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Abstract—This article addresses fast 3D mapping by a mobile robot

in a predominantly planar environment. It is based on a novel pose

registration algorithm based entirely on matching features composed of

plane-segments extracted from point-clouds sampled from a 3D sensor.

The approach has advantages in terms of robustness, speed and storage

as compared to the voxel based approaches. Unlike previous approaches,

the uncertainty in plane parameters is utilized to compute the uncertainty

in the pose computed by scan-registration. The algorithm is illustrated

by creating a full 3D model of a multi-level robot testing arena.

I. INTRODUCTION

Encouraged by the success of 2D simultaneous localization and

mapping (SLAM) [1], there have been many recent attempts (ref.

[2], [3], [4], [5], [6], [7]) to extend the methodology to 3D. Since

onboard 3D odometry is usually lacking or inadequate, an essential

part of the mapping procedure is finding the relative pose offset

of the robot between two successive range sensor samples using

scan-matching. Typical 3D sensors can be categorized as: 1) large

field-of-view (FOV) laser range finders (LRF) mounted on a rotating

platforms [3] having a large scanning time of around a minute, and 2)

time-of-flight (TOF) sensors like the Swiss-ranger [8] and PMD [9]

with a much restricted FOV, but being able to provide several scans

per second. These sensors provide a 3D range scan as a point-cloud

of noisy spatial coordinates, numbering typically between 104 and

106.

The scan-matching algorithms can be broadly classified as 1) point-

based, e.g. iterative closest point (ICP) [10], [7], or voxel-based 3D-

NDT [6], and 2) feature-based— where the most popular geometric

features are surfaces represented as planar-patches [11], [12], [5],

[13], [14]. Although point/voxel based methods do not assume any

structure in the environments, they are computationally expensive

and converge to local minima when the scene overlap is not high,

and sensitivity to outliers [15]. Maps created by these methods are

neither easily visualized nor are particularly suitable for 3D path-

planning. Planar patches offer good visualization and an impressive

compression of data (typically 95%) as compared to point-clouds.

As shown in this paper, the feature-correspondence problem can

also be solved faster and more robustly due to this compression.

As in [5], the approach in our article is also based on plane-features.

However, our approach obviates the ICP step necessary for the pose

change prediction in their work. The basic steps of the algorithms are

compared in Fig. 1. Combining plane-correspondence determination

and pose registration in one step and removal of ICP leads to savings

in computation time and an increase in robustness. In fact, most of

the previous 3D mapping approaches have been off-line due to the

excessive time required by ICP. With the new approach presented in

this article, the pose registration can be computed “fast.” This claim

can be made more precise as follows:

1) For large FOV (∼ 270◦ × 180◦) actuated LRFs, the pose-

registration time of 4−10 sec. with planes on an AMD Turion

1.6 GHz computer is much less than the typical time of 30 sec.

needed to collect one scan.

2) For small FOV (∼ 50◦ × 50◦) TOF sensors, the pose-

registration time is typically less than 0.1 sec.

In this article, we focus only on the steps marked with a box in

Fig. 1. The well known EKF-SLAM step can be the same as in [5]

and is outside the scope of this article. A plane extraction step is also

common in both approaches and it will not be discussed in detail in

this article. The reader is referred to the authors’ previous work [16],

[17] for details.

The work by Kohlhepp et al [2], [19], [13] is also closely related

to ours. In [19], surfaces are extracted from range images obtained by

a rotating laser range finder (LRF) and registered together. A local

module determines the correspondences and computes transforms,

and a global module detects loop-closure and distributes uncertainty

using an elastic graph. For this article, only the local module is

relevant which is discussed again in [13]. Similar to Sec. II-D1 in

this article, their approach uses feature-directions to compute rotation

between successive views. However, no mention is made in their

work of using the uncertainties in the extracted feature-parameters.

For estimating translation, they resort back to point features, which

is essentially the same as ICP. By contrast, this article uses only

plane-features and does not return to the domain of point-features –

even translation is obtained using planes. This allows for detection of

dominant directions of uncertainties, as detailed in Sec. II-D2. In [13],

many heuristic measures for estimating correspondences between

features, in particular the ground, across views are discussed. By

contrast, the plane correspondence algorithm presented by us does

not give any special status to the ground.

The feature-correspondence finding problem has been addressed

in the past using graph-theoretic techniques [20], [21]. However, the

latter work offered scant experimental data in form of only one pair

of scans matched and no statistical measures for the variance of

registration estimation. Another such approach is found in [2], [19],

[13]. where two sets of planar or quadratic patches are matched using

attribute-graphs . In that work, similarity metrics were formulated

based on several attributes like shape-factor, area ratio, curvature-

histogram, inter-surface relations etc., and a bounded tree search was

performed to give a set of correspondences which maximized the

metric. The result is refined using an evolutionary algorithm, which

is computation-time intensive. An ICP-like algorithm working with

planar-patch normals instead of points was presented in [15]. Planes

were matched based on proximity in terms of inter-normal angle

and Euclidean distance but the overall consistency of the scene was

not considered. Again, no statistical measures of the variance of the

solution were provided.

In contrast to the aforementioned approaches, the algorithm pre-

sented in this paper use only planar patches and maximizes the

overall geometric consistency within a search-space to determine

correspondences between planes. The search-space is pruned using
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(c) The approach presented in this article.

Fig. 1. Comparison of algorithm structures. The ICP step in Weingarten et al’s approach has been removed in our approach.

criteria such as overlap, size-similarity, and agreement with odometry,

if available. For all these tests, only the plane parameter covariance

matrix is employed, without the need to refer back to the original

point-cloud. Our approach is fast and its reliability as well as

computation-time increases with the number of planes. There is the

option of using additional attributes like intensity, color, etc. for

making the correspondence-finding step more reliable. Finally, the

covariance matrix of the solution is computed which identifies the

principal uncertainty directions. This information is indispensable for

subsequent refinement processing like loop-closing or EKF-SLAM,

although these are outside the scope of this paper.

This paper is organized as follows: Sec. II begins by presenting

the basic notation and problem statement. Sec. II-C presents a

new algorithm for finding plane correspondences. Sec. II-D solves

the least-squares determination of pose-registration using the found

correspondences. Sec. III shows a real-life example of mapping. The

paper is concluded in Sec. IV.

II. PLANE-SEGMENT EXTRACTION AND MATCHING

The scan-matching based on plane-segments consists of the fol-

lowing three steps:

1) Planes extraction from raw point-clouds: This procedure is

based on region-growing in a range-image scan followed by

a least-squares estimation of the parameters of planes. The

covariances of the plane-parameters are computed as well. The

details may be found in the previously published work of the

authors [16].

2) Pose-registration by plane-matching: This step consists of

two substeps:

a) Finding the correspondences between plane-segments in

the two scans to be matched. These two scans may be

successive samples for normal registration or may be non-

successive, if a loop is being closed.

b) After the correspondences have been decided on, finding

the optimal rotation and translation which aligns the

corresponding set of planes. This gives the pose change

of the robot between the scans.

3) Polygonization: This step consists of polygonizing each plane-

segment by finding the boundary of each surface-patch so that

the surface can be compactly described. This step is crucial for

visualization of the result, however, if only pose registration is

desired, it may be omitted. It is also described in [16].

We now provide an overview of plane-matching, i.e. the second step.

A. Notation

A plane P (m̂, ρ) is given by the equation m̂ · r = ρ, where ρ
is the signed distance from the origin in the direction of the unit

plane normal m̂. We see that P (m̂, ρ) , P (−m̂,−ρ). To achieve

a consistent sign convention, we define planes as P (n̂, d), where,

d , |ρ| ≥ 0, and n̂ , σ(ρ) m̂, where, σ(ρ) = −1 if ρ < 0 and +1
otherwise. If ρ = 0, then we choose the maximum component of n̂

to be positive. The latter case is unlikely to occur in practice in the

sensor-frame, because such a plane, which is parallel to the line of

sight of the range sensor, is unlikely to be detected by it.

For denoting frames and relative transforms, we use the notation

of [22]. The j-th sample is associated with a frame Fj , in which the

set of extracted planes is denoted as jP. Suppose we are given two

samples jP and kP. Usually they are successive, but they may be

non-successive, for example during loop-closing. Using the procedure

described in [17], one can compute an isotropic uncertainty measure

σ2 which is derived (usually, using the trace operation) from the 4×4
covariance matrix C of the plane parameters n̂ and d associated with

it. Thus a plane-set kP is an ordered set of triplets given by

kP , { kPi〈
k
n̂i,

kdi,
kσ2

i 〉, i = 1 . . . Nk}, (1)

B. Decoupling of Rotation and Translation

If the robot (more precisely, the sensor mounted on the robot)

moves from Fj to Fk, i.e. rotates by
j
kR and translates by

j
kt

between samples j and k (resolved in Fj), then the Cartesian

coordinates jp and kp of the same physical point observed from

the two frames are related by

j
p = j

kR
k
p + j

kt. (2)

Substituting the above in the plane equation, one can derive that if
jPi and kPi represent the same physical plane, the plane parameters

observed in the two planes are related by

j
n̂i = j

kR
k
n̂i (3)

j
n̂

T

i
j
kt = jdi −

kdi (4)

The above equations show that the rotation and the translation

components have been nicely decoupled.

C. Determining Correspondences

Given two plane-sets jP of size Nj and kP of size Nk, the

problem here is to find which plane indices correspond to each

other, i.e. which represent the same physical plane. The overlap

is not given, and so some planes in one set may not have any

corresponding plane in the other set. We present a new matching

algorithm called Plane Registration based on Rotation of a Unit

Sphere (PRRUS). The algorithm scales as O(N4), where N is the

average of Nj and Nk. Unlike RANSAC [14], this algorithm has

no random component and relies on two observations 1) the number

of high-evidence (detected using their parameter covariance matrix)
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Fig. 2. Finding correspondences: steps 1 and 2.

planes in a scene, are much less than the number of points, and 2)

When one pair of corresponding planes is found, only one degree of

freedom is left for finding the rest of the correspondences.

PRRUS finds the normal correspondences which give the most

geometric consistency, i.e. maximizes the satisfaction of (3). As

illustrated in Fig. 2, it divides the problem in two steps:

a) Step 1: Find the pair of planes (o∗j , o∗k) which maximizes

the size of the set Ω1 of plane-pairs with the same relative angles to

them. In other words,

(o∗j , o∗k) , max
(oj ,ok)

#Ω0(oj , ok), (5)

Ω0(oj , ok) , {(ij , ik) | j
n̂oj

· j
n̂ij

≈ k
n̂ok

· k
n̂ik

} (6)

The approximate equality-test uses the χ2 test since the covariances

of the normals is known. In (6), we also remove planes, where the

dot-product is close to ±1, i.e. planes parallel or anti-parallel to
jn̂oj

and kn̂ok
. Furthermore, we apply additional checks within the

maximization step to test for overlap and size-similarity, and prune

out pairs in Ω0(oj , ok) which fail these checks. This first step takes

the worst case time of O(N2
jN

2
k).

After this step, we compute the rotation matrix R1, such that

R1
j
n̂o∗

j
= k

n̂o∗
k
. (7)

We then compute the consensus set of triplets Ω1,

Ω1 , {(ij , ik, φi) | (ij , ik) ∈ Ω0(o
∗

j , o∗k)} (8)

φi , ∡(R1
j
n̂ij

, k
n̂ik

) about
k
n̂o∗

k
. (9)

b) Step 2: Now it remains to find the most consistent φ. Find

the biggest cluster in the distribution of φi within Ω1; call the mean

of the cluster φ∗. This gives us the final consensus set

Ω2 , {(ij , ik) | (ij , ik, φ∗) ∈ Ω1} (10)

The set Ω2 is our set of resolved correspondences, to which a least-

squares rotation and translation is fitted next.

D. Pose-registration by plane-matching

Statement of the Problem Given noisy plane-sets jP and kP,

with correspondences between planes known and given by the

common index i, find the optimum rotation
j
kR and the optimum

translation
j
kt. We provide a solution below.

1) Optimum Rotation: To find the optimum rotation between jP
and kP, we maximize the following value-function

max
j
k
R

ζr ,
1

2

N
X

i=1

( jσ2
i + kσ2

i )−1 j
n̂

T

i
j
kR

k
n̂i (11)

This is the well-known Wahba’s problem [23]. To solve this we

parameterize the rotation
j
kR with quaternions

j
kq̌ and proceed as

in [24]. Using the above, one can reformulate (11) as

max
j
k
q̌

ζr ,
1

2
j
kq̌

T
K

j
kq̌, (12)

where the matrix K is depends on jn̂i and kn̂i, i = 1 . . . N. The

optimum quaternion
j
kq̌ is then the eigenvector of the matrix K

corresponding to its maximum eigenvalue µ̄(K). The 4×4 covariance

of this optimum
j
kq̌ can be computed as

j
kCq̌q̌

= − (K − µ̄(K) I4)
+ , (13)

where, X+ represents the Moore-Penrose inverse of the matrix X

[25]. This covariance matrix can then be transformed to roll-pitch-

yaw (RPY) space by using the Jacobian of the transform between

the quaternion and the RPY space. Finally, we note that at least two

non-parallel pairs of planes are required to fully determine rotation.

2) Optimum Translation: Equations (4) can be stacked-up to give

M
j
kt = d, (14a)

where,

MN×3 ,

2

6

4

jn̂T

1

...
jn̂T

N

3

7

5
, dN×1 ,

2

6

4

jd1 −
kd1

...
jdN − kdN

3

7

5
(14b)

Due to its intuitive nature and fast closed-form solution, we will solve

Eq. (14a) with ordinary least squares (LS). A diagonal weighting

matrix W is defined as

Σ ,

0

B

@

jσ2
1 + kσ2

1 0

. . .

0 jσ2
N + kσ2

N

1

C

A
, (15)

W ,
`

Σ
−1´1/2

. (16)

Then the LS solution minimizes ‖W(M j
kt − d)‖. If M

is full rank, the least-squares optimum translation is
j
kt =

`

MTW2M
´

−1
MTW2d.

Unlike rotation, in general we need N ≥ 3 mutually non-

parallel planes to find
j
kt. The above formula is not a good way

to compute the solution because M may be ill-conditioned, may be

rank-deficient, or N < 3. A more general way to solve the equation

is presented next. We define

M̂ , WM, d̂ , Wd. (17)

Let the singular-value decomposition of M̂ be given by

UN×NΛN×3V
T

3×3. Λ has non-negative singular values λ2
i arranged

in descending order. The column unit vectors of U are denoted

ui, i = 1 . . . N and the column unit vectors of V are denoted

vi, i = 1 . . . 3.

Let NM̂ ≤ 3 be the effective rank of M̂. If the largest singular value

λ2
1 < ǫ1, then the effective rank is 0. The parameter ǫ1 is dependent

on machine accuracy. In our computations, we have taken it as 10−7.

If λ2
1 ≥ ǫ1, then the effective rank is found by finding the count of

all singular values λ2
i > λ2

1/c̄ in the diagonal matrix Λ, where c̄ is

the maximum allowable condition number of the matrix. We have

set c̄ ≈ 200. In practice ǫ1 and c̄ are quite important parameters

for obtaining good translation estimates and also for identifying the

directions in which the translation estimate is the most uncertain.
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Then the best rank NM̂ approximation of M̂ is

M̃ =

N
M̂

X

i=1

λ2
i ûiv̂

T

i , NM̂ ≤ 3. (18)

The span of the orthogonal unit vectors ûi, i = 1 . . . NM̂ gives

the best approximation for the range-space of M̂. Therefore, the

closest we can get to d̂ is d̃ =
PN

M̂

i=1(ûi · d̂)ûi, which gives the

corresponding translation estimate

j
kt =

N
M̂

X

i=1

λ−2
i (ûi · d̂)v̂i (19)

, M̂
+
d̂, M̂

+
,

N
M̂

X

i=1

λ−2
i v̂iû

T

i . (20)

This is also the minimum 2-norm solution of the LS problem

regardless of the rank of M mentioned in [26].

Note that for directions v̂i, i = (NM̂ + 1) . . . 3, we have

no information about the translation. One option is to keep these

components 0 and inject large uncertainty along those directions in

the covariance matrix. However, if an odometry estimate
j
ktO, along

with its covariance matrix
j
kCtt,O

is available, we can use it only

for these missing components. In this case we have

j
kt = M̂

+
d +

3
X

i=N
M̂

+1

( j
kt · v̂i)v̂i,

, M̂
+
d + MO

j
ktO, MO ,

3
X

i=N
M̂

+1

v̂iv̂
T

i . (21)

The covariance of odometry is only very roughly known because

it depends on vehicle model, unknown slippage etc., and a usual

fusion of odometry translation and plane-matching translation using

this covariance should be avoided. The nice thing about this solution

is that it automatically detects the directions for which the translation

is uncertain, and resorts to odometry only for these directions.

Needless to say, if such a case occurs, i.e. the translation is not fully

determined, the uncertainty in translation increases, which needs to

be then mitigated by loop-closing. Finally, we can write the estimate

of the covariance matrix for translation as follows

j
kCtt

= M̂
+
WΣW

T(M̂+)T + MO
j
kCtt,O

M
T

O,

= M
+
Σ (M+)T + MO

j
kCtt,O

M
T

O (22)

where the last equation comes from simplification using (16) and

(17).

III. MULTI-LEVEL LAB ARENA EXAMPLE

(a) (b) (c)

Fig. 3. The robot collecting data in the locmotion test arena in form of a
high bay rack

Fig. 4. The 541×361 range-image corresponding to the first scan, with the
planar regions identified. This image actually lies on the surface of a sphere,
and displaying it as a planar rectangle leads to an obvious distortion.

The Jacobs University rescue robot is equipped with an actuated

laser range-finder (ALRF). The ALRF has a horizontal field of view

of 270◦ of 541 beams. The sensor is rotated (pitched) by a servo from

−90◦ to +90◦ at a spacing of 0.5◦. This gives a 3D point-cloud of a

total size of 541 × 361 = 195301 per sample. The maximum range

of the sensor is about 20 meters. The mobile robot was teleoperated

and stopped occasionally to take scans. The time to take one full scan

is about Tscan ≈ 32 seconds. Every scan corresponds to a 541× 361
range-image as shown in Fig. 4. Planar patches were extracted from

these range images using a region-growing algorithm described in

[16]. For each planar surface, a covariance matrix of plane parameters

was computed, as described in [17]. A total of 29 usable scans were

taken as the robot was driven around the multi-level arena shown in

Fig. 3. The front camera images of some of these locations are shown

in Fig. 5.

The result of the plane-matching is shown in Fig. 6 and a view

of this map from inside the arena is shown in Fig. 6(d). This map

is clearly well aligned and is easy to understand by a human. The

rotation and translation trajectory of the robot computed by plane-

matching is shown in Fig. 7. This figure also shows the nσ bounds

of the uncertainties in the pose variables, where n = 100, 200
respectively. These bounds, like in any other scan-matcher, assume

that all the found plane correspondence are correct, and therefore

tend to be optimistic.

Fig. 5. The front camera view of the scene at the locations where the robot
took a scan. Only every fourth scan is shown to save space. The full video
may be accessed at [27].

The run-times for the various steps described in Sec. II are shown

in Table I. These are for an AMD Turion 2 × 64 machine 1.6 GHz

with 960 MB RAM running OpenSUSE 10.3 O/S. Compared to the

previously mentioned total time for taking one scan, the registration

method is indeed “fast”: mean time for extraction and plane-matching

together ≈ 0.23 Tscan. We reiterate that the polygonalization step is

needed mainly for visualization. Fig. 8 shows the dependence of the
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(a) XYZ plot with 100σ ellipsoids. Note how the major axes of ellisoids
gradually become parallel to corridor directions.

(b) Roll, pitch, yaw and their 200σ bounds. Note the wrapping of yaw
at ±180.

Fig. 7. Computed robot trajectory and uncertainty.
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Fig. 8. The dependence on the computation time of the plane-matching
algorithm on the average number of planes in the scan-pair after filtering out
low evidence planes.
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