



Abstract—This paper presents a framework for efficient

path planning in a deformable map. A roadmap and local cost

maps are combined and integrated into a generic SLAM

process to provide fast path querying for multiple sources and

multiple destinations. Analysis of a simple deformation metric

shows the ability of the framework to efficiently maintain a

consistent plan during major map adjustment by updating the

roadmap and selected local cost maps. Results from simulation

verify the effectiveness of the framework in handling

deformable maps in an efficient manner.

I. INTRODUCTION

ecent work in autonomous exploration using SLAM has

revealed the need for efficient methods of path planning

in large-scale environments. Whereas classical path planning

techniques have been highly developed for static and

deterministic environments, reactive navigation techniques

are typically implemented for real time applications.

However, recent work in sampling based methods [1] has

generated techniques able to replan in real time while

guaranteeing probabilistic completeness. The application of

these methods concurrently with SLAM has only recently

been investigated [2] but is poised to offer results which will

lead to greater autonomy in mobile robotics.

Early research in SLAM stems from work [3] by Smith et

al., which provided a stochastic framework for estimating

uncertain relative spatial relationships. It soon became

apparent that solving the full SLAM problem was both

mathematically rigorous and computationally intensive [4],

particularly in larger environments. More recent methods

[5], [6], have shown a substantial increase in efficiency,

frequently by breaking the SLAM representation into a

hybrid of metric and topological components. The Atlas [7],

Network Coupled Feature Maps [8] and Constant Time

SLAM [9] techniques are example of submapping methods

which are locally referenced and couple their submaps using

an adjacency graph. However loop consistency in the graph

is not maintained by these techniques, meaning the global

map is not optimal [10]. Hierarchical SLAM [11] enables

global consistency during loop closure and has been

Manuscript received March 9, 2009. This work was supported in part by

the UNSW Research Excellence Awards.

M. A. Whitty is with the School of Mechanical and Manufacturing

Engineering, University of New South Wales, Sydney, Australia, 2052,
(phone: 61-2-93854125; e-mail: m.whitty@unsw.edu.au

J. E. Guivant is with the School of Mechanical and Manufacturing

Engineering, University of New South Wales, Sydney, Australia, 2052,
(phone: 61-2-93859820; e-mail: j.guivant@unsw.edu.au).

demonstrated to operate in real-time for loops of 200-350m.

While path planning techniques for static environments have

been extensively developed and successfully demonstrated

[12], the ability to replan in a map which is non-static is still

a challenging problem. At least three major approaches

exist; geometric decomposition, topological decomposition

and configuration space sampling.

By geometrically decomposing the environment to varying

degrees of fidelity, efficient path planning for a single fixed

goal state is achievable. Stentz [13] and Likhachev et al.

[14] amongst others provided mechanisms to replan to adapt

to unknown obstacles in this case. These mechanisms proved

very effective in practical application [15]. By generating a

single policy over the global environment, these techniques

limit their ability to be reused by other agents in achieving

alternate goals.

Constructing a topological map for path planning directly

from sensor input was achieved by Choset and Natagani [5]

using their Generalised Voronoi Graph, in an approach

similar to that proposed by Kuipers and Byun [16]. In large

open spaces beyond the sensor range, this approach did not

handle motion uncertainty well, prompting the idea of

coastal navigation [17]; where a path proximate with

obstacles is used to maintain view of sufficient landmarks

for improved localization accuracy. The concept of

manifolds was expounded by Howard et al. [18] where the

motion of an agent is considered in a manifold instead of a

2D world, maintaining consistency as per a topological map.

Current configuration space sampling techniques are the

progeny of Probabilistic Road Maps (PRM) introduced by

Kavraki et al. [19]. Collision with obstacles is checked at

sample points between configurations and is thus restricted

to a binary characterization of space; usually free and

occupied. Roadmap style path planners were extended to

continuous cost spaces by Jaillet [20] using Rapidly-

exploring Random Trees (RRT). Efficient reuse of subtrees

was exploited by Zucker [21] for replanning. The ability to

handle multiple-source and multiple-destination queries is a

feature of the configuration space sampling techniques.

All of the approaches described above are not configured to

efficiently handle the type of map deformation present in

events such as SLAM loop closure on a large scale. Instead,

they rely on the environment being static on a global scale

while handling local map changes in a very efficient manner.

Efficient Path Planning in Deformable Maps

Mark A. Whitty, Student Member, IEEE and José E. Guivant, Member, IEEE

R

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5401

This paper presents a framework for efficient path planning

and replanning in deformable maps by integrating a roadmap

and local cost maps analogous to the structure of hybrid

metric-topological SLAM. One advantage of the hybrid

structure of this framework is the ability to provide fast

multiple-source multiple-destination querying capability

across the portion of the map present at any instant. A

second advantage is the maintenance of a globally consistent

path planner during major map adjustments. A third

advantage is a computation reduction driven by a simple

mechanism for delaying local cost map recalculation.

Finally, the framework is of sufficiently general construct

that most existing planning algorithms can be integrated to

generate paths across cost surfaces. Thus it is applicable to

exploration, navigation between specific locations and

encourages the pursuit of tasks requiring a higher degree of

autonomy than currently available.

The remainder of this paper is organized as follows. Section

II presents the fundamentals of SLAM and environment

representation along with a brief note on deformation

monitoring. A novel framework for path planning in

deformable maps is presented in Section III as the major

contribution of this paper. Section IV provides several

studies which verify the key concepts of the framework. A

preliminary version of a path planner that implements the

framework is described in Section V with the results of this

implementation in Section VI. Section VII provides the

conclusions of this paper.

II. SLAM AND DEFORMATION MONITORING

A. SLAM and environment representation

This section presents a brief review of the fundamentals of

SLAM which form one entity of the proposed framework. A

byproduct of both the need to provide accurate environment

representations, or maps, and the need to maintain

localization accuracy, SLAM is a process which relies on the

inherent correlation between those sub-processes [3]. For

larger environments, small independent submaps are

combined to reduce both the computation and storage

requirements of SLAM.

One framework for combining SLAM landmark maps with

dense metric sensory information was proposed by Nieto et

al. [22]. It uses the concept of Unidirectional Information

Flow to decouple landmark-based SLAM from the

estimation of dense maps. This work was mirrored by

Chakravorty and Saha [23] who demonstrated the separation

of mapping and planning in a control system framework. By

assuming the dense map does not provide any information to

the robot pose and landmark maps, dense feature maps can

be associated with local regions, ostensibly those delineated

by the submapping methods.

B. Deformation monitoring

While the effect of deformation on maps is widely

understood, it is a specific feature of this deformation which

provides the key to the efficiency of the framework

presented in this paper. This feature was most eloquently

expressed by Frese [24] when referring to a map as having

„certainty of relations despite uncertainty of positions‟. Frese

went on to describe the uncertainty of an aspect f of a map

estimate x̂ as the standard deviation of its covariance,

ˆ

ˆ(())x P f x  , where (1.1)

ˆ(()) T

xP f x JP J (1.2)

and
x̂P is the covariance of ˆ

kx . After calculating the

Jacobian, J, of f with respect to the state vector

1 1[, ,... ,]L Lx y x yX it is evaluated at the estimated mean

1, 1, , ,
ˆ ˆ ˆ ˆ ˆ[, ,... ,]k k k L k L kx x y x y at time step k where L is the

number of elements used to produce the map aspect.

III. PLANNING IN DEFORMABLE MAPS

This section contains the major contribution of this paper

namely the introduction of a framework for efficient

planning and replanning in deformable maps. Four sub-

sections present the key aspects of this framework, namely:

 Structure of the framework

 Constructing a roadmap and local cost maps

 Multiple-source multiple-destination queries

 Handling map updates

A. Structure of the framework

Figure 1 shows how the framework consists of two major

entities. The first is a localization and mapping entity which

is assumed to provide a consistent representation of the

environment. The second is a planning entity, which itself

contains two components.

In a clear analogy with hybrid metric-topological SLAM, the

planning entity‟s first component, referred to as a roadmap,

is a graph connecting reachable locations in the

configuration space. The second, referred to as the local

planner, consists of a set of local cost maps.

Fig. 1. Framework for planning in deformable maps.

5402

Fig. 2 illustrates how the two components are integrated

through the use of nodes, which are entities that exist as

vertices in the roadmap but also exist as a fixed location in a

single instance of a local cost map.

Fig. 2. Combining a roadmap with local planners.

The only information passed is the SLAM state vector and

covariance matrix and a data structure containing consistent

dense information, referred to as the dense planning data.

Some examples of dense planning data are presented by

Nieto et al. [22] in their HYbrid Metric Map approach.

B. Constructing a roadmap and local cost maps

A high level roadmap is constructed node by node as the

agent initially explores its environment. When nearing

unknown spaces near the edge of the current local cost map,

a new local cost map is initiated following the algorithm in

Table I. To maintain the unidirectional information flow, we

do not add the position and orientation of the local cost map

to the SLAM state vector, but rather express this pose as a

function of a set of proximate landmarks known as the

neighboring landmarks.

Table I. Initial cost map initialization

Algorithm
if distance to nearest node > threshold

 Create a new local cost map

 Set local cost map orientation to match global agent pose

 Set local cost map origin to centroid of k neighboring landmarks

 For each of k neighboring landmarks

 Store landmark position in local coordinates with map

 For each of n monitoring landmarks

 Store landmark position in global coordinates with map

 Select node position in local cost map

 Create a new vertex in roadmap corresponding to this node

 Calculate local cost map policy over local dense planning data

 For each node overlapped by the new local cost map

 Connect corresponding vertices with traversal cost on edge

 For each node overlapped by the new local cost map

 Connect corresponding vertices with traversal cost on edge

We assume the neighboring landmarks will be highly

correlated, and store their indices and original positions in

the local coordinate system generated as part of the local

cost map. Thus the local cost map origin is defined as a

function of a set of correlated landmarks in the SLAM

process, which gives it a global pose that will deform with

the landmarks. One, location in the local cost map frame is

assigned the location of the node associated with this cost

map and is also added as a new vertex in the roadmap.

Additionally, a set of nearby monitoring landmarks, , is

defined and stored to aid replanning.

On initialization, each local cost map first extracts the

overlapping dense planning data and then initiates a local

planner. The local planner generates a locally optimal policy

over the local region which is used to connect the roadmap

to any point in the configuration space spanned by the local

cost map.

C. Multiple-source multiple-destination queries

The hybrid structure of this framework provides the

foundation for fast multiple-source multiple-destination

querying capability across the known region spanned by the

local cost maps. For any given source point and destination

points in the region spanned by the local cost maps, the

query procedure is illustrated in Fig. 2 and described by the

algorithm in Table II.

Table II. Multiple-source multiple-destination querying

Algorithm
Find closest local cost maps which overlap the start and goal points

Do shortest path query between the corresponding nodes

Lookup paths corresponding to graph edges

Concatenate paths

Refine path according to computation time available

First determine which local cost maps overlap the given

points. Then inspect each of the corresponding policies and

choose the source and destination policies which minimize

the traversal cost to and from the node. Perform a shortest

path query on the roadmap between the corresponding

vertices according to the costs associated with each edge.

Once the shortest path through the roadmap has been found,

the agent simply concatenates the corresponding sequence of

local cost map policies which provides the complete path.

D. Handling map updates

As the SLAM process progresses in an unknown

environment, the local cost maps will move but will remain

rigid despite major map adjustments. This idea is further

explored in Section IV and is well known in the SLAM

community [24]. As was indicated in the literature review, it

does not appear to have been considered in the context of

planning and thus analysis of such is the major contribution

of this paper. If a local cost map needs to be updated

globally, its position and orientation are found by Procrustes

shape analysis of the previous locally stored neighboring

5403

landmark positions and the current global neighboring

landmark positions provided by the SLAM process.

Despite the rigid body motion of local cost maps, there is

still the possibility that local deformation will cause a local

cost map policy to become inconsistent with its underlying

dense planning data. As shown in Section III. C.,

deformation is monitored using a set of proximate landmarks

associated with each local cost map. These may or may not

be coincident with the neighboring landmarks used to

maintain the local cost map‟s pose.

The geometry of the set of monitoring landmarks is tracked

using a deformation metric. Deformation metrics are

discussed in more detail in Section IV and are used to

determine the extent to which non-rigid body motion has

occurred locally. Once the deformation metric changes by a

fixed proportion of its own value the amount of deformation

is sufficient to recalculate the local policy. The positions of

the monitoring landmarks are then reset as per Table III.

Table III. Planner update procedure

Algorithm
On each major SLAM update

 For each local cost map proximate to agent

 Recalculate policy based on current dense planning data

 Check and update proximate roadmap edges

 For every local cost map

 Adjust global position and orientation according to

 neighboring landmarks

 Calculate current
F and lookup previous '

F

 If
'

'

F F

F

threshold
 






 Recalculate local policy

 Update roadmap if necessary

 Set '

F F 

 If agent near local cost map boundary

 Initialize new local cost map

Of course, an agent observing the environment will be

updating the dense planning data underlying the local cost

maps which span the agent‟s observable range. The

corresponding local policies thus need to be recalculated on

a regular basis. If the roadmap‟s edge costs are extracted

from the local cost maps, then the relevant edge costs will

also need to be updated, however this can be delayed until

the next path query.

IV. DEFORMATION MONITORING

While effective techniques for determining the final quality

of a dynamically constructed map have been the focus of

recent papers, few results in quantifying the type and extent

of map deformation are in evidence. While it is not essential

to have SLAM as the underlying map pose maintenance

construct, the efficiency of this framework relies strongly on

local rigid body motion of the map and the use of

deformation metrics to determine when and where

replanning is necessary. Both of these characteristics can be

shown to be satisfied when using an underlying SLAM

process.

A. Deformation metrics

A simple measure of the non-linear deformation experienced

by a map is obtained by considering a distance measure, F,

based on the set of so called monitoring landmarks,  . A

logical distance measure is to take the set of Euclidean

distances between pairs of the n monitoring landmarks:

   

   

   

1,2 1,3 1,

,
2

2 2

, ...

, ,

T

i i n ni

i j j j i i

j i j i

F x y f f f

f x y x y

x x y y


   

 

   

 (4.1)

The uncertainty,
F , of this distance measure is the standard

deviation of its covariance, PF, which can be obtained from

 T

F XP J P J   (4.2)

where PX is the covariance of the monitoring landmarks. The

trace of
F provides a suitable scalar output for the

deformation metric.

B. Localized rigid body motion of the map

To illustrate the effect of local rigid body motion, a

simulation was run to visualize the type and extent of map

deformation which may occur during SLAM. A set of

proximate monitoring landmarks was associated with each

of a sample subset of landmarks. Fig. 4 shows the

deformation metric for each set of monitoring landmarks on

each successive SLAM update.

Fig. 3. SLAM simulation for testing deformation metrics.

Fig. 3 shows the path of the agent, starting at the bottom left,

which traversed the loop four times in the simulation.

Colored icons indicate the positions of landmarks in the

sample subset, which also correspond to the colors in Fig. 4.

From this figure, it is very easy to see that the purple triangle

landmark which entered the sensor‟s field of view on one

occasion decreased its local uncertainty monotonically while

the agent was nearby. After the agent had passed, the local

uncertainty remained constant, even though the remainder of

the map was changing shape. This clearly supports the

hypothesis that the rigidity of a local region is independent

of deformation in distant locales. This is in agreement with

5404

the formulation by Masson et al. [25], where the

„decorrelation effect‟ justified the use of local map

representations for DenseSLAM.

Fig. 4. Semi-log plot showing the deformation metrics for

the sample subset of landmarks in Fig. 3.

The same effect is seen in the remaining landmarks of Fig. 4,

where the local deformation metric remains constant when

the agent is not close by. When the agent approaches the

landmark, a sharp decrease in the uncertainty is experienced.

V. IMPLEMENTATION

This section presents a preliminary version of a two

dimensional path planner which implements the planning

entity required by the framework presented in Section III.

The local planner consists of a simple rectangular grid that

has its pose defined as a function of the neighboring

landmarks. The local cost map extracts dense planning data

from the underlying localization and mapping entity, which

in this case is simply a point cloud. The average number of

points between two cells is added to the distance between

cell centers to form a traversal cost.

Local cost maps are generated as the agent explores the

environment. Nodes are positioned at the centre of a single

grid cell. Dynamic programming is used to convert the

traversal cost to a discrete policy centered at the node over

all the cells in a local cost map. To enable the roadmap to be

populated with sufficient edges, we constrain the positioning

of new local cost maps to have their nodes overlapping

existing local cost maps. The roadmap edge cost then simply

becomes the traversal cost obtained by following the lowest

cost policy from the centre of one node to the next. When no

possible path exists between two cost maps at the local

planner level no direct link is inserted in the roadmap.

Querying the map is performed by first identifying all the

local cost maps which overlap the source and destination

points. Then the corresponding policies are inspected and the

lowest cost nodes are identified. A shortest path algorithm is

used to find the path between these vertices in the roadmap.

If a path is found, the concatenated sequence of policies is

traversed by the agent. As was foreshadowed by Frese [24],

all the local cost maps contain policies which are relative

and not absolute globally. Thus an agent may navigate by

following a sequence of local reference frames.

VI. EXPERIMENTAL RESULTS

To emphasize the efficiency gains of the framework, a series

of local cost map planners was simulated on a two

dimensional space. Initially, a single rectangular cost map

was use to find the path between two points. Then the

number of local cost maps was increased from 1 to 16, while

maintaining the same grid cell resolution and total map size.

The time taken to construct the planner and query it were

calculated. These experiments were conducted using Matlab

on a dual core 2.6GHz processor. 5000 dense points were

used to represent the dense planning data.

Fig. 5 shows the resultant paths. The red circles and lines

indicate the vertices and edges of the roadmap. Green color

indicates the paths from the start and goal points to the nodes

and the paths between vertices in the roadmap. Note that the

paths are required to travel through at least one node, which

means the total path cost is not optimal in the global sense as

can be clearly seen in Fig. 5(b). For clarity, the extent of

each local cost map is not shown.

Fig. 5. Comparison of four amounts of local cost maps

defined over the same 2D space. The red circles and lines

delineate the roadmap. Green lines are the lowest

traversal cost paths extracted from the roadmap and

local cost maps. (a) contains a single local cost map while

(b), (c) and (d) contain 4, 9 and 16 partially overlapping

local cost maps respectively.

The results show how an agent is able to navigate through a

densely populated area while following a sequence of locally

defined paths which individually attempt to minimize the

traversal cost. Considerable variation in the paths was found

with differing amounts of local cost maps, due primarily to

the intuitive placement of nodes in the center of evenly

distributed local cost maps.

5405

Table V shows that calculating the policy for the cost maps

is the most computationally expensive part of the algorithm

presented in Section V. By using a larger number of local

cost maps, this time is substantially reduced, as

computational time for each local cost map varies

quadratically with its size. These proof of concept results are

only intended to be a relative guide.

Table V. Comparison of planning and replanning speeds

for different numbers of local cost maps.
Time (s)

Number of

local cost

maps

Extract dense

planning data

(s)

Calculate

policy for all

local cost

maps (s)

Create

roadmap

(s)

Query

(s)

Recalculate policy

for one local cost

map (s)

1 0.637 38.823 0.027 0.106 39.46

4 1.215 38.969 0.009 0.073 10.05

9 1.891 22.013 0.015 0.038 2.656

16 2.462 16.530 0.024 0.046 1.187

The largest advantage can be seen by considering the policy

recalculation time normalized over the number of local cost

maps. This decreases rapidly as the number of local cost

maps increases, so if a change in deformation greater than

the threshold occurs in only one local cost map, it is much

more efficient to recalculate only that policy rather than a

single policy over the whole region. Thus the effectiveness

of the proposed framework is clearly verified.

VII. CONCLUSION

We have presented a framework for combining path

planning with a generic SLAM implementation which

enables fast multiple-source multiple-destination querying in

a deformable map. The framework also allows efficient

replanning during map deformation due to the relative

positioning of local cost maps and use of a deformation

metric to control replanning frequency.

Currently, work is ongoing to increase the efficiency of the

local planner and integrate it fully with the SLAM

implementation used to investigate the deformation metrics.

Once completed, a full comparison with existing path

planning methods can be undertaken. Further investigation

into the behavior of deformation metrics is in progress and is

expected to improve the efficiency of this framework even

further. Ultimately we believe that this framework will

provide the basis for higher levels of autonomy with

cooperating agents.

ACKNOWLEDGMENT

The underlying EKF SLAM simulation was based on an

implementation by Tim Bailey. Thanks to Udo Frese for

helpful discussions regarding deformation monitoring.

REFERENCES

[1] H. Choset, Principles of Robot Motion: Theory, Algorithms, and

Implementation. Cambridge, MA: The MIT Press, 2005, pp. 242–246.

[2] Y. Huang, K. Gupta, “RRT-SLAM for motion planning with motion
and map uncertainty for robot exploration,” Proc. 2008 IEEE Conf. on

Robotics and Automation, pp. 1077-1082, Sept. 2008

[3] R. Smith, M. Self, and P. Cheeseman, Estimating uncertain spatial
relationships in robotics, in Autonomous Robot Vehicles, New York:

Springer-Verlag, 1990, pp. 167-193.

[4] J. E. Guivant and E. M. Nebot, “Optimization of the Simultaneous
Localization and Map Building Algorithm for Real Time

Implementation,” IEEE Trans. Robotics and Automation, vol. 17, no.

3, pp. 242-257, June 2001.
[5] H. Choset and K. Natagani, “Topological simultaneous localization

and mapping (SLAM): toward exact localization without explicit

localization,” IEEE Trans. Robotics and Automation, vol. 17, no. 2,
pp. 125-137, April 2001.

[6] J. L. Blanco, J.-A. Fernandez-Madrigal, J. Gonzalez, “A New

Approach for Large-Scale Localization and Mapping: Hybrid Metric-
Topological SLAM,” Proc. 2007 IEEE International Conference on

Robotics and Automation, pp. 2061-2067, April 2007.

[7] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous
localization and map building in large-scale cyclic environments

using the Atlas framework,” International Journal of Robotics

Research, vol. 23, no. 12, pp. 1113–1140, 2004.
[8] T. Bailey, “Mobile Robot Localisation and Mapping in Extensive

Outdoor Environments,” PhD thesis, University of Sydney,

Australian Centre for Field Robotics, 2002.
[9] J. Leonard and P. Newman, “Consistent, Convergent, and Constant-

Time SLAM,” Proc. 2003 International Joint Conference on Artificial

Intelligence, vol. 18, pp. 1145-1150, 2003.
[10] J. A. Castellanos, J. Neira, and J. D. Tardos, “Map building and

SLAM algorithms,” in Autonomous Mobile Robots, CRC Press, pp.

335-372, 2006.
[11] C. Estrada, J. Neira, and J. D. Tardos, “Hierarchical SLAM: Real-time

accurate mapping of large environments,” IEEE Trans. Robotics, vol.

12, no. 4, pp. 588-596, August, 2005.
[12] S. Thrun, “Learning metric-topological maps for indoor mobile robot

navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21-71, 1998.

[13] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proc. 1994 International Conference on Robotics

and Automation, vol. 4, pp. 3310-3317, May 1994.

[14] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Dynamic A*: An Anytime, Replanning Algorithm,” in Proc

International Conference on Automated Planning and Scheduling

(ICAPS), pp. 262-271, 2005.

[15] D. Ferguson, T. Howard, M. Likhachev, “Motion planning in urban

environments,” Proc. of IEEE Intelligent Vehicles Symposium, pp.
1149-1154, 2008.

[16] B. Kuipers, P. Beeson, J. Modayil, and F. Savelli, “The Hybrid Spatial

Semantic Hierarchy: Factoring the Mapping Problem,” in Proc. 2004
IEEE International Conference on Robotics and Automation, vol. 5,

pp. 4845-4851, 2004.

[17] N. Roy and S. Thrun, “Coastal navigation with mobile robots,”
Advances in Neural Processing Systems, vol. 12, pp. 1043-1049, 1999.

[18] A. Howard, G. S. Sukhatme, and M. J. Mataric, “Multirobot

simultaneous localization and mapping using manifold
representations,” in Proceedings of the IEEE, vol. 94, no. 2, pp. 1360-

1369, July 2006.

[19] L. E. Kavraki, P. Svetska, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional

configuration spaces,” IEEE Trans. Robotics and Automation, vol. 12,

no. 4, pp. 566-580, August 1996.
[20] L. Jaillet, J. Cortes, and T. Simeon, “Transition-based RRT for Path

Planning in Continuous Cost Spaces,” in Proc. 2008 IEEE Int. Conf.

on Robots and Systems, pp. 2145-2150, 2008.
[21] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for rapid

replanning in dynamic environments,” in Proc. 2007 IEEE Int. Conf.

on Robotics and Automation, pp. 1603-1609, 2007.
[22] J. Nieto, J. E. Guivant, and E. M. Nebot, “DenseSLAM: Simultaneous

localization and dense mapping,” International Journal of Robotics

Research, vol. 25, no. 8, pp. 711-744, August 2006.
[23] S. Chakravorty and R, Saha, “Simultaneous planning localization and

mapping: A hybrid Bayesian / frequentist approach,” American

Control Conference, pp. 1226-1231, June 2008
[24] U. Frese, “A Discussion of Simultaneous Localization and Mapping,”

in Autonomous Robots, vol. 20, no. 1, pp. 25-42, 2006.

[25] F. Masson, J. Nieto, J. Guivant, E. Nebot, “Robust autonomous
navigation and world representation in outdoor environments,” in

Mobile Robots: Perception & Navigation, S. Kolski, Germany: Pro

Literatur Verlag, 2007, pp. 299-320.

5406

