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Abstract— We aim to investigate biological function of emo-
tional bodily movements while building a robot in the sense
of survival. In this particular paper, we build a novel active
vision system which detects weak signals by generating tremor
actively. Proposed active vision system consists of a noise
generator and a neural system. As a noise generator, we use
motors with a decentered weight. And as a neural system in
order to detect visual signals, we use ensemble of FitzHugh-
Nagumo neurons. We first show that our robotic platform can
generate several kinds of tremors; tremor around 40 Hz, 50Hz,
and tremor which does not involve specific peak in its power
spectrum. And, in order to evaluate the effect of tremor, we
prepare clear-films as visual stimuli which move aperiodically in
a dark environment. We show that as a result of sensory noise
induced by tremor, and as a result of stochastic resonance,
neural system successfully detects movements of clear films.

I. INTRODUCTION

Recent social robots are designed to express their internal

states and desires with their face [11] or by bodily gesture

[12]. It may be a consensus that emotional expressions of a

robot is of great service to man-robot interaction. Meanwhile,

compared to social functionality of emotion, little is known

about functionality and mechanisms of emotion in the sense

of survivability. Therefore, it seems to be impossible so far

to build emotional robots in the sense of survival.

Our research goal is to synthesize emotional robot in

the sense of survival. For this purpose, we start paying

attention to emotional bodily movements such as trembling,

piloerection and eye-tremor during strong arousal, by placing

our hypothesis on that these bodily movements provide

survival functions. And we try to build a robot which can

generate emotional bodily movements, while on the other

hand trying to address functionalities of such emotional

bodily movements.

In this particular paper, we focus on emotional tremor/

trembling during fear, anger and joy. And we aim to show

that emotional tremor can be functional in the framework of

sensory-motor coordination (i.e., bodily-movements in order

to realize perception or recognition [1]). First, we build a

simple robotic platform which can generate tremor, and we

analyze the effects in terms of robot’s perception. We show

that bodily tremor is a component to realize a novel kind

of sensory-motor coordinations; detection of weak sensory

stimulus by the exploitation of tremor-induced sensory noise.

Hereafter, we briefly describe possible scenario concerning

how tremor can provide functions.

II. TREMOR INDUCED STOCHASTIC RESONANCE

This section provides prospective scenario concerning

functions of tremor; tremor as active noise generator in order

to induce stochastic resonance (SR) of a neural system.

A. Tremor and sensory noise

Tremor is addressed as small and rapid muscle and body

vibration. In strong muscle contraction, tremor’s frequency

reaches more than 40 Hz, though in muscle relaxation the

frequency is around 5 Hz [14][15]. Particularly, eye-tremor

during fixational eye movements, is around 200 Hz [13].

It is clear that several sensory streams are effected by

tremor. Not to mention the visual stream, but even tactile

and auditory stream can be disturbed and modified by bodily

tremor. Point would be that if tremor frequency is rapid

enough, then, tremor-induced sensory signal may be assumed

as sensory noise.

B. Stochastic resonance

Traditionally, SR is addressed as a phenomenon in which

noise enables a nonlinear system to detect subthreshold

signals [19][5][3]. Examples of SR are fish exploiting noisy

turbulent water in order to detect faint signals of predators

[19]. Cricket likewise exploits noise to detect low-frequency

air-signals from predators [22]. SR is also found to be used

in the control of muscle-lengths [24]. And some works have

showed the existence of SR in visual perception [7][8][9].

As for noise property necessary necessary for SR, it

is known that not only white noise but also temporally

or spatially colored noise can induce SR [21][23][20][6].

Furthermore, SR is observable even when noise magnitude is

too strong [4], and when signals are supra-threshold [10][25].

C. Hypothesis: tremor-induced stochastic resonance

To authors’ knowledge, meanwhile, power spectra of

tremor during emotion is not investigated unfortunately.

However, taking into account that our skeletal muscle is

strongly contracted in response to stress, it may be reasonable

to assume that during fear and strong arousal state tremor is

quick (e.g., more than 40 Hz) rather than slow.

Under the assumption that frequency of emotional tremor

is high enough, it may be reasonable to split sensory streams

into “original sensory data” and “additive noise”, even

though validation of this assumption is left as our future

work. And, as far as we can separate original sensory data

and additive noise, SR would be observed at the level of

neural behaviors.
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III. MONO STREAMED TREMOR VISION SYSTEM

This paper describes two implementations of tremor vision

to investigate effects of tremor onto visual perception. Simi-

larity of our implementations and brain structure is discussed

in section VIII. In this section, we describe the former mono-

streamed tremor vision system.

A. Model and implementation

Temporal differentiation of pixel pi(t) of a camera repre-

sents motion-information of camera-subjects, s(t), as far as

the camera is quiescent. Contrarily, pi(t) includes motion-

information of the camera itself mc(t), if a camera moves.

Here, if the camera motion is rapid enough, then, mc(t) can

be assumed as “noise” n(t) of motion information s(t). That

is, ∆pi(t) = s(t)+n(t). As additive noise enhances percep-

tive ability of a nonlinear system by stochastic resonance,

nonlinear system will be able to detect and represent s(t)
even if it is too weak and subthreshold.

The architecture depicted by Fig. 1 consists of mainly

three parts; visual filter, neural system, and tremor generator.

B. Camera specifications

As a camera device, we use PGR IEEE1394 camera,

Firefly MV, which can capture images of pixel 160× 120 at

more than 200FPS. We configured “Brightness”, “Exposure”,

“Gamma”, “Shutter speed” and “Gain” to fixed values, so

that we can suppress noise derived from camera’s automatic

parameter-reconfiguration.

160 x 120

64 x 48

I(t)

64 x 48

u(t)

motors

camera

=s(t)+n(t)

tremor generator

I  (t)c

I  (t-1)c

Fig. 1. Architecture of mono-streamed tremor vision system: Ic(t)
means gray-scaled image sampled by a camera. Motion-information It is
calculated from camera image Ic(t), by temporal subtraction. Nonlinear
neural system receives down-sampled I(t) as input. If camera tremor is
rapid enough, I(t) can be separated into the form I(t) = s(t) + n(t), and
then nonlinear neural system u(t) may detect s(t) by exploiting SR, even
s(t) is weak and subthreshold. In this article, s(t) is aperiodic consistently
(i.e., visual stimulus is ’randomly’ generated).

C. Design of visual image filters

Taking the necessity of real-time process into account, we

selected simple temporal subtraction of camera images, as

image filter to get motion-information. Given that Ic(t) is

gray-scaled camera image at time t,

Ii(t) = Ic
i (t) − Ic

i (t − 1). (1)

The size of Ic(t) and I(t) is 160 × 120.

D. Ensemble of nonlinear neurons

As a neural system, we consider an ensemble of nonlinear

neurons of FitzHugh-Nagumo, based on the literature [4][5].

The dynamics of ith neuron is described as;

u̇i = c

(

−
u3

i

3
+ ui − vi + Ii

)

, (2)

v̇i = ui − bvi + a, (3)

where a = 0.7, b = 0.8, c = 10.0. ui is fast variable

representing spike of a neuron, whereas vi is slow recovery

variable. Stepsize is synchronized to that of camera frames

(i.e., approximately 0.0046 sec).

E. Robotic platform

As motors to generate tremor, we use motors with a

decentered weight. Furthermore, in order to generate tremor

around both of axis x and y, we attached two vibrator motors

as Fig.2. Amplitude of tremor is adjusted by switching off

the current to the vibrator motors at the probability (1− γ),
and by controlling PWM Duty ratio D. Control cycles are

16MHz for γ and 0.16MHz for D, respectively.

c
v

v

Fig. 2. Schematic platform. v denotes a vibration motor. c denotes a
camera. Four vibration motors are attached. Dashed line in the left figure
denotes wire in order to fix the position of camera and to adjust spring and
damping effect of the system.

Meanwhile, due to a lot of mechanical friction, gear-

mechanism is not suitable to transfer tremor/trembling. Tak-

ing this point into account, we employ wire-driven active

vision system. One of advantages of wire-driven system, for

the purpose of tremor transfer, will be that we can control

spring / damping effect by controlling tension of the wires.

Schematic model and photographs of the robotic platform is

shown in Fig.2.

F. Noise properties

Noise variance σ and power spectrum depends on the

probability γ and PWM duty ratio D to some extent (in

a more precise sense, σ is a function of environmental

illumination and texture, γ and D). Fig.3 shows distribution

of noise variance with respect to γ and D, and two typical

power spectra of noise in the experimental environment

described in section IV. Peak spectrum around 40 - 50 Hz is

observed for γ ≈ 0.8 and D ≈ 50, γ ≈ 40 and D ≈ 100, and

broad spectrum for otherwise. Later, we discuss difference

of SR effect in terms of noise power spectrum, based on

several analyses.
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Fig. 3. Top: Distribution of noise variance with respect to motor-current
switching probability γ and motor-current PWM duty D. Horizontal axis
is D [%] and vertical axis is γ [%]. Middle: typical power spectrum (i.e.,
broad spectrum and peak around 40 Hz) of noise. Bottom: phase diagram
of noise power spectrum( p is peak frequency [Hz]).

IV. EXPERIMENTAL SETUP

A. Basic design

The primary purpose of the experiments is to clarify that

tremor can help detection of subthreshold weak signals. For

this purpose, we examine system performance with several

system parameters such as tremor motor current probability

γ, PWM duty D and neural parameter g.

In order to evaluate system performance (system output

with respect to visual stimulus), we selected cross-correlation

measure.

B. Schematic model of the experimental environment

The model of the experimental environment is shown in

Fig.4. To give the camera aperiodic visual stimuli, which

should be hard too “see”, we prepared a “windmill” with

clear-thin films. And behind the windmill, we put a picture

y

xz

c

clear film

Fig. 4. Schematic model of the environment configuration. A “windmill”
consisting of clear films is attached to a desk-wall, and a camera is fixed on a
desk. Windmill rotation gives visual stimuli to the camera. Vibration-motors
rotate around axes x and z.

of fallen leaves. One reason of this background texture is that

it has a lot of frequency components. The images captured

by the camera (640 × 480 pixel) is shown in the left side of

Fig.4. Visual stimuli are provided by moving the windmill

randomly (i.e., aperiodically). It should be noted that in

order to avoid strong flicker noise around 100 Hz of flour

lamps, we alternatively prepare darkroom. The experimental

environment is illuminated with DC-LEDs.

C. Method to estimate system performance

We measure effects of stochastic resonance by the follow-

ing normalized cross-correlation power norm C;

C =
[se(t) − se][r(t) − r]

[{se(t) − se}2]1/2[{r(t) − r}2]1/2
, (4)

with the overbar denoting an averaging over time. Here, r(t)
is the mean to represent firing rate constructed as follows;

r(t) =
∑

i

yi(t), (5)

yi(t) =

{

1 (ui(t) > 0)
0 (ui(t) ≤ 0)

. (6)

And s(t) is time-series of visual stimuli being input to neural

system. Since it is impossible to have exact dynamics of s(t),
we estimate and re-construct s(t) based on the input to motor

devices (let’s say se(t)). It should be noted, therefore, that in

cases of motor backlash and unexpected movements of the

films, se(t) does not represent s(t) exactly.

V. RESULTS: MONO STREAMED TREMOR VISION

A. Successful detection by Tremor

We add tremor by the configuration γ = 0.5 and D = 50.

Fig. 5 shows that neurons successfully “fire” and detect

subthreshold weak signals, due to the presence of noise

generated by bodily-tremor. The coherence measure C was

0.153. Meanwhile, firings without visual stimuli can be ob-

served (around 37 sec for example). This implicates existence

of too strong spatio-temporal correlation of tremor because

of mechanical resonance or some other reasons.
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Fig. 5. From top to bottom, time series of se(t) and r(t), camera image,
I(t), and response of the neural system y(t). The presence of tremor-noise
leads to the detection of stimuli information. The right side of y(t) shows
miss-firing due to the slow and long-term correlation of noise (see Fig.3).
The left and middle sides of y(t) show successful detection. of the shape
of the clear film.

B. Correlation Analysis

We took statistics of noise σ and C, while separating cases

of C ≥ 0 and C < 0 (this is because C < 0 is derived by

long-term correlated noise, which is undesirable to evaluate

SR). In cases except g = 750, we can observe bell-shaped

curve of C. This implicates the existence of traditional SR;

under the presence of noise adequate intensity, the sensitivity

of nonlinear neurons is maximized. Note that the curve of

C with g = 750 starts approximately from σ = 0.25. This is

because of camera’s internal noise (probably thermal noise).

Note also that C becomes higher by the exploitation of bodily

tremor with low input gain g such as g = 300 or 450 than

g = 600 or g = 750.

VI. DUAL STREAMED TREMOR VISION SYSTEM

A. Issue with respect to the noise controlling

Previous experiments implicate that in order to exploit the

effect of SR it is necessary to adjust noise intensity within an

adequate range. Meanwhile, in our platform, noise variance

σ is a function of environmental illumination and texture

(let’ say ξ), input stimulus s as well as gain g, motor-current

probability γ and duty D. Therefore, in order to control σ,

it is required to solve; (σ) �→ (ξ, s, g, γ,D). This problem,
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Fig. 6. Correlation versus noise deviation σ, under g = 300, g = 450, g =
600 and g = 750. For most of the parameter sets, we can observe bell-
shaped curve of C, implicating the existence of traditional SR.
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Fig. 7. Correlation C versus γ and D. Under weak g such as 300 and
450, C is enhanced in slow noise phases ([1] and [2] in Fig.3), whereas C
is enhanced in broad noise phase ([3]) under higher g.

however, is inverse problem and may be impossible to solve

in most of systems.

Alternatively, we choose not to control noise intensity but

to minimize decrease of SR effect with respect to the noise

strength. Fortunately, the literature of SR provides us a theory

with respect to this issue; when multiple neurons receives a

common input signal, and independent noise, then, averaged

neural activity represents well the input signal regardless of

noise intensity. In order to exploit this theory, we build a

model in which neurons receives dual streamed input, that

is, coarse and fine sensory input.

B. Dual stream model of tremor vision

The concept of the model is to split sensory signal into

fine scale input I0 and down-sampled coarse scale input I1.

Total input to neurons I(t) is described as;

I(t) = I0 ⊕ I1, (7)

where ⊕ is operator which consists of point-wise addition,

and interpolation and resize of I0 and I1 to the size of the

neural network. In our implementation, I0 and I1 is 120 ×
100 and 16 × 12 respectively. Approximately 60 neurons

thus receive common input derived from the down-sampled

sensory signal and independent noise signals.

VII. RESULTS : DUAL STREAMED TREMOR VISION

A. Success of detection by tremor

We add tremor by the configuration γ = 0.86 and D = 80.

Fig. 9 shows that neurons successfully “fire” and detect
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Fig. 8. Architecture of dual streamed model. ∆Ic is decomposed to fine
scaled I0 (160×120) and coarse scaled I1 (16×12). I = I0⊕I1is input
to the neural system.

weak signals, due to the presence of noise generated by

bodily-tremor. The coherence measure C was 0.531. A big

difference with the result shown in Fig.5 is that noise of fine

scale is convoluted with noise of rough scale.
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Fig. 9. Top: time series of s(t) and r(t). Bottom: Ic(t)(upper),
I(t)(middle) and u(t) (lower).

B. Correlation analysis

Correlation analyses implicate benefit of dual-streamed

model. It is clearly shown that decrease of C by large

σ is suppressed due to the averaging effect of the model.

However, it should be noted that this model, too, is not able
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Fig. 10. Correlation C versus noise deviation σ, under g = 50, 100, 150
and 250. It should be noted that bell-shaped curve of C disappears and thus
we can observe suppression of C decrease for large σ.

to suppress miss-firing due to the strong correlated tremor

(see Fig.9 C < 0).

 0  20  40  60  80  100

D [ %]

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  20  40  60  80  100

D [ %]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

γ
 [

%
]

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

γ
 [

%
]

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

g=50 g=100

g=150 g=250

Fig. 11. Correlation C versus γ and D. Under weak g such as 50 and
100, C is enhanced in slow noise phases ([1] and [2] in Fig.3), whereas C
is enhanced in broad noise phase ([3]) under higher g.

VIII. DISCUSSION AND CONCLUSION

A. Suppression of long-termed strong noise correlation

The primary reason of negative value of C (i.e.,C < 0)

may be mechanical resonance, which leads to long-termed

strong noise correlation being harmful to SR. Suppression of

such harmful resonance may drastically improve the system

performance. One direction for such improvements may be

re-designing of robotic platform, in which more strong spring

and weak dampers are implemented. And the other direction

may be implementation of feed-back controller to suppress

strong noise-correlation.

B. Roles of internal and embodied noise

In our work, two noise sources are involved; camera’s

internal (and thermal) noise and tremor-oriented embodied

noise (Phases [1] and [2] in Fig.3 are mainly derived from

bodily tremor and [3] in Fig.3 may be internal thermal noise).

Experimental results shown in Fig.7 and Fig.11 implicate

that for low gain g, embodied noise alone can help signal

detection, and for high gain, internal noise, too, can help

signal detection. Interesting result is that we can get better

C by the exploitation of tremor with low g than by simple

increase of g (see Fig.10). Taking into account that SR is

more effectively induced by correlated noise [21][23], it is
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not plausible hypothesis that animal exploits bodily-tremor

in order to detect weak-stimulus.

C. Necessity of probabilistic information processing

Though SR enables a neural system to detect weak and

subthreshold signals, some new framework may be required

in order to generate rational agent’s behavior based on the

result of information processing being associated with SR.

This is because, SR-based neural output is noisy and may

involve a lot of miss-firings. Additionally, to make things

worse, a subjective agent would not be able to know whether

the result of such information-processing is correct or not,

as far as stimulus is not clear. So far, we are expecting that

probabilistic framework such as Bayesian interface [2] is

helpful to address these issues concerning indeterminacy.

D. Links to biological emotion

We hope our model links to biological emotion in the

following two senses;

1. Similarity of phenomenon

2. Similarity of structure

The former is phenomenological similarity in that our plat-

form ’trembles’ as animals trembles during strong arousal

states such as fear, anger and joy. This similarity, how-

ever, should be precisely investigated further because power

spectrum of tremor frequency of biological emotion is not

investigated, and thus, tremor by biological emotions would

not induce SR. The latter is structural similarity of our

dual-streamed model and brain structure. That is, I0 can

be assumed as LGN (lateral geniculate nucleus), I1 can

be assumed as limbic system (amygdala for example), and

subjective neural system u can be assumed as visual cortex.

E. Emotion in perspective of sensori-motor coordination

Bodily trembling due to fear, anger and joy has long

been assumed as useless in itself though trembling provides

’somatic marker’ when being perceived by cerebral cortex

[16][18][17]. Contrarily, what we show in this paper is that

bodily trembling directly modulates and deforms sensory

streams and thus can be a direct bias onto perception and

cognition; trembling can be a bodily movements in order to

realize sensori-motor coordination [1]. We hope a lot of other

emotional bodily movements which seems to be useless such

as horripilation, piloerection, wriggling, screaming, laughter

and jumping, can be functional in the scope of sensori-motor

coordination.

F. Conclusion

In this paper, we reported our work toward the synthesis

of emotional robot within the perspectives of survivability.

In particular, we reported a novel tremor-based active vision

system which exploits stochastic resonance by actively gen-

erating tremor-based embodied noise.

Our work is addressed as the first challenge toward the

understanding of emotion within the perspectives of sensori-

motor coordination. So far, we succeeded to provide a sound

finding that tremor leads to stochastic resonance of nonlinear

neural system. In addition we succeeded to build a novel

robotic platform which is able to detect weak signals by

trembling. We hope investigation of functions of emotional

bodily movements based on robotic paradigm would be

fruitful.
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