, (13)

where

Fc =




−⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−CT (I ˆ̄qG)⌊â×⌋ 03×3 03×3 −CT (I ˆ̄qG) 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3




Gc =




−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −CT (I ˆ̄qG) 03×3

03×3 03×3 03×3 I3

03×3 I3 03×3 03×3




, n =




ng

nwg

na

nwa




where I3 is the 3 × 3 identity matrix. The system noise co-

variance matrix Qc depends on the IMU noise characteristics

and is computed off-line [23].

2) Discrete-time implementation: The IMU signals ωm

and am are sampled at a constant rate 1/T . Every time

a new IMU measurement is received, the state estimate is

propagated using 4th-order Runge-Kutta numerical integra-

tion of (7)–(9). In order to derive the covariance propagation

equation, we evaluate the discrete-time state transition ma-

trix:

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ)dτ

)
(14)
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and the discrete-time system noise covariance matrix:

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T
c ΦT (tk+1, τ)dτ. (15)

The propagated covariance is then computed as:

Pk+1|k = ΦkPk|kΦ
T

k + Qd,k. (16)

B. Filter Update

As the IMU-laser platform moves in an indoor envi-

ronment, the laser-scan plane intersects the known struc-

tural planes, Πi, along line segments with direction Lℓ⊥i
(cf. Fig. 1). Each line is uniquely described in the laser frame,

{L}, by (ρi, φi), where ρi is the distance from the origin

of {L} to the line, and φi is the angle of the vector Lℓi

perpendicular to the line2. We will hereafter express the line

direction in {I}, as Iℓ⊥i = C(I q̄L)[sin φi −cosφi 0]T ,

where I q̄L is the unit quaternion representing the orientation

of the laser frame in the IMU frame3. In what follows, we de-

scribe how each line is exploited to define two measurement

constraints, used by the EKF to update the state estimates.

1) Orientation Constraint: The first constraint is on the

orientation of {I} with respect to Πi. Each plane is uniquely

described by Gpi, which is the shortest vector from the origin

of {G} to Πi and is known from the blueprints. The vector
Gpi is perpendicular to CT(I q̄G) Iℓ⊥i (cf. Fig. 1), which

yields the following orientation measurement constraint:

z1,i = GpT
i CT(I q̄G) Iℓ⊥i = 0 . (17)

The expected measurement is

ẑ1,i = GpT
i CT(I ˆ̄qG) Iℓ⊥mi , (18)

where Iℓ⊥mi = C(I q̄L)[sin φmi −cosφmi 0]T is the measured

line direction with φmi = φi−φ̃i. The measurement residual

is r1,i = z1,i − ẑ1,i = −ẑ1,i and the corresponding linearized

error model is

z̃1,i ≃
[
−GpT

i CT (I ˆ̄qG)⌊Iℓ⊥mi×⌋ 01×12

]
x̃ +

[
GpT

i CT (I ˆ̄qG)Iℓmi 0
] [

φ̃i

ρ̃i

]

= hT
1,i x̃ + γT

1,i nℓi (19)

where Iℓmi = C(I q̄L)
[
cosφmi sin φmi 0

]T
is the per-

pendicular to the measured line direction and ρmi = ρi − ρ̃i

is the measured distance to the line.

The vectors hT
1,i and γT

1,i are the Jacobians of (17) with re-

spect to the state and line fitting parameters, respectively. The

error vector nℓi is assumed to be zero-mean, white Gaussian,

with covariance matrix Ri = E{nℓin
T
ℓi} computed from the

weighted line-fitting procedure [25].

2We utilized the Split-and-Merge algorithm [24] to segment the laser-
scan data and a weighted line fitting algorithm [25] to estimate the line
parameters (ρi, φi) for each line.

3The laser-to-IMU rigid transformation is assumed known and given
by

`

IpL, IqL

´

. This can be obtained, for example, through a calibration
procedure adapted from [26].

2) Distance Constraint: From Fig. 1, the following geo-

metric relationship holds:

GpI + CT(I q̄G) (IpL + ρi
Iℓi) =G pi +Gdi (20)

where Iℓi = C(I q̄L)[cosφi sin φi 0]T is the perpendicular

to the line direction. The vector Gdi is eliminated by pro-

jecting (20) onto GpT
i , yielding the distance measurement

constraint

z2,i =
GpT

i

(
GpI +CT(I q̄G)(IpL+ρi

Iℓi)
)
−GpT

i
Gpi =0.

(21)

The expected measurement is

ẑ2,i =
GpT

i

(
Gp̂I +CT(I ˆ̄qG) (IpL+ρmi

Iℓmi)
)
−GpT

i
Gpi .

The measurement residual is r2,i = z2,i − ẑ2,i = −ẑ2,i and

the corresponding linearized error model is

z̃2,i ≃
[
−GpT

i CT
(

I ˆ̄qG

)
⌊IpL+ρmi

Iℓmi×⌋ 01×9
GpT

i

]
x̃

+
[
−GpT

i CT
(

I ˆ̄qG

)
ρmi

Iℓ⊥mi
GpT

i CT
(

I ˆ̄qG

)
Iℓmi

][φ̃i

ρ̃i

]

= hT
2,i x̃ + γT

2,i nℓi (22)

where the vectors hT
2,i and γT

2,i are the Jacobians of (21) with

respect to the state and line fitting parameters, respectively.

We process the two measurement constraints together;

stacking (19) and (22) we obtain the measurement Jacobians

Hi =
[
h1,i h2,i

]T
, and Γi =

[
γ1,i γ2,i

]T
used in the

expression for the Kalman gain

Ki = Pk+1|kH
T
i

(
HiPk+1|kH

T
i + ΓiRiΓ

T
i

)−1

. (23)

The residual vector is ri =
[
r1,i r2,i

]T
, and the state and

the covariance update equations are given by

x̂k+1|k+1 = x̂k+1|k + Kiri

Pk+1|k+1 = (I15−KiHi)Pk+1|k(I15−KiHi)
T +

KiΓiRiΓ
T
i KT

i .

C. Zero-Velocity Update

When the laser scanner does not detect any structural

planes along certain directions for an extended period of

time, the position estimates accumulate errors along those

directions, due to accelerometer drift. This effect is closely

related to the system’s observability (Section V) and can be

compensated by means of drift correction during instanta-

neous stationary periods of the motion [12].

This procedure, termed zero-velocity update, is challeng-

ing for two reasons: (i) the stationary periods must be iden-

tified without an external reference, and (ii) the IMU drift

error must be corrected without violating the statistics of the

pose estimate. Existing methods typically detect stationary

periods based on a threshold check for the accelerometer

measurement. These require significant hand tuning, and can-

not account for the uncertainty in the current state estimate.

In contrast, we formulate the zero-velocity constraint as

an EKF measurement and use the Mahalanobis distance test

to identify the stationary intervals. Specifically, for the zero-
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velocity update, we employ the following measurement con-

straints for the linear acceleration, and linear and rotational

velocities which are (instantaneously) equal to zero

zζ =
[
aT ωT GvT

I

]T
= 09×1. (24)

The zero-velocity measurement residual is

rζ = zζ − ẑζ =



−am + b̂a − C

(
I ˆ̄qG

)
Gg

−ωm + b̂g

−Gv̂I


 (25)

and the corresponding linearized error model is

ezζ≃

2
664

−⌊C
(

I ˆ̄qG

)
Gg×⌋ 03×3 03×3 I3 03×3

03×3 I3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

3
775ex+

2
664

na

ng

nv

3
775

= Hζ x̃ + nζ , (26)

where Hζ is the Jacobian of the zero-velocity measurement

with respect to the state, and nv is a zero-mean, white

Gaussian process noise that acts as a regularization term

for computing the inverse of the measurement residuals’

covariance. Based on this update model, at time step k we

compute the Mahalanobis distance χ2 = rT
ζ S−1

k rζ , where

Sk = HζPk|kH
T
ζ +Rζ is the covariance of the measurement

residual and Rζ = E{nζn
T
ζ } is the measurement noise

covariance. If χ2 is less than a chosen probabilistic threshold,

a stationary interval is detected and the state vector and the

covariance matrix are updated using (24)-(26). We note that

once we use the inertial measurements for an update, we

cannot use them for propagation. However, this is not an

issue, since the IMU is static and we do not need to use

the kinematic model (2)-(4) to propagate the state estimates.

Instead we employ the following equations:

I ˙̄qG(t) = 04×1 , GṗI(t) = 03×1 , Gv̇I(t) = 03×1

ḃg(t) = nwg(t) , ḃa(t) = nwa(t).

In essence, this static-IMU propagation model indicates that

the state vector and the covariance matrix of all components

are kept constant. The only exceptions are the covariances of

the errors in the gyroscope and accelerometer bias estimates

which increase at each time step to reflect the effect of the

random walk model.

IV. FILTER INITIALIZATION

Before using the EKF to fuse measurements from the

laser scanner and the IMU, we need to initialize the state

vector estimate x̂0|0 along with its covariance P0|0. This

is performed in four sequential stages: (i) the gyroscopes’

biases bg are initialized using the partial zero-velocity

updates (Section IV-A), (ii) the IMU orientation I q̄G is

initialized employing the laser scans (Section IV-B), (iii) the

accelerometers’ biases ba are initialized using zero-velocity

updates (Section IV-C), and (iv) the IMU position GpI is

initialized employing the laser scans (Section IV-D).

A. Gyroscopes’ Biases Initialization

The complete zero-velocity update described in Sec-

tion III-C cannot be directly applied to initialize the gy-

roscope biases. This is due to the fact that an estimate of

the orientation I q̄G, required for evaluating Hζ [cf. (26)],

cannot be obtained before estimating the gyroscope biases

(Section IV-B.2). Instead, to provide an initial estimate

for the gyroscope biases, bg , we use partial zero-velocity

updates. In particular, we initially set b̂g to an arbitrary

value (e.g., zero), while its covariance is set to a large value,

reflecting the lack of a priori knowledge about the estimates.

Then, we keep the IMU static (i.e., ω = 03×1) and use the

second components of (24)-(26) to perform a partial zero-

velocity update.

B. Orientation Initialization

Since the IMU and the laser scanner are rigidly connected

and their relative transformation is known, the initial orien-

tation of the IMU can be directly computed from the initial

orientation of the laser scanner. We describe two methods to

compute the orientation of the laser scanner using line mea-

surements of three planes with linearly-independent normal

vectors. The first method, adapted from Chen [3], requires

observation of all three planes from the same viewpoint,

while the second method is capable of using laser scan

measurements taken from different perspectives by exploiting

the motion information from the gyroscopes.

1) Concurrent observation of three planes: When three

non-parallel planes are scanned from the same viewpoint

(i.e., the same frame of reference), the estimate of the

orientation I q̄G is initialized using Chen’s method [3]. In

this case, three quadratic constraints in terms of the unit

quaternion I q̄G are obtained from the laser scans [cf. (17)],

each of them describing the relationship between a line

measurement and the corresponding plane:

z1,i = GpT
i CT(I q̄G) Iℓ⊥i = 0, i = 1, . . . , 3. (27)

Chen’s algorithm employs the properties of rotation matrices

in algebraic manipulations to convert this system of equations

to an eighth-order univariate polynomial in one of the d.o.f.

of the unknown rotation. Eight solutions for this univariate

polynomial are obtained, for example, using the Companion

matrix. The remaining two d.o.f. of the rotation I q̄G are

subsequently determined by back-substitution. In general, an

external reference is required to distinguish the true solution

among the eight possible ones. In our work, we employ the

gravity measurement from the accelerometers and the planes’

identities to find the unique solution.

2) Motion-aided orientation initialization: In order to use

Chen’s method for initializing the orientation, all three line

measurements must be expressed with respect to the same

frame of reference; hence three non-parallel planes must

be concurrently observed by the laser scanner from the

same viewpoint. However, satisfying this prerequisite is quite

limiting since it requires facing a corner of a room, for

example, where three structural planes intersect. In this work,

we address this issue by using the gyroscope measurements

to transform the laser scans taken from different viewpoints

at different time instants to a common frame of reference.

We choose as the common frame, the IMU frame when the
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first laser scan is recorded (i.e., at time t1), and denote it by

{I1}. In this way, we can rewrite the inferred measurement

constraints (17) at time tj , j = 2, 3 as

GpT
j CT (I q̄G(tj))

Iℓ⊥j (tj) = GpT
j CT (I q̄G(t1))

I1ℓ⊥j (tj) = 0
(28)

where I1ℓ⊥j (tj) = C(I1 q̄Ij
)Iℓ⊥j (tj) is the line direction

corresponding to the plane Πj , recorded at time tj , and

transformed to the frame {I1}. Since the gyroscope biases

are already initialized, the quaternions I1 q̄Ij
can be obtained

by integrating the rotational velocity measurements [cf. (7)

and (10)] between time instants t1 and tj . Once all the line

directions Iℓ⊥j (tj) are expressed with respect to {I1}, we

employ Chen’s algorithm, described before, to find the initial

orientation I q̄G(t1).
The covariance of the initial orientation estimate is ob-

tained by computing the corresponding Jacobians [by lin-

earizing (28)] and using the uncertainty (covariance) in the

estimates of Iℓ⊥j and I1 q̄Ij
. However, note that the estimates

of the relative transformations I1 q̄I2
and I1 q̄I3

are correlated.

To account for these correlations, we employ the stochastic

cloning technique [27] to augment the state vector and the

covariance matrix of the EKF with I1 q̄Ij
at time tj (assuming

we have started integrating from time t1). In this way,

we are able to estimate the IMU orientation by integrating

the gyroscope measurements, and concurrently compute the

correlations between the IMU orientation estimates at the

time instants when laser scans are recorded.

C. Accelerometers’ Biases Initialization

In this step, similar to the gyroscope bias initialization,

we set the estimate for the accelerometer biases, ba, to

an arbitrary value (e.g., zero), and set its covariance to a

sufficiently large value, representing our uncertainty about

the arbitrary initial estimate. Since the IMU is initially static,

we set the velocity estimate GvI and its covariance to zero.

Then, keeping the IMU static, we utilize the complete zero-

velocity update described in Section III-C to initialize the

accelerometer biases.

D. Position Initialization

In order to compute the initial position GpI , once the

orientation I q̄G is known, we rewrite the distance constraints

(21) as (j = 1, . . . , 3)

GpT
j

GpI = GpT
j

Gpj −
GpT

j CT(I q̄G)(IpL+ρj
Iℓj) . (29)

Clearly, if Gpj , j = 1, . . . , 3 are linearly independent, we

can uniquely determine GpI from these three equations.

However, as mentioned before, concurrently observing three

planes whose normal vectors are linearly independent is

difficult in practice. To mitigate this issue, we employ an

approach similar to the orientation initialization and use the

IMU measurements to link the pose of the IMU when taking

laser scans from different viewpoints (and thus at different

time instants), and transform them to a common frame of

reference. If we choose {I1}, the IMU frame when recording

the first laser scan, as the common frame of reference, we

can express the distance constraints imposed by the laser

scans at subsequent IMU poses, {Ij}, as (j = 2, 3)

GpT
j

GpI =GpT
j

Gpj −
GpT

j CT(I q̄G(t1))
I1pIj

(30)

− GpT
j CT(I q̄G(t1))C(I1 q̄Ij

)(IpL+ρj(tj)
Iℓj(tj))

where I1 q̄Ij
and I1pIj

specify the transformation between

{I1} and {Ij} computed by integrating rotational velocities

and linear accelerations, respectively [cf. (7)-(10)]. Notice

that except GpI , all the quantities in (30) are known (either

measured or estimated). Therefore, the two equations (30)

as well as the first distance constraint at {I1} (i.e., (29) for

j = 1) are readily used to obtain GpI assuming Gpj , j =
1, . . . , 3 are linearly independent.

Finally, we use the appropriate Jacobians [by linearizing

(30)] along with the covariances of the estimates of the IMU

pose (I1 q̄Ij
, I1pIj

) and Iℓj to obtain the covariance of the

initial position estimate. However, similar to Section IV-B.2,

the estimates of the IMU pose at different time instants are

correlated; thus, we again employ stochastic cloning [27] to

account for their correlations when computing the covariance

of the initial position estimate, Gp̂I .

V. OBSERVABILITY ANALYSIS

In this section, we prove that the presented system for

IMU-laser scanner localization is observable when three

planes, whose normal vectors are linearly independent, are

concurrently observed by the laser scanner. Under this con-

dition, and since the IMU and the laser scanner are rigidly

connected and their relative transformation is known, we can

employ the pose estimation method described in Section IV

to estimate (GpI ,
I q̄G). For the purpose of observability

analysis, we introduce two new inferred measurements4 h∗
1

and h∗
2 that replace the laser scan measurements (17), (21):

I q̄G = h∗
1(x) = ξ1(

Iℓ1,
Iℓ2,

Iℓ3) (31)
GpI = h∗

2(x) = ξ2(
Iℓ1,

Iℓ2,
Iℓ3). (32)

The two functions ξ1 and ξ2 in (31) and (32) do not need to

be known explicitly; only their functional relation with the

random variables, I q̄G and GpI , is required for the observabil-

ity analysis. Our approach uses the Lie derivatives [4] of the

above inferred measurements (31) and (32) for the system in

(2)-(4), to show that the corresponding observability matrix

is full rank. For this purpose, we first rearrange the nonlinear

kinematic equations (2)-(4) in a suitable form for computing

the Lie derivatives:

2
666666664

I ˙̄qG

ḃg
Gv̇I

ḃa
GṗI

3
777777775

=




− 1

2
Ξ(I q̄G)bg

03×1
Gg−CT(I q̄G)ba

03×1
GvI




︸ ︷︷ ︸
f0

+




1

2
Ξ(I q̄G)
03×3

03×3

03×3

03×3




︸ ︷︷ ︸
f1

ωm+




04×3

03×3

CT (I q̄G)
03×3

03×3




︸ ︷︷ ︸
f2

am ,

(33)

4The observability of the system can also be shown using only the inferred
position measurement (32). For details refer to [28].
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Fig. 2. Top-view of the estimated 3D trajectory during an 8.5 min
experiment. The total length of the trajectory is 120 m. The red circle
indicates the starting position (on the floor), then the sensor package was
picked up and traced a clock-wise loop through the building hallways. The
dashed red lines indicate the walls which were included in the building map.

where ωm and am are considered the control inputs, and

Ξ(q̄) ,

[
q4I3 + ⌊q×⌋

−qT

]
with q̄ =

[
q

q4

]
. (34)

Note also that f0 is a 16×1 vector, while f1 and f2 are

matrices of dimensions 16×3.

In order to prove that the system is locally weakly ob-

servable, it suffices to show that the observability matrix,

whose rows comprise the gradients of the Lie derivatives of

the measurements h∗
1 and h∗

2 with respect to f0, f1, and f2

[cf. (33)], is full rank. Since the measurement and kinematic

equations describing the IMU-laser scanner localization are

infinitely smooth, the observability matrix has an infinite

number of rows. However, to prove it is full rank, it suffices

to show that a subset of its rows are linearly independent.

The following matrix contains one such subset of rows

whose linear independence can be easily shown using block

Gaussian elimination [28]:



∇L
0
f0
h∗

1

∇L
0
f0
h∗

2

∇L
1
f0
h∗

1

∇L
1
f0
h∗

2

∇L
2
f0
h∗

2



=




I4 04×3 04×3 04×3 04×3

03×4 03×3 03×3 03×3 I3

X1 − 1

2
Ξ(I q̄G) 04×3 04×3 04×3

03×4 03×3 I3 03×3 03×3

X2 03×3 03×3 CT (I q̄G) 03×3




where L
i
f0
h∗

j (x) denotes the i-th order Lie derivative of

h∗
j (x) with respect to f0. The matrices X1 and X2 have

dimensions 4×4 and 3×4, respectively, and do not need to

be computed explicitly since they will be eliminated by the

block element (1, 1) of the matrix, i.e., the identity matrix

I4. Since Ξ(q̄) and C(q̄) are always full rank for any unit

quaternion q̄ [28], all the rows of the above matrix are

linearly independent. Hence, we conclude the observability

analysis with the following lemma:

Lemma 1: Given line measurements corresponding to

three planes with linearly independent normal vectors, the

system describing the IMU-laser scanner localization is lo-

cally weakly observable.

VI. EXPERIMENTAL RESULTS

The 6 d.o.f. IMU-laser localization algorithm was tested

in an indoor environment, along a closed-loop trajectory of

approximately 120 m in length (cf. Fig. 2). We utilized a

solid-state ISIS IMU and a SICK LMS200 laser scanner

mounted on a navigation box to log data. These sensors

were interfaced to a laptop via RS-232 which recorded

the time-stamped measurements. The data-logging software

was implemented in C++, whereas the EKF was written in

MATLAB.

During the experiment5, the motion profile of the sen-

sor platform contained instantaneous stationary time pe-

riods to allow for zero-velocity updates. These updates

cause small reductions in the position estimates’ covari-

ance [cf. Fig. 3(a)]. Larger reductions in the covariance

take place whenever the laser scanner detects three planes

whose normal vectors are linearly independent (e.g., two

perpendicular walls and the ceiling) within a short period of

time; an event that typically occurs at hallway intersections

(e.g., t=49 sec). The a priori known map, available from

the building blueprints, contained 9 walls and the ceiling.

Employing this map, nearly 12, 000 measurement updates

were performed during the 8.5 minute trial. The combina-

tion of the laser measurements and zero-velocity updates

allowed the filter to maintain a precise pose estimate of

the sensor platform. Specifically, the maximum uncertainty

in the position estimates was 9.16 cm (1σ), while the

maximum uncertainty in the attitude estimates was 0.1 deg

(1σ) [cf. Figs. 3(a), 3(b)]. The final position uncertainty

was
[
27.5 1.2 1.3

]
cm (3σ). Note that the x-direction

uncertainty is larger since in the final corridor, no planes are

observed that provide information along the x-axis. Finally,

the filter consistency is corroborated by the measurement

residuals which lie within their 3σ bounds [cf. Fig. 3(c)].

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach to 3D map-based

indoor localization for the visually impaired using informa-

tion from an IMU and a 2D laser scanner. Linear accelera-

tions and rotational velocities are integrated to propagate the

pose estimates. To update the pose, measurements from the

laser scanner are used, which correspond to the intersection

of the laser-scan plane with known structural planes of an

indoor environment. We addressed several challenges includ-

ing: (i) solving the 6 d.o.f. pose estimation problem using

an IMU and 2D laser scanner, (ii) determining a sufficient

condition for the system observability, and (iii) initializing

the pose estimate and covariance in a practical way. We also

demonstrated the validity of our algorithm with experimental

results showing that we can provide reliable pose estimates

of the person.

Our future work includes employing small-scale sensors

to enable a hand-held sensor package. Providing an efficient

and intuitive system interface for a visually impaired person,

is also within our near goals. Finally, we intend to extend

5Video available at http://mars.cs.umn.edu/videos/IMU-Laser.m4v
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Fig. 3. (a) The trace of the position covariance. During the run, the maximum uncertainty along any axis was 9.16 cm. (1σ). (b) The trace of the attitude
covariance. During the run, the maximum uncertainty about any axis was 0.1 deg. (1σ). (c) More than 12, 000 line measurements were recorded during
this experiment. The measurement residuals for a subset of these (200) are plotted in order to demonstrate the filter consistency.

our work to cases when building blueprints are not available.

REFERENCES

[1] S. Shoval, J. Borenstein, and Y. Koren, “Auditory guidance with the
NavBelt - a computerized travel aid for the blind,” IEEE Trans. on
Systems, Man, and Cybernetics, vol. 28, no. 3, pp. 459–467, Aug.
1998.

[2] J. A. Hesch and S. I. Roumeliotis, “An indoor localization aid for the
visually impaired,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, Rome, Italy, Apr. 10–14, 2007, pp. 3545–3551.

[3] H. H. Chen, “Pose determination from line-to-plane correspondences:
existence condition and closed-form solutions,” IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 530–541,
June 1991.

[4] R. Hermann and A. Krener, “Nonlinear controlability and observabil-
ity,” IEEE Trans. on Automatic Control, vol. 22, no. 5, pp. 728–740,
Oct. 1977.

[5] D. Yuan and R. Manduchi, “Dynamic environment exploration using
a virtual white cane,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, San Diego, CA, June 20–25, 2005, pp. 243–
249.

[6] D. A. Bell, J. Borenstein, S. P. Levine, Y. Koren, and L. Jaros, “An
assistive navigation system for wheelchairs based on mobile robot
obstacle avoidance,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, San Diego, CA, May 8–13, 1994, pp. 2018–2022.

[7] I. Ulrich and J. Borenstein, “The GuideCane - applying mobile robot
technologies to assist the visually impaired,” IEEE Trans. on Systems,
Man, and Cybernetics, Part A: Systems and Humans, vol. 31, no. 2,
pp. 131–136, Mar. 2001.

[8] A. Hub, J. Diepstraten, and T. Ertl, “Design and development of
an indoor navigation and object identification system for the blind,”
in Proc. of the Int. ACM SIGACCESS Conf. on Computers and
Accessibility, Atlanta, GA, Oct. 18–20, 2004, pp. 147–152.

[9] H. Makino, I. Ishii, and M. Nakashizuka, “Development of navigation
system for the blind using GPS and mobile phone combination,” in
Proc. of the IEEE Int. Conf. of the Engineering in Medicine and
Biology Society, Amsterdam, Netherlands, Oct. 31–Nov. 3, 1996, pp.
506–507.

[10] L. Ran, S. Helal, and S. Moore, “Drishti: an integrated indoor/outdoor
blind navigation system and service,” in Proc. of the IEEE Conf. on
Pervasive Computing and Communications, Orlando, FL, Mar. 14–17,
2004, pp. 23–30.

[11] F. Cavallo, A. M. Sabatini, and V. Genovese, “A step toward GPS/INS
personal navigation systems: real-time assessment of gait by foot
inertial sensing,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Edmonton, Canada, Aug. 2–6, 2005, pp. 1187–
1191.

[12] K. Sagawa, H. Inooka, and Y. Satoh, “Non-restricted measurement of
walking distance,” in Proc. of the IEEE Int. Conf. on Systems, Man,
and Cybernetics, Nashville, TN, Oct. 8–11, 2000, pp. 1847–1852.

[13] V. Kulyukin, C. Gharpure, J. Nicholson, and S. Pavithran, “RFID in
robot-assisted indoor navigation for the visually impaired,” in Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai,
Japan, Sept. 28–Oct. 2, 2004, pp. 1979–1984.

[14] B. Tjan, P. Beckmann, N. Giudice, and G. Legge, “Digital sign system
for indoor wayfinding for the visually impaired,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition - Workshop on
Computer Vision Applications for the Visually Impaired, San Diego,
CA, June 20–25, 2005.

[15] S. Ertan, C. Lee, A. Willets, H. Tan, and A. Pentland, “A wearable
haptic navigation guidance system,” in Proc. of the Int. Sym. on
Wearable Computers, Pittsburgh, PA, Oct. 19–20, 1998, pp. 164–165.

[16] F. Dellaert and S. Tariq, “A multi-camera pose tracker for assisting the
visually impaired,” in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition - Workshop on Computer Vision Applications for
the Visually Impaired, San Diego, CA, June 20–25, 2005.

[17] O. Koch and S. Teller, “Wide-area egomotion estimation from known
3D structure,” in Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition, Minneapolis, MN, June 17–22, 2007, pp. 1–8.

[18] W. Rungsarityotin and T. E. Starner, “Finding location using omni-
directional video on a wearable computing platform,” in Proc. of the
IEEE Int. Symposium on Wearable Computing, Washington, DC, 2000,
pp. 61–68.

[19] G. Weiß, C. Wetzler, and E. V. Puttkamer, “Keeping track of position
and orientation of moving indoor systems by correlation of range-
finder scans,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Munich, Germany, Sept. 12–16, 1994, pp. 595–601.

[20] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2D range scans,” Journal of Intelligent and Robotic
Systems, vol. 18, pp. 249–275, Mar. 1997.

[21] K. Lingemann, A. Nuchter, J. Hertzberg, and H. Surmann, “High-
speed laser localization for mobile robots,” Robotics and Autonomous
Systems, vol. 51, no. 4, pp. 275–296, Apr. 2005.

[22] E. J. Lefferts, F. L. Markley, and M. D. Shuster, “Kalman filtering
for spacecraft attitude estimation,” Journal of Guidance, Control, and
Dynamics, vol. 5, no. 5, pp. 417–429, Sept.–Oct. 1982.

[23] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D pose
estimation,” MARS Lab, Dept. of Computer Science & Engineering,
University of Minnesota, Minneapolis, MN, Tech. Rep., Mar. 2005.
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