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Abstract—This paper presents a framework for efficient 

path planning in a deformable map. A roadmap and local cost 

maps are combined and integrated into a generic SLAM 

process to provide fast path querying for multiple sources and 

multiple destinations. Analysis of a simple deformation metric 

shows the ability of the framework to efficiently maintain a 

consistent plan during major map adjustment by updating the 

roadmap and selected local cost maps. Results from simulation 

verify the effectiveness of the framework in handling 

deformable maps in an efficient manner.  

I. INTRODUCTION 

ecent work in autonomous exploration using SLAM has 

revealed the need for efficient methods of path planning 

in large-scale environments. Whereas classical path planning 

techniques have been highly developed for static and 

deterministic environments, reactive navigation techniques 

are typically implemented for real time applications. 

However, recent work in sampling based methods [1] has 

generated techniques able to replan in real time while 

guaranteeing probabilistic completeness. The application of 

these methods concurrently with SLAM has only recently 

been investigated [2] but is poised to offer results which will 

lead to greater autonomy in mobile robotics. 

 

Early research in SLAM stems from work [3] by Smith et 

al., which provided a stochastic framework for estimating 

uncertain relative spatial relationships. It soon became 

apparent that solving the full SLAM problem was both 

mathematically rigorous and computationally intensive [4], 

particularly in larger environments. More recent methods 

[5], [6], have shown a substantial increase in efficiency, 

frequently by breaking the SLAM representation into a 

hybrid of metric and topological components. The Atlas [7], 

Network Coupled Feature Maps [8] and Constant Time 

SLAM [9] techniques are example of submapping methods 

which are locally referenced and couple their submaps using 

an adjacency graph. However loop consistency in the graph 

is not maintained by these techniques, meaning the global 

map is not optimal [10]. Hierarchical SLAM [11] enables 

global consistency during loop closure and has been 
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demonstrated to operate in real-time for loops of 200-350m.  

While path planning techniques for static environments have 

been extensively developed and successfully demonstrated 

[12], the ability to replan in a map which is non-static is still 

a challenging problem. At least three major approaches 

exist; geometric decomposition, topological decomposition 

and configuration space sampling.  

 

By geometrically decomposing the environment to varying 

degrees of fidelity, efficient path planning for a single fixed 

goal state is achievable. Stentz [13] and Likhachev et al. 

[14] amongst others provided mechanisms to replan to adapt 

to unknown obstacles in this case. These mechanisms proved 

very effective in practical application [15]. By generating a 

single policy over the global environment, these techniques 

limit their ability to be reused by other agents in achieving 

alternate goals.  

 

Constructing a topological map for path planning directly 

from sensor input was achieved by Choset and Natagani [5] 

using their Generalised Voronoi Graph, in an approach 

similar to that proposed by Kuipers and Byun [16]. In large 

open spaces beyond the sensor range, this approach did not 

handle motion uncertainty well, prompting the idea of 

coastal navigation [17]; where a path proximate with 

obstacles is used to maintain view of sufficient landmarks 

for improved localization accuracy. The concept of 

manifolds was expounded by Howard et al. [18] where the 

motion of an agent is considered in a manifold instead of a 

2D world, maintaining consistency as per a topological map. 

 

Current configuration space sampling techniques are the 

progeny of Probabilistic Road Maps (PRM) introduced by 

Kavraki et al. [19]. Collision with obstacles is checked at 

sample points between configurations and is thus restricted 

to a binary characterization of space; usually free and 

occupied. Roadmap style path planners were extended to 

continuous cost spaces by Jaillet [20] using Rapidly-

exploring Random Trees (RRT). Efficient reuse of subtrees 

was exploited by Zucker [21] for replanning. The ability to 

handle multiple-source and multiple-destination queries is a 

feature of the configuration space sampling techniques. 

 

All of the approaches described above are not configured to 

efficiently handle the type of map deformation present in 

events such as SLAM loop closure on a large scale. Instead, 

they rely on the environment being static on a global scale 

while handling local map changes in a very efficient manner. 
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This paper presents a framework for efficient path planning 

and replanning in deformable maps by integrating a roadmap 

and local cost maps analogous to the structure of hybrid 

metric-topological SLAM. One advantage of the hybrid 

structure of this framework is the ability to provide fast 

multiple-source multiple-destination querying capability 

across the portion of the map present at any instant. A 

second advantage is the maintenance of a globally consistent 

path planner during major map adjustments. A third 

advantage is a computation reduction driven by a simple 

mechanism for delaying local cost map recalculation. 

Finally, the framework is of sufficiently general construct 

that most existing planning algorithms can be integrated to 

generate paths across cost surfaces. Thus it is applicable to 

exploration, navigation between specific locations and 

encourages the pursuit of tasks requiring a higher degree of 

autonomy than currently available. 

 

The remainder of this paper is organized as follows. Section 

II presents the fundamentals of SLAM and environment 

representation along with a brief note on deformation 

monitoring. A novel framework for path planning in 

deformable maps is presented in Section III as the major 

contribution of this paper. Section IV provides several 

studies which verify the key concepts of the framework. A 

preliminary version of a path planner that implements the 

framework is described in Section V with the results of this 

implementation in Section VI. Section VII provides the 

conclusions of this paper.  

II. SLAM AND DEFORMATION MONITORING 

A. SLAM and environment representation 

This section presents a brief review of the fundamentals of 

SLAM which form one entity of the proposed framework. A 

byproduct of both the need to provide accurate environment 

representations, or maps, and the need to maintain 

localization accuracy, SLAM is a process which relies on the 

inherent correlation between those sub-processes [3]. For 

larger environments, small independent submaps are 

combined to reduce both the computation and storage 

requirements of SLAM.  

 

One framework for combining SLAM landmark maps with 

dense metric sensory information was proposed by Nieto et 

al. [22]. It uses the concept of Unidirectional Information 

Flow to decouple landmark-based SLAM from the 

estimation of dense maps. This work was mirrored by 

Chakravorty and Saha [23] who demonstrated the separation 

of mapping and planning in a control system framework. By 

assuming the dense map does not provide any information to 

the robot pose and landmark maps, dense feature maps can 

be associated with local regions, ostensibly those delineated 

by the submapping methods.  

 

B. Deformation monitoring 

While the effect of deformation on maps is widely 

understood, it is a specific feature of this deformation which 

provides the key to the efficiency of the framework 

presented in this paper. This feature was most eloquently 

expressed by Frese [24] when referring to a map as having 

„certainty of relations despite uncertainty of positions‟. Frese 

went on to describe the uncertainty of an aspect f of a map 

estimate x̂ as the standard deviation of its covariance, 
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and
x̂P is the covariance of ˆ

kx . After calculating the 

Jacobian, J, of f with respect to the state vector 

1 1[ , ,... , ]L Lx y x yX it is evaluated at the estimated mean 

1, 1, , ,
ˆ ˆ ˆ ˆ ˆ[ , ,... , ]k k k L k L kx x y x y at time step k where L is the 

number of elements used to produce the map aspect. 

III. PLANNING IN DEFORMABLE MAPS 

This section contains the major contribution of this paper 

namely the introduction of a framework for efficient 

planning and replanning in deformable maps. Four sub-

sections present the key aspects of this framework, namely:  

 Structure of the framework 

 Constructing a roadmap and local cost maps 

 Multiple-source multiple-destination queries 

 Handling map updates 

A. Structure of the framework 

Figure 1 shows how the framework consists of two major 

entities. The first is a localization and mapping entity which 

is assumed to provide a consistent representation of the 

environment. The second is a planning entity, which itself 

contains two components.  

 

In a clear analogy with hybrid metric-topological SLAM, the 

planning entity‟s first component, referred to as a roadmap, 

is a graph connecting reachable locations in the 

configuration space. The second, referred to as the local 

planner, consists of a set of local cost maps.   

 
Fig. 1. Framework for planning in deformable maps. 
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Fig. 2 illustrates how the two components are integrated 

through the use of nodes, which are entities that exist as 

vertices in the roadmap but also exist as a fixed location in a 

single instance of a local cost map.  

 
 

Fig. 2. Combining a roadmap with local planners.  

 

The only information passed is the SLAM state vector and 

covariance matrix and a data structure containing consistent 

dense information, referred to as the dense planning data. 

Some examples of dense planning data are presented by 

Nieto et al. [22] in their HYbrid Metric Map approach. 

B. Constructing a roadmap and local cost maps 

A high level roadmap is constructed node by node as the 

agent initially explores its environment. When nearing 

unknown spaces near the edge of the current local cost map, 

a new local cost map is initiated following the algorithm in 

Table I. To maintain the unidirectional information flow, we 

do not add the position and orientation of the local cost map 

to the SLAM state vector, but rather express this pose as a 

function of a set of proximate landmarks known as the 

neighboring landmarks.  

 

Table I. Initial cost map initialization  

Algorithm  
if distance to nearest node > threshold 

     Create a new local cost map 

     Set local cost map orientation to match global agent pose 

     Set local cost map origin to centroid of k neighboring landmarks 

     For each of k neighboring landmarks 

          Store landmark position in local coordinates with map  

     For each of n monitoring landmarks 

          Store landmark position in global coordinates with map 

     Select node position in local cost map 

     Create a new vertex in roadmap corresponding to this node 

     Calculate local cost map policy over local dense planning data  

     For each node overlapped by the new local cost map   

          Connect corresponding vertices with traversal cost on edge 

     For each node overlapped by the new local cost map   

          Connect corresponding vertices with traversal cost on edge 

 

We assume the neighboring landmarks will be highly 

correlated, and store their indices and original positions in 

the local coordinate system generated as part of the local 

cost map. Thus the local cost map origin is defined as a 

function of a set of correlated landmarks in the SLAM 

process, which gives it a global pose that will deform with 

the landmarks. One, location in the local cost map frame is 

assigned the location of the node associated with this cost 

map and is also added as a new vertex in the roadmap. 

Additionally, a set of nearby monitoring landmarks, , is 

defined and stored to aid replanning.  

 

On initialization, each local cost map first extracts the 

overlapping dense planning data and then initiates a local 

planner. The local planner generates a locally optimal policy 

over the local region which is used to connect the roadmap 

to any point in the configuration space spanned by the local 

cost map.  

C. Multiple-source multiple-destination queries 

The hybrid structure of this framework provides the 

foundation for fast multiple-source multiple-destination 

querying capability across the known region spanned by the 

local cost maps. For any given source point and destination 

points in the region spanned by the local cost maps, the 

query procedure is illustrated in Fig. 2 and described by the 

algorithm in Table II.  

 

Table II. Multiple-source multiple-destination querying 

Algorithm 
Find closest local cost maps which overlap the start and goal points 

Do shortest path query between the corresponding nodes 

Lookup paths corresponding to graph edges 

Concatenate paths 

Refine path according to computation time available 

 

First determine which local cost maps overlap the given 

points. Then inspect each of the corresponding policies and 

choose the source and destination policies which minimize 

the traversal cost to and from the node. Perform a shortest 

path query on the roadmap between the corresponding 

vertices according to the costs associated with each edge. 

Once the shortest path through the roadmap has been found, 

the agent simply concatenates the corresponding sequence of 

local cost map policies which provides the complete path. 

D. Handling map updates 

As the SLAM process progresses in an unknown 

environment, the local cost maps will move but will remain 

rigid despite major map adjustments. This idea is further 

explored in Section IV and is well known in the SLAM 

community [24]. As was indicated in the literature review, it 

does not appear to have been considered in the context of 

planning and thus analysis of such is the major contribution 

of this paper. If a local cost map needs to be updated 

globally, its position and orientation are found by Procrustes 

shape analysis of the previous locally stored neighboring 
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landmark positions and the current global neighboring 

landmark positions provided by the SLAM process.  

 

Despite the rigid body motion of local cost maps, there is 

still the possibility that local deformation will cause a local 

cost map policy to become inconsistent with its underlying 

dense planning data. As shown in Section III. C., 

deformation is monitored using a set of proximate landmarks 

associated with each local cost map. These may or may not 

be coincident with the neighboring landmarks used to 

maintain the local cost map‟s pose.  

 

The geometry of the set of monitoring landmarks is tracked 

using a deformation metric. Deformation metrics are 

discussed in more detail in Section IV and are used to 

determine the extent to which non-rigid body motion has 

occurred locally. Once the deformation metric changes by a 

fixed proportion of its own value the amount of deformation 

is sufficient to recalculate the local policy. The positions of 

the monitoring landmarks are then reset as per Table III.  

 

Table III. Planner update procedure 

Algorithm 
On each major SLAM update 

     For each local cost map proximate to agent 

          Recalculate policy based on current dense planning data 

          Check and update proximate roadmap edges 

     For every local cost map 

          Adjust global position and orientation according to    

          neighboring landmarks 

          Calculate current 
F and lookup previous '

F  

          If 
'

'

F F

F

threshold
 






 

               Recalculate local policy 

               Update roadmap if necessary 

               Set '

F F   

           If agent near local cost map boundary 

                Initialize new local cost map 

 

Of course, an agent observing the environment will be 

updating the dense planning data underlying the local cost 

maps which span the agent‟s observable range. The 

corresponding local policies thus need to be recalculated on 

a regular basis. If the roadmap‟s edge costs are extracted 

from the local cost maps, then the relevant edge costs will 

also need to be updated, however this can be delayed until 

the next path query.  

IV. DEFORMATION MONITORING 

While effective techniques for determining the final quality 

of a dynamically constructed map have been the focus of 

recent papers, few results in quantifying the type and extent 

of map deformation are in evidence. While it is not essential 

to have SLAM as the underlying map pose maintenance 

construct, the efficiency of this framework relies strongly on 

local rigid body motion of the map and the use of 

deformation metrics to determine when and where 

replanning is necessary. Both of these characteristics can be 

shown to be satisfied when using an underlying SLAM 

process.  

A. Deformation metrics 

A simple measure of the non-linear deformation experienced 

by a map is obtained by considering a distance measure, F, 

based on the set of so called monitoring landmarks,  . A 

logical distance measure is to take the set of Euclidean 

distances between pairs of the n monitoring landmarks: 

 

   

   
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i i n ni

i j j j i i

j i j i

F x y f f f

f x y x y

x x y y


   

 

   

 (4.1) 

The uncertainty, 
F , of this distance measure is the standard 

deviation of its covariance, PF, which can be obtained from 

 T

F XP J P J    (4.2) 

where PX is the covariance of the monitoring landmarks. The 

trace of 
F  provides a suitable scalar output for the 

deformation metric. 

B. Localized rigid body motion of the map 

To illustrate the effect of local rigid body motion, a 

simulation was run to visualize the type and extent of map 

deformation which may occur during SLAM. A set of 

proximate monitoring landmarks was associated with each 

of a sample subset of landmarks. Fig. 4 shows the 

deformation metric for each set of monitoring landmarks on 

each successive SLAM update.  

 

 
Fig. 3. SLAM simulation for testing deformation metrics.  

 

Fig. 3 shows the path of the agent, starting at the bottom left, 

which traversed the loop four times in the simulation. 

Colored icons indicate the positions of landmarks in the 

sample subset, which also correspond to the colors in Fig. 4. 

From this figure, it is very easy to see that the purple triangle 

landmark which entered the sensor‟s field of view on one 

occasion decreased its local uncertainty monotonically while 

the agent was nearby. After the agent had passed, the local 

uncertainty remained constant, even though the remainder of 

the map was changing shape. This clearly supports the 

hypothesis that the rigidity of a local region is independent 

of deformation in distant locales. This is in agreement with 
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the formulation by Masson et al. [25], where the 

„decorrelation effect‟ justified the use of local map 

representations for DenseSLAM. 

 

 
Fig. 4. Semi-log plot showing the deformation metrics for 

the sample subset of landmarks in Fig. 3. 

 

The same effect is seen in the remaining landmarks of Fig. 4, 

where the local deformation metric remains constant when 

the agent is not close by. When the agent approaches the 

landmark, a sharp decrease in the uncertainty is experienced.  

V. IMPLEMENTATION 

This section presents a preliminary version of a two 

dimensional path planner which implements the planning 

entity required by the framework presented in Section III. 

The local planner consists of a simple rectangular grid that 

has its pose defined as a function of the neighboring 

landmarks. The local cost map extracts dense planning data 

from the underlying localization and mapping entity, which 

in this case is simply a point cloud. The average number of 

points between two cells is added to the distance between 

cell centers to form a traversal cost.  

 

Local cost maps are generated as the agent explores the 

environment. Nodes are positioned at the centre of a single 

grid cell. Dynamic programming is used to convert the 

traversal cost to a discrete policy centered at the node over 

all the cells in a local cost map. To enable the roadmap to be 

populated with sufficient edges, we constrain the positioning 

of new local cost maps to have their nodes overlapping 

existing local cost maps. The roadmap edge cost then simply 

becomes the traversal cost obtained by following the lowest 

cost policy from the centre of one node to the next. When no 

possible path exists between two cost maps at the local 

planner level no direct link is inserted in the roadmap. 

 

Querying the map is performed by first identifying all the 

local cost maps which overlap the source and destination 

points. Then the corresponding policies are inspected and the 

lowest cost nodes are identified. A shortest path algorithm is 

used to find the path between these vertices in the roadmap. 

If a path is found, the concatenated sequence of policies is 

traversed by the agent. As was foreshadowed by Frese [24], 

all the local cost maps contain policies which are relative 

and not absolute globally. Thus an agent may navigate by 

following a sequence of local reference frames.  

VI. EXPERIMENTAL RESULTS 

To emphasize the efficiency gains of the framework, a series 

of local cost map planners was simulated on a two 

dimensional space. Initially, a single rectangular cost map 

was use to find the path between two points. Then the 

number of local cost maps was increased from 1 to 16, while 

maintaining the same grid cell resolution and total map size. 

The time taken to construct the planner and query it were 

calculated. These experiments were conducted using Matlab 

on a dual core 2.6GHz processor. 5000 dense points were 

used to represent the dense planning data. 

 

Fig. 5 shows the resultant paths. The red circles and lines 

indicate the vertices and edges of the roadmap. Green color 

indicates the paths from the start and goal points to the nodes 

and the paths between vertices in the roadmap. Note that the 

paths are required to travel through at least one node, which 

means the total path cost is not optimal in the global sense as 

can be clearly seen in Fig. 5(b). For clarity, the extent of 

each local cost map is not shown.  

 

 
Fig. 5. Comparison of four amounts of local cost maps 

defined over the same 2D space. The red circles and lines 

delineate the roadmap. Green lines are the lowest 

traversal cost paths extracted from the roadmap and 

local cost maps. (a) contains a single local cost map while 

(b), (c) and (d) contain 4, 9 and 16 partially overlapping 

local cost maps respectively. 

 

The results show how an agent is able to navigate through a 

densely populated area while following a sequence of locally 

defined paths which individually attempt to minimize the 

traversal cost. Considerable variation in the paths was found 

with differing amounts of local cost maps, due primarily to 

the intuitive placement of nodes in the center of evenly 

distributed local cost maps. 
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Table V shows that calculating the policy for the cost maps 

is the most computationally expensive part of the algorithm 

presented in Section V. By using a larger number of local 

cost maps, this time is substantially reduced, as 

computational time for each local cost map varies 

quadratically with its size. These proof of concept results are 

only intended to be a relative guide.  

 

Table V. Comparison of planning and replanning speeds 

for different numbers of local cost maps. 
Time (s) 

Number of 

local cost 

maps 

Extract dense 

planning data 

(s) 

Calculate 

policy for all 

local cost 

maps (s) 

Create 

roadmap 

(s) 

Query 

(s) 

Recalculate policy 

for one local cost 

map (s) 

1 0.637 38.823 0.027 0.106 39.46 

4 1.215 38.969 0.009 0.073 10.05 

9 1.891 22.013 0.015 0.038 2.656 

16 2.462 16.530 0.024 0.046 1.187 

The largest advantage can be seen by considering the policy 

recalculation time normalized over the number of local cost 

maps. This decreases rapidly as the number of local cost 

maps increases, so if a change in deformation greater than 

the threshold occurs in only one local cost map, it is much 

more efficient to recalculate only that policy rather than a 

single policy over the whole region. Thus the effectiveness 

of the proposed framework is clearly verified.  

VII. CONCLUSION 

We have presented a framework for combining path 

planning with a generic SLAM implementation which 

enables fast multiple-source multiple-destination querying in 

a deformable map. The framework also allows efficient 

replanning during map deformation due to the relative 

positioning of local cost maps and use of a deformation 

metric to control replanning frequency.  

 

Currently, work is ongoing to increase the efficiency of the 

local planner and integrate it fully with the SLAM 

implementation used to investigate the deformation metrics. 

Once completed, a full comparison with existing path 

planning methods can be undertaken. Further investigation 

into the behavior of deformation metrics is in progress and is 

expected to improve the efficiency of this framework even 

further. Ultimately we believe that this framework will 

provide the basis for higher levels of autonomy with 

cooperating agents. 
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