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Abstract— Today, there are increased interest and various
efforts in using cognitive architectures to control robotic plat-
forms. Recent advances to essential capabilities in robots con-
tributed to this trend, which tries to meet the increased demand
for high-level control mechanisms. The tradition of cognitive
architectures aims for general intelligence, and they have some
great potential for use in robots that are now increasingly more
capable of complex tasks. In this paper, we introduce one such
architecture, ICARUS, used in a robotic environment to provide
knowledge-based control for a humanoid robot, MAHRU. We
show some experimental observations in the Blocks World
domain.

I. INTRODUCTION

Recently, researchers in the field of robotics show in-
creased interests in the use of cognitive architectures [1].
There have been various efforts to use them to control robotic
platforms, which now possess essential capabilities required
for interesting high-level tasks. These architectures, designed
as computational models of human cognition, commits to a
specific set of knowledge representation and the processes
that work over it. They provide mechanisms for inferring the
state of the world, making decisions based on the computed
state, and applying actions that are needed. In most cases,
they also support learning in various ways, including, but
not limited to, learning from problem solving, learning from
observations, and learning from failures [2][3][4][5].

One such architecture, ICARUS, has a long history of
continuous development and revisions, and it is specifically
designed for physical domains [3]. Previously, it was used
successfully in various domains, which include a simulated
Blocks World, a FreeCell solitaire game [3], a simulation
of urban driving [6], and a first-person shooter game, Urban
Combat [7]. These domains provided challenging environ-
ments for the ICARUS architecture, with different levels of
complexity. They served as important testbeds on which most
of the components and features of the architecture were
evaluated and experimented. However, there has always been
the desire and need for a domain that involves some type of
physical machinery.

In this paper, we report an application of the ICARUS

architecture in a simulated robotic environment. The simula-
tion is a realistic computational representation of a humanoid
robot, MAHRU [8]. As a preliminary step before the actual
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integration of the architecture and the humanoid, we have
devised an interface between ICARUS and the simulation.
We selected a familiar, but often challenging domain, the
Blocks World, for our first set of experiments. As a simplified
version of the book shelving task, we created a scenario, in
which the robot should sort blocks of different colors and
stack them in towers with the same-colored blocks.

In the following sections, we first review the fundamentals
of the ICARUS architecture, and provide more details on
the humanoid robot, MAHRU, and its simulation. Then we
present some experimental observations in the Blocks World.
We conclude after a discussion on related and future work.

II. REVIEW OF ICARUS ARCHITECTURE

The ICARUS architecture is one of the systems that grew
out of the cognitive architecture movement. It shares some
basic features with other architectures, like Soar [2] and
ACT-R [9]. The architecture commits to a specific represen-
tation of knowledge, and distinguishes long-term and short-
term memories. It has separate memories for its conceptual
knowledge that describes the state of the environment, and its
skill knowledge that specifies procedures to achieve specific
goals. The system provides an organized way to specify
domain knowledge that is readily available for execution,
and supports various methods for learning to acquire the
knowledge automatically.

In this section, we describe ICARUS’ commitment for a
certain representation of knowledge and for memories that
store the knowledge. Then we show processes that work over
these memories, including the inference of current situation,
the evaluation of skills, and the execution of actions in the
world.

A. Representation and Memories

Based on psychological evidences, ICARUS distinguishes
conceptual and skill knowledge, and the architecture has
separate memories for them. It further distinguishes long-
term and short-term knowledge, and a long-term conceptual
memory stores definitions of its conceptual knowledge, or
concepts, and a short-term conceptual memory, or belief
memory, houses instances of these concepts that are true in
the current state. Similarly, a long-term skill memory stores
definitions of ICARUS’ procedural knowledge, or skills, and
a short-term skill memory records instantiated skills. These
skill instances are, however, closely tied to the goals they
achieve, and the short-term skill memory also serves as a
goal memory, and it stores substantially more information
than the skill instances themselves.
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TABLE I

SOME SAMPLE CONCEPTS FOR OUR ROBOT, MAHRU IN THE

SIMULATED BLOCKS WORLD DOMAIN.

((holding ?gripper ?block)
:percepts ((gripper ?gripper status ?block)

(block ?block)))

((hand-empty ?gripper)
:percepts ((gripper ?gripper status ?status))
:tests ((eq ?status ’empty)))

((clear ?block)
:percepts ((block ?block))
:relations ((not (on ?other ?block))))

Table I shows some sample concepts used in the simulated
Blocks World domain. Concept definitions start with a head,
which includes the name of the concept, and its arguments
that are often variables marked with a preceeding question
mark as in ?gripper and ?block. The definitions also
have several optional fields like :percepts that includes
perceptual matching conditions, :tests that specifies con-
ditions among matched variables, and :relations that has
references to other concepts. The first two concepts shown
are primitive, in the sense that they consist solely of variable
matchings against objects in the world like a gripper and
a block and conditions among these variables. The last
concept, however, is a non-primitive one, which refers to
another concept. In this case, the reference is negated, and
the concept (clear ?block) matches when the predicate (on
?other ?block) is not true in the current state.

In Table II, we provide some sample skills for MAHRU in
this domain. As with concepts, ICARUS’ skills consist of a
head and several optional fields. While a :percepts field
serves the same purpose as in concepts, a :start field
specifies preconditions of the skill, an :actions field has
its implied actions in the world, and a :subgoals field
includes a subgoal decomposition for the particular skill.
The first example shown is a primitive skill, which directly
refers to basic actions the ICARUS agent can apply in the
environment. However, the rest of skills are non-primitive,
and they include references to subgoals that, in turn, lead
to other skills. In this way, both concepts and skills in
the ICARUS architecture are hierarchically organized, and
they provide rich vocabulary to describe complex states and
procedures required by domains in the real world.

The ICARUS architecture also has a goal memory. This
memory stores the agent’s top-level goals and their subgoals
with the skill instances it intends to execute, or has executed
for them. The information is stored in the form of goal stacks,
as shown in Table III. Here, the top-level goal is (color-
sorted), which means that all the blocks are sorted by their
colors in towers. The system retrieved a skill instance with
id 19 that is known to achieve the goal. Also shown is the
execution stack on the particular cycle, which we will discuss
later in this section.

TABLE II

SOME SAMPLE SKILLS FOR OUR ROBOT, MAHRU IN THE SIMULATED

BLOCKS WORLD DOMAIN.

((stacked ?block ?to) ID: 3
:percepts ((gripper ?gripper)

(block ?block)
(block ?to x ?x y ?y z ?z height ?h))

:start ((stackable ?gripper ?block ?to))
:actions ((*release ?block ?x ?y (+ ?z ?h) pb)))

((on ?block1 ?block2) ID: 16
:percepts ((block ?block1)

(block ?block2))
:subgoals ((stackable ?gripper ?block1 ?block2)

(stacked ?block1 ?block2)))

((one-color-sorted ?color) ID: 17
:percepts ((block ?block1 color ?color)

(block ?block2))
:start ((same-color ?block1 ?block2)

(clear ?block2))
:subgoals ((on ?block2 ?block1)

(one-color-sorted ?color)))

((one-color-sorted ?color) ID: 18
:percepts ((block ?block1 color ?color)

(block ?block2)
(block ?block3))

:start ((same-color ?block1 ?block2)
(same-color ?block1 ?block3)
(on ?block2 ?block1))

:subgoals ((clear ?block3)
(on ?block3 ?block2)
(one-color-sorted ?color)))

((color-sorted) ID: 19
:start ((not-color-sorted ?color))
:subgoals ((one-color-sorted ?color)

(color-sorted)))

B. Inference, Evaluation, and Execution

The ICARUS architecture runs in distinct cycles. On each
cycle, it performs a series of cognitive processes, including
the perception of its surroundings, the inference of concept
instances based on the perceived data, the evaluation of skills
under the current state, and the execution of actions implied
by the chosen skill instance. Fig. 1 shows ICARUS’ operation
on each cycle. At the beginning of each cycle, ICARUS

receives information on the objects it can perceive from the
environment. This information is deposited in the perceptual
buffer. ICARUS then matches its concepts stored in the long-
term conceptual memory against perceived objects, infers all
the concept instances that are true in the current state, and
stores them in its belief memory.

Based on the current beliefs, the architecture evaluates its
hierarchical skills and finds a skill path that is most relevant
to the situation. Shown in the :EXECUTION STACK field
in Table III is an example of an executable skill path. In this
case, the goal is (color-sorted), and the system retrieves a
non-primitive skill with the same name that has an id 19. This
skill refers to another skill, (one-color-sorted green), and it,
in turn, refers to (on block4 block2). This continues until
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TABLE III

AN EXAMPLE OF A GOAL STACK STORED IN ICARUS’ GOAL MEMORY.

(A SIMPLIFIED VERSION IS SHOWN FOR EASY REFERENCE.)

[(GOAL
:CHAINTYPE SKILL
:GOALTYPE PRIMARY
:OBJECTIVE (COLOR-SORTED)
:INTENTION ((COLOR-SORTED) ID: 19 BINDINGS: NIL
:EXECUTION STACK
#1 (((COLOR-SORTED) ID: 19

BINDINGS: ((?COLOR . GREEN))
((ONE-COLOR-SORTED GREEN) ID: 17

BINDINGS: ((?BLOCK1 . BLOCK2)
(?BLOCK2 . BLOCK4)
(?COLOR . GREEN))

((ON BLOCK4 BLOCK2) ID: 16
BINDINGS: ((?BLOCK1 . BLOCK4)

(?BLOCK2 . BLOCK2))
((STACKABLE ?GRIPPER BLOCK4 BLOCK2) ID: 12

BINDINGS: ((?GRIPPER2 . G-R)
(?GRIPPER1 . G-L)
(?BLOCK . BLOCK4)
(?TO . BLOCK2))

((REACHABLE-BY-BOTH-ARMS BLOCK4) ID: 14
BINDINGS: ((?FROM . T) (?BLOCK . BLOCK4)

(?GRIPPER . G-L))
((PUTDOWN-IN-THE-CENTER BLOCK4 ?TO) ID: 4

BINDINGS: ((?HEIGHT . 0.89) (?Z . 0.89)
(?Y . 0.0) (?X . 0.0)
(?TO . T) (?GRIPPER . G-L)
(?BLOCK . BLOCK4))))]

Fig. 1. A schematic of execution cycles in ICARUS architecture. Rectangles
denote the environment (far right) and ICARUS’ buffers and memories, while
oval shapes denote processes that work over them.

it reaches a primitive skill, (putdown-in-the-center block4
t). This path represents the decision ICARUS made at the
moment, with the most abstract skill on top and the most
specific one at the bottom.

Once an executable skill path is found, the architecture
executes actions implied by the skill path to change its
environment. This, in turn, changes ICARUS’ perception on
the next cycle. Then the system continues to the next step
of the procedure. It is notable that this cyclic operation
gives reactivity to the ICARUS architecture while staying
goal-oriented. Therefore, ICARUS agents can readily adapt to

unexpected situations or outcomes. For example, if the robot
fails to pick up a block or loses the grip of one, ICARUS will
perceive the unexpected outcome in its subsequent cycle and
correct the situation through retrials. We will discuss more on
ICARUS’ ability to recover from failures later in this paper. In
the next section, we introduce our robot platform, MAHRU
in more detail.

III. A HUMANOID ROBOT: MAHRU

We integrated the ICARUS architecture with a simulation
of a humanoid robot, MAHRU, developed at Korea Institute
of Science and Technology. The simulated environment is
a realistic representation of the actual robot, and many
components of the current interface will transfer directly to
the eventual integration of ICARUS and MAHRU. In this
section, we provide more details on the humanoid platform
and its simulation.

A. Hardware Platform

As shown in Fig. 2, MAHRU is a humanoid robot platform
that stands at 150cm tall and weighs about 57kg. It can
reach the maximum speed of 1.2km/h. The robot has 12-
DOF in its legs and 20-DOF in the two arms including
4-DOF in its grippers. The robot has an IMU (Inertial
Measurement Unit) sensor mounted on its body, and it is
equipped with four force/torque sensors on its arms and
legs. For real-time control, the robot runs on a PC with
real-time Linux (RTAI/Xenomai) operating system. It uses
communication lines that follows the IEEE 1394 protocol to
deliver control signals between the main PC and its DSP-
based sub-controllers [10][11].

The robot is specifically designed as a network-based
humanoid, which can send various sensor data to external
servers over the wireless network to perform high-level
recognition, inference, and decision-making. This type of
robots costs less than standalone systems, and they have in-
creased operation time per each battery charge. Furthermore,
it provides more flexibility for features and services a robot
can have.

Fig. 2. A humanoid platform, MAHRU
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B. Simulated Platform

We used a 3-D simulation of MAHRU in SimStudio
[12], a simulation software with a built-in dynamics engine
that solves complex rigid body contact problems including
collision detection and resolution. The environment provides
models for various sensors and actuators. It allows real-time
analysis of the simulated robotic system. Fig. 3 shows a
screenshot of the simulation environment.

Using the virtual sensor and actuator simulations in the
software, we encoded in the simulator the same motion
control algorithm as in the actual robot. Since this algorithm
controls all the low-level robot motions, the simulator can
interface with higher-level controllers – in this case, the
ICARUS architecture – through various text-based commands
[13]. For example, we can trigger a grasping motion by
issuing a command like ”grab object with id 1”, and have the
robot walk forward by sending a command, ”walk forward
1 meter”.

Fig. 3. 3-D dynamic simulation environment

IV. EXPERIMENTAL OBSERVATIONS

We integrated the ICARUS architecture and the MAHRU
humanoid robot with a TCP connection between them, unlike
some previous work on ICARUS that used shared memory
structures [7]. We considered the fact that our robot is
designed to be network-based, and high-level control systems
for this robot should be on a server connected through a
wireless interface. We gave the integrated system some basic
tasks in the simulation of the Blocks World. By doing so,
we wanted to verify that ICARUS can indeed make high-level
decisions for the humanoid in this domain, and that MAHRU
can execute these control commands smoothly and achieve
its goal.

In the simulated Blocks World, we created a set of tasks
with an initial condition where seven blocks are on table.
There are two red blocks, three green blocks, and two
blue blocks. Table IV shows the tasks we gave our robot,

TABLE IV

BLOCKS WORLD TASKS GIVEN TO MAHRU

goals tasks cycles

(on block0 block1) build a tower of two red blocks 5

(on block0 block6)
build a tower of two blocks that
involve a hand change 7

(color-sorted) build towers of same-colored blocks 13

MAHRU, with the corresponding goal encoded for each task
and the number of cycles it took until completion when the
probability of action failures in the environment were set
to zero. The first task is building a tower of two red blocks,
block0 and block1, and therefore achieving the goal, (on
block0 block1). The task requires a simple movement of a
block, grasping block0 and moving and releasing it on
block1. It took five cycles for ICARUS-controlled MAHRU
to complete this task.

The second task is more complicated, although the goal is
to build a similar tower by achieving (on block0 block6). In
this case, one block is on the right-hand side of the robot,
and the other is on the left-hand side of the robot. Due to the
limited reachability of each hand, MAHRU cannot move the
first block onto the second block with one hand. It should
change hands in between to achieve the goal. Therefore,
MAHRU first grasps block0 with its right hand and moves
it to the center of the table where both of its hands can reach.
Then it uses its left hand to grasp the block and moves it
onto block6 on its left side. This task took two more cycles
for MAHRU, finishing the execution in seven cycles.

The two tasks so far require two different procedures for
goals in the form, (on ?block1 ?block2). The first procedure
simply moves a block on top of another, but the second one
involves a hand change during the move. In ICARUS, we can
have multiple disjunctive skills for a given goal, representing
procedures for different preconditions. We will see another
example of disjunctive skills below, during our discussion on
the third task.

The last task is also the most complicated, and it is worth
discussing it in more detail. Figure 4 shows the sequence of
actions ICARUS commanded MAHRU to achieve the color-
sorting goal. Here, the robot should build three different
towers, one with two red blocks, another with three green
blocks, and yet another with two blue blocks. For this task,
ICARUS decomposes the top-level goal, (color-sorted) into
three different subgoals, which are distinct instances of (one-
color-sorted ?color) for the three colors, red, green, and blue.

The system then chooses a color at random, and it works
on red blocks first in this case (see 1–3 in Fig. 4). Here, it
uses a particular definition of the skill, the one with id 17
shown earlier in Table II. The skill is more general than the
other one with id 18, and its preconditions match when there
are at least two blocks of a color and one of them is clear.
Once this skill finishes, the system selects the next color,
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Fig. 4. Screenshots of MAHRU performing the color sorting of blocks.

green (see 4–9). In this case, it first uses the same skill as
above, and build a green tower with two blocks with another
green block still on table. Then it uses the skill with id 18,
for which more specific preconditions match – there are three
blocks that are green, and two of them are stacked. After the
system successfully completes the procedure, it builds a blue
tower in a similar way as it did with red blocks (see 10–12).

As noted earlier, we acquired the results above with the
probability of action failures set to zero. When we increased
the probability, ICARUS sometimes faced unexpected out-
comes such as failing to grab a block or dropping a block
elsewhere than its intended location. In such cases, the
architecture reacted to the unexpected situation, and persis-
tently made attempts to fix the failure, or proceeded with a
different skill that is known to work in the new situation.
Of course, these failures caused an inevitable increase in
ICARUS’ cognitive cycles to complete its tasks. For instance,
at 10% probability of action failures, it took 17.1 cycles on
average for ICARUS to complete the color sorting task, which
is an increase of approximately 30%.

We verified that the ICARUS architecture is able to make
high-level decisions in the robotic Blocks World domain
even under the possibility of action failures, and that the hu-

manoid, MAHRU can execute the commands from ICARUS

correctly. The physical restrictions the robot platform has
add complexity in various dimensions, but the architecture
successfully manages to produce valid procedure to achieve
the given goals.

V. RELATED AND FUTURE WORK

Recently, we have seen increased interests in cognitive
architectures among researchers in robotics and its related
fields. Cognitive psychologists and researchers in artificial
intelligence have developed these architectures as steps to-
ward general intelligence over a relatively long period of
time, and they usually provide stable architectural support
for robotic applications in many different directions. For
instance, Benjamin et al. [15] developed a new architecture
specifically for robots based on the Soar architecture. They
used the system with a mobile robot designed to interact with
people under different circumstances.

Kieras and Meyer [14] used the EPIC architecture for
human-computer interaction. Taking advantage of the archi-
tecture’s multi-task performance, they showed that modeling
human-computer interaction in EPIC results in a precise
computational models. The EPIC architecture successfully
simulates human behavior including visual and auditory
processes.

Meanwhile, other researchers developed their own archi-
tectures for cognitive control of robots. Kawamura et al. [16]
developed a humanoid robot, ISAC and extended the system
to a cognitive architecture. The architecture was multiagent-
based, with attention, memory, and internal rehearsal hap-
pening in parallel.

Kasderidis [17] introduced the GNOSYS architecture, as
an execution system for robotic agents. It provides many
features found in traditional cognitive architectures, includ-
ing execution for multiple goals, dynamic prioritization, and
opportunistic behavior.

Although our current work shows some promising re-
sults, our research on using the ICARUS architecture in the
robotic platform is still at its preliminary stage. We will
continue our work by replacing the simulation with the
actual robot, MAHRU, and testing the integrated system
in the Blocks World. Then we will attempt to use more
capabilities supported by the ICARUS architecture in the
robotic environment, especially, learning from problem solv-
ing and learning from observations. We would also like to
use more of the features our robot has. For example, the
robot’s capability to move around with its biped will open
up new possibilities in its applications and it certainly will
challenge the ICARUS architecture’s ability to control more
complicated behaviors. We plan to find another domain that
involves all of these additional capabilities that are readily
available in our integrated system. We hope to report more
on this topic in the near future.
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VI. CONCLUSIONS

In this paper, we integrated a cognitive architecture,
ICARUS and a humanoid robot, MAHRU. We tested the
integrated system in a robotic Blocks World domain, and it
successfully performed tasks at different levels of complex-
ity, which included a task to building towers of same-colored
blocks from an initial condition with blocks of three different
colors. Although the integration still used a simulation of the
actual robot, the simulated environment provided a realistic
representation of the platform with adjustable probability of
action failures, to which ICARUS reacted properly. Therefore,
we are confident that the overall system will work smoothly
with the robot, and we hope that we can report on the
integration in the near future.
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