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Abstract— This paper considers robotic automation of a
common surgical retraction primitive of exposing an underlying
area by grasping and lifting a thin, 3D, possibly inhomogeneous
layer of tissue. We present an algorithm that computes a set of
stable and secure grasp-and-retract trajectories for a point-jaw
gripper moving along a plane, and runs a 3D finite element
(FEM) simulation to certify and assess the quality of each
trajectory. To compute secure candidate grasp locations, we use
a continuous spring model of thin, inhomogeneous deformable
objects with linear energy potential. Experiments show that this
method produces many of the same grasps as an exhaustive
optimization with an FEM mesh, but is orders of magnitude
cheaper: our method runs in O(v log v) time, where v is the
number of veins, while the FEM computation takes O(pn3)
time, where n is the number of nodes in the FEM mesh and p is
the number of nodes on its perimeter. Furthermore, we present
a constant tissue curvature (CTC) retraction trajectory that
distributes strain uniformly around the medial axis of the tissue.
3D FEM simulations show that the CTC achieves retractions
with lower tissue strain than circular and linear trajectories.
Overall, our algorithm computes and certifies a high-quality
retraction in about one minute on a PC.

I. INTRODUCTION

Robotic surgical assistants (RSAs) can enhance a sur-

geon’s precision and dexterity in laparoscopic procedures [8],

[21], but are currently teleoperated directly as slave de-

vices completely under the surgeon’s control. Automation

of commonplace surgical tasks could help surgeons focus

attention on more critical components of surgery. It may

also help surgeons perform complex procedures with three

or more manipulators operated simultaneously. Furthermore,

automation may enable RSAs to perform procedures in

battlefields, where trained medical personnel are scarce, and

in remote locations, where large time delays hamper direct

teleoperation [22].

This paper describes initial steps toward automating re-

traction in robotic surgery, a common task where an outer

covering of tissue is pulled away to expose an area of interest

(Fig. 1). We consider a restricted problem, illustrated in

Fig. 2. The retraction takes place in 3D, but the 2-point-jaw

gripper moves on a 2D plane, and the tissue is assumed to be

a thin layer connected at one side. To expose the underlying

area of interest with sufficient clearance for subsequent tasks,

the gripper must pull the tissue above a line AB (a hard

objective). It also should not impart large strains that may

damage the tissue (a soft objective). Our problem allows the

Fig. 1. Automatically retracting a layer of tissue to expose an area
of interest. The robot should place its gripper to minimize strain of the
retraction.

Fig. 2. 2D tissue retraction problem. The RSA must expose a point of
interest (point B) to the camera (point A) by moving the tissue to lie
completely above AB .

tissue to be heterogeneous, which we illustrate by embedding

stiffer “veins” in the softer surrounding tissue.

Before executing a retraction on a real patient, we assume

that the RSA must be issued a certificate from a trusted

3D finite element (FEM) simulator that states the clinical

objectives are likely to be achieved (this simulator is assumed

given, and outside the scope of this paper). The RSA must

find and certify a retraction quickly to remain responsive

in the changing surgical environment. We aim to reduce

the number of queries to the computationally expensive

FEM simulator. To do so, we use simplified models to help

generate candidate retractions that are fast to compute, high-

quality, and likely (but not guaranteed) to be certified.

These models decompose the 2D cross-section of tissue

into orthogonal 1D components. Crosswise, a continuous

spring model is used to quickly determine a set of candidate

grasp locations that make use of tissue heterogeneity to

ensure locally stable grasp (using a method similar to the

D-Space algorithm [7]). Lengthwise, the tissue is treated as

a cantilever beam, and we derive an analytical solution for

the constant tissue curvature (CTC) retraction trajectory for
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a given grasp location. Experiments show that the continuous

spring model finds many of the same stable and secure grasps

that would be computed by the original D-Space algorithm,

but is faster by orders of magnitude. We also show the CTC

trajectory causes lower tissue strains than circular and linear

trajectories. The combined algorithm can typically produce

and certify high-quality retraction trajectories in about one

minute on a PC.

II. RELATED WORK

A. Robotic surgical assistants

Several robots have been proposed for minimally invasive

laparoscopic surgery, for example by Cavusoglu et. al. [4],

Guthart and Salisbury [8], and Madhani et. al. [14]. Intuitive

Surgical’s daVinciTM system has been commercialized and

used in thousands of surgical procedures [8]. The surgeon

uses a console with visual and tactile feedback to teleoperate

a pair of manipulator arms that enter the body cavity.

Several methods help improve the precision of such robots,

including steady-hand systems [21] and motion scaling [8].

Nevertheless, these procedures remain under direct control

of the surgeon. Some semi-supervised robots have been used

in specific medical applications, such as neurosurgery [20],

radiation therapy [23], and prostate brachytherapy [6].

B. Grasping deformable objects

A large body of work has addressed grasping and fixturing

of rigid objects (see Bicchi and Kumar [2] for a survey),

with some work extended to deformable objects. Cheong,

et. al addressed fixturing problems for an articulated chain

of polygons [5]. Cai et. al. and Menassa et. al. investi-

gated deformable sheet-metal parts while minimizing part

deformation [3], [16]. Howard and Bekey used a learning

approach to enable grasping of deformable objects using

tactile feedback [11]. Yu et. al. studied the behavior of

controllers for grasping soft tissue [25].

The notion of D-Space was introduced by Gopalakrishnan

and Goldberg [7] to characterize the security of grasped

deformable parts modeled by a FEM mesh. A configuration

in D-Space is represented by all DOFs of the nodes of

the mesh, and stable configurations require positive work to

release the object from its grasp. An algorithm for finding

an optimal jaw separation distance was also introduced for a

two-point gripper that balances the energy needed to release

the part against the energy needed to compress it into plastic

deformation [7]. We use a simplified version of this technique

to select secure grasps of a thin tissue layer.

C. Manipulating deformable objects

A number of researchers have addressed motion planning

for deformable linear objects such as ropes and cables. Saha

et. al. describe a sampling-based motion planner for rope

manipulation with two cooperating robot arms [19]. Moll and

Kavraki describe a method for computing energy-minimizing

curves subject to manipulation constraints, and apply them

to surgical suturing problems [17]. Holleman et. al. and

Lamiraux and Kavraki developed path planners for elastic

surface patches [10], [13]. The surface patch is modeled as

a Bezier surface with low bending energy, and a sampling-

based planner is used to plan the path.

Other work has addressed planning for volumetric defor-

mations. Rodriguez et. al. applied sample-based planning

to deformable objects in deformable 3D environments [18].

Alterovitz et. al. used a numerical optimization approach

to plan needle paths in 2D deformable tissue for prostate

brachytherapy [1]. Hirai et. al. [9] presented the use of

visual feedback to position points in 2D deformable tissue,

which was applied in breast biopsies [15] and prostate

brachytherapy [24].

III. PROBLEM STATEMENT

A. Tissue and Robot Modeling

We model the tissue as a 3D elastic deformable body E,

which we assume is a thin layer of uniform thickness having

known material properties. For simulation purposes, E is

represented into a tetrahedral FEM mesh. Heterogeneous

tissue is modeled by a mesh with varying stiffness. The D-

Space of all 3D FEM mesh configurations is denoted by D,

and q ∈ D describes all positions of the simulation nodes.

We forward simulate FEM dynamics using the method of

Irving et. al. [12]. Our retraction algorithms assume that the

tissue is damped and velocities of the jaws remain low, such

that the tissue moves smoothly between time steps and its

motion can be approximated as a quasi-static process.

The gripper is modeled by two point contacts moving on

a planar cross section of 3D space. We take a frame of

reference such that the bottom edge of the tissue cross section

lies on the x axis, and gravity acts in the −y direction. The

4D space of robot configurations is denoted C.

B. Retraction Trajectories

A retraction is a robot trajectory c(t) : [0, T ] 7→ C, for

some unknown termination time T . We do not consider how

the robot moves before it makes initial contact, so that the

jaws are instantaneously placed at points on the perimeter

of the tissue at time t = 0. First, the jaws are compressed,

and then the gripper is moved while keeping the distance

between jaws fixed. At time t > 0, the motion of the tissue

in response to c(t) can be computed by evaluating the FEM

simulation. Let this path be denoted qc(t) : [0, T ] 7→ D.

C. Visibility, Grasp Security, and Strain Objectives

Our problem is to produce a retraction c(t) and a termi-

nation time T that meets the following objectives.

1) Visibility. Given view point A and a point B on the

area of interest, we require that at time T the tissue at

configuration qc(T ) lies above line AB.

2) Grasp security. Grasp points must stay fixed relative to

the tissue throughout the retraction (i.e. do not break

contact or slip). We assume the friction coefficient µ
between the gripper and tissue is known.

3) Admissible strain. To cope with noise and discretiza-

tion artifacts in the FEM mesh, we require that the
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average strain ǫmax(c) of the 1% volume elements with

the highest strain does not exceed the strain limit ǫL.

The FEM simulation issues a certificate to retraction c(t)
if these objectives are satisfied after c(t) is simulated. We

assume that the simulation is trusted by the surgeon, so

that a certified retraction is safe to execute on the patient.

We consider strain as a soft objective function, so given

multiple certified trajectories we select the retraction with

lowest ǫmax(c).

IV. METHOD

Our approach generates a number of candidate retractions

(up to a user-defined maximum), and tests the objectives of

Section III-C by evaluating the FEM simulation. To generate

the retractions, we first pick a set of contact pairs pa and

pb which are likely to be locally stable, using a simplified

linear spring model. For each contact pair pa and pb, we first

close the jaws to a distance that trades off stability against

tissue strain. Then, holding the distance constant, we move

the gripper along a trajectory that is optimal if the tissue

layer is viewed as a homogeneous cantilever beam under no

gravity.

A. Choosing stable grasp locations

We choose grasp locations that are locally optimal with

respect to the grasp security and admissible strain objectives,

while we consider the visibility constraint at a later stage.

Gopalakrishnan and Goldberg [7] define stable grasps as

pairs of perimeter nodes that are located at local minima

in the elastic potential of the FEM mesh, and they describe

an algorithm that finds a jaw distance that trades off stability

against plastic deformation. Finding the optimal distance for

a n-nodes mesh with p perimeter nodes takes O(n3p2 +
p6 log p) time. Our approach uses the same concepts, but

introduces simplifications appropriate for a thin rectangular

mesh.
1) Stable grasps and escape energy: We require that

the jaws must be directly opposite the mesh surface, as

illustrated in Fig. 3, which reduces our problem to finding

a horizontal translation x along the length of the tissue.

Consider tissue stiffness as a function of x. We let keq(x)
denote the equivalent spring constant, which represents the

amount of force at x needed to compress the tissue a unit

distance. We characterize the stability of a grasp location x
by its ability to resist shifting to a neighboring spring. That

is, a grasp at x is stable if positive work is needed to shift

the grasp from x to x′. This is precisely the case where x
corresponds to a local minimum of keq(x).

Escaping the basin of attraction of a stable grasp requires

sliding the grasp past a local maximum of keq(x). We use the

following escape potential metric to characterize the stability

of a stable grasp location x:

Escape(x) = min(keq(xr), keq(xl)) − keq(x)

where xr and xl are respectively the local maxima to the

right and left of x. Thus, to find all stable grasp locations

and calculate their escape potential, we must simply find the

extreme points of keq .

Fig. 3. A continuous model for representing heterogeneous tissue. Darker
shaded areas represent veins. Jaws as shown in positions 1 and 2 are allowed.
Asymmetric grasps, such as position 3, are not allowed. The line segment
running from the upper surface to the lower surface between the jaws is
considered as a serial connected spring with varying spring constants.

Fig. 4. Top: tissue model. Middle and bottom: equivalent spring constants
and stable grasp locations obtained by the continuous spring method
(middle) and brute-force FEM simulations (bottom).

2) Locally stable grasp locations using a continuous

spring model: Though, in principle, it would be possible

to compute keq using the FEM model, we use a much

faster continuous spring model approximation. This model

approximates the tissue’s compression behavior as a vertical

linear spring along a slice through the tissue (Fig. 3). This

approximation decouples each slice from its neighboring

tissue, and therefore ignores interactions due to shear stress.

If the tissue is sufficiently thin, shear stresses will not affect

the compression behavior much.

Consider the line segment scross(x) running vertically

through the tissue between the jaws placed at x. We can

decompose it into multiple line segments si with length

li(x), each of which has constant Young’s moduli Ei and

infintesimal cross section A. Each segment si can be con-

sidered as a spring with spring constant ki(x) = Ei

li(x) . The

combined serial spring scross(x) has an equivalent spring

constant keq(x):

keq(x) =
1

∑n

i=1
1

ki(x)

=
1

∑n

i=1
li(x)
Ei

. (1)

If veins are represented as polygons with v vertices, we

can compute the extreme points of keq using a sweep line

algorithm. We note that the extreme points of keq(x) are

also extreme points of 1
keq(x) , and 1

keq(x) is a sum of linear

functions. Considering vertices as event points, we find when

1/keq(x) changes slope for each vertex encountered in the

event queue. Sorting the queue takes O(v log v) time, and

each of the v event points can be evaluated in O(1) time,

which leads to an O(v log v) running time overall.

Fig. 4 shows an example of the equivalent spring constant

function constructed by the sweep-line method using a fine

polygonalization of the veins.

4094



B. Choosing an optimal jaw distance

Once we have chosen a location to grasp the tissue, we

must choose a compression distance σ. We use a criterion

similar to the one used in Gopalakrishnan and Goldberg [7]

that balances the competing objectives of grasp security and

low strain, in particular, we choose σ such that the energy

needed to release the grasp is equal to the energy needed to

exceed the strain limit. Consequently, jaw compression can

be reduced when the tissue is heterogeneous and the grasp

location is locally secure (i.e., bordered by relatively stiff

veins). In turn, this reduces tissue strain.

We choose σ as follows. Let the tissue at the grasp point

have the equivalent spring constant keq . Closing the jaws to

distance σ induces strain ǫ = 1 − σ/L where L is the rest

height of the tissue. The elastic strain limit ǫL imposes the

constraint σ ≥ (1 − ǫL)L. Given σ, the amount of energy

needed to compress the spring to the strain limit is

UL(σ) =
1

2
keq(σ − (1 − ǫL)L)2 (2)

We also find the two locally stiffest parts of the tissue that

neighbor the grasp point. Pick the least stiff of the two, and

let kn denote its equivalent spring constant. If the tissue

is locally homogeneous, we set kn = keq . The amount of

energy Un to compress the neighboring spring a distance σ
equals:

Un(σ) =
1

2
knσ2 (3)

We choose σ such that (2) and (3) are equal:

σ =

√

keq(1 − ǫL)L
√

keq +
√

kn

(4)

C. Choosing a Retraction Trajectory

After finding grasp locations pa, pb and a jaw separation

distance σ, we must find a path of the manipulator to

retract the tissue. Some simple paths (e.g. straight lines and

circular arcs) can achieve the retraction objectives without

causing excessively high strains, because the largest strains

are usually caused by the squeezing of the gripper. But, they

do stretch the tissue unnecessarily. Therefore, we introduce

a constant tissue curvature (CTC) trajectory that keeps the

medial axis of the tissue stretch-free and bend with a constant

curvature. This trajectory produces minimal strain if the

tissue is treated as a weightless homogeneous cantilever

beam that can bend and stretch, where stretching strain is

much higher than bending strain. This latter assumption

implies that the length of the tissue should be kept constant.

With length held constant, theories on beams prescribe that

curvature should be uniform to minimize the maximum

bending strain.

Place a coordinate frame with its origin at the lower-right

corner of the tissue. Let −L denote the position of the grasp

point. Along c(t), the lower edge of the tissue must describe

a circular arc with constant length L but time-varying radius

R(t) and center (0, R(t)), as illustrated in Fig. 5. At t =
0, we have R(t) = ∞ and as t increases, R(t) decreases,

moving the center of the circle along the y-axis toward the

Fig. 5. The trajectories pa(t) and pb(t) the jaw nodes follow during the
retraction. The CTC path keeps the medial axis of the tissue circular with
radius R(t), length x, and, in the final configuration, lies tangent to the
line-of-sight AB.

x-axis. At the end time t = T , the arc must lie to the right

of the line-of-sight.

We compute the goal radius Rg = R(T ) to be tangent to

the line-of-sight. With a bit of algebra, this can be shown to

be:

Rg =
|A − B||bxay − axby| − (ax − bx)(axby − bxay)

(ay − by)2

(5)

where A = (ax, ay) and B = (bx, by). Intermediate tissue

radii R(t) are linearly interpolated in curvature as R(t) =
Rg

T
t
.

At the tissue configuration at time t, the medial axis of

the tissue will coincide with an arc of the circle with center

(0, R(t)), but with radius R(t) − 1
2h. Sliding along this arc

with arclength L, we compute the point p(t):

p(t) = ((R(t) − 1
2h) cos θ, (R(t) − 1

2h) sin θ + R(t))
θ(t) = L

R(t)− 1

2
h

+ 3
2π

where the angle of the gripper θ is chosen to keep the

arclength fixed. At c(t), the projections of the jaw locations

on the medial axis should coincide with p(t). Incorporating

the jaw separations σ, the final CTC trajectory is:

pa(t) = (Ra(t) cos θ(t), Ra(t) sin θ(t) + Ra(t))
pb(t) = (Rb(t) cos θ(t), Rb(t) sin θ(t) + Ra(t))
Ra(t) = R(t) − σ
Rb(t) = R(t) + σ − h

where pa and pb denote the location of the lower and upper

jaw respectively. An illustration of such a path is given in

Fig. 5.

To ensure the tissue is pulled past the line-of-sight in

the presence of gravity and inhomogeneity, we generate a

retraction trajectory that goes much longer than T , and let

the FEM simulation run only until all objectives are met, or

some constraint is violated.

V. EXPERIMENTS

All results in this section were obtained on a tissue model

having dimension of 5.0 cm in length and 0.44 cm in height

and depth, and density of 1 g/cm3. For 3D simulation we

use Young Modulus and Poisson Ratio of 40 kPa and 0.45

respectively for the tissue and 200 kPa and 0.45 respectively
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(a) (b)

Fig. 6. Comparing linear, circular and the CTC trajectories for two lines-
of-sight, starting at distance (a) 25% and (b) 15% from the fixed end of the
tissue. Each line-of-sight has 45◦ slope. Strain of 0.5 means failure.

for the vein. We set ǫL = 0.5, and µ = 0.5 throughout all

experiments. The gravity for the dynamic simulation is set

to 9.8 m/s2 downward. All experiments were performed on

a PC with a 1.8 GHz processor and 2 GB of RAM.

A. Assessment of Grasp Selection Quality

We compare our continuous spring method of finding

locally stable grasp locations to brute-force simulations with

the commercial FEM package ANSYS. The FEM mesh

contains 10,000 nodes and 160 pairs of opposite perimeter

nodes. In ANSYS, we enumerated each pair of opposite

perimeter nodes, contracted a unit distance and solved for the

maximum strain in the tissue. The ANSYS simulation took

16 minutes and 32 seconds, while the spring method took 0.1

seconds. Fig. 4 shows the equivalent spring constant function

keq , and indicates the top 15 grasp locations as computed by

brute-force simulation and by our spring model. The spring

model finds 8 out of 15 stable and secure grasp locations as

computed by ANSYS.

B. Assessment of Retraction Path Strains

In the following experiments, we use our 3D FEM sim-

ulator to compare the quality of our retraction trajectories

(as described in Sec. IV-C) against linear and circular paths,

which are attractive for their relative simplicity. For varying

grasp location, we run linear paths with (1) 60◦ and (2) 75◦

slopes, (3) a circular path and (4) the CTC trajectory. In the

linear and circular paths, we adjust the jaw orientations such

that they are perpendicular to the line from the fixed end to

the jaw’s midpoint.

1) Experiments on homogeneous tissue: Fig. 6 plots the

maximum strain during the simulation on homogeneous

tissue with gravity for two lines-of-sight for 10 uniformly

sampled grasping locations. We can see that the CTC path

performs better than the circular and linear paths in all cases,

even for suboptimal grasp locations.

Repeating the same experiment for other lines-of-sight,

we found that the CTC trajectory almost always outperforms

the other paths, except when the line-of-sight lies close to

the fixed end of the tissue (approximately 25% away from

the fixed end). In these cases, circular trajectories perform

slightly better for certain grasp locations near the free end

of the tissue.

In another set of experiments in homogeneous tissue we

found that the optimal jaw location is relatively insensitive

Fig. 7. Side view of 3D FEM mesh containing 10 veins.

Fig. 8. Comparing linear, circular, and constant-tissue-curvature (CTC)
paths for heterogeneous tissue containing 10 veins. An index of i means
the jaw is in a stable location between the i-th and (i + 1)-th vein.

to problem parameters (e.g., line-of-sight, tissue thickness,

and friction), and nearly always lies between 10% and 20%

from the free end of the tissue.

2) Experiments on heterogeneous tissue: In this section,

we consider a heterogeneous tissue containing 10 veins

(Fig. 7). For all candidate grasp locations found by the

continuous spring method, we ran the 3D simulation using

the linear, circular and CTC paths. Results are shown in

Fig. 8. Both the CTC and the circular path are able to find

the optimal jaw location between veins 3 and 4.

For suboptimal jaw locations, the CTC path usually out-

performs other paths, except the circular path performs

substantially better at jaw location 5. (Even under further

scrutiny, we are unable to discern a clear cause for this

behavior.) Apart from these occasional anomalies, this and

other experiments suggests that the CTC trajectory still

works well with heterogeneous tissue, even if a homogeneity

assumption was used in its derivation.

C. Efficient Certification of Multiple Retractions

Given the multiple retractions computed by the continuous

spring model, we wish to certify and choose the retraction

that minimizes the maximum strain ǫmax(c). Rather than run

the FEM simulation in full for each retraction, we terminate

simulations immediately when the hard objectives of Sec. III-

C fail, or ǫmax(c) exceeds the maximum strain computed for

any prior certified retraction (because then c is suboptimal).

Our experiments in the heterogeneous tissue of Fig. 7

suggest that this pruning technique reduces running time

from 286s to 76s for 10 veins. On a more complex mesh

with 20 veins, pruning reduces running time from 819s to

95s. In most cases, the simulation trials were pruned early

on, as strain is accumulated quickly during the compression

phase and at the beginning of retraction.

D. Optimal Retraction for a Wide Piece of Tissue

Fig. 9 shows a screenshot from a retraction computed by

our algorithm on a 3.5 cm wide heterogeneous tissue. The full
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Fig. 9. A frame from a 3D simulation of a 5 cm x 3.5 cm x 0.44 cm
heterogeneous mesh with 20 veins, showing the surface of the mesh (top)
and the veins (bottom). Strain is color coded.

animation accompanies this paper as a supplemental video.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a method to compute a trajectory

for a two-point gripper, moving in a plane, to retract a thin

layer of tissue under visibility and tissue strain constraints.

We present a continuous spring model for finding locally

stable candidate grasps in O(v log v) time, where v is the

number of veins embedded in the tissue. For each candidate

grasp location, we compute a retraction trajectory that causes

a cantilever beam model of the tissue to follow a constant

curvature arc. These retractions are then certified using a

3D finite element simulator. Experiments suggest that 1) the

continuous spring approximation quickly computes many of

the same grasp locations as an expensive FEM-based compu-

tation, and 2) constant-tissue-curvature paths produce lower

tissue strains than circular or linear paths. Our algorithm

can certify and select a high-quality retraction in about one

minute on a PC.

In future work we hope to address more realistic manip-

ulator models with geometric and kinematic constraints and

obstacles. In such a setting, regrasping may be necessary

because of the limited accessibility of grasp points and

limited range of motion of the tissue. More realistic tissue

damage models would measure cellular damage as a function

of strain and duration of applied load. Our method also

does not perform the sophisticated spatial reasoning needed

to find optimal retractions of thick tissue and retractions

where tissue must be pulled apart rather than lifted. Similar

reasoning would be necessary to optimize incision patterns

and retractions simultaneously.

ACKNOWLEDGMENTS

This work was partially supported under NIH Research

Award R01EB-006435-01A1. We thank M. C. Cavusoglu,

W. Newman, and P. Abbeel for inspiring discussions. We

would also like to thank R. Alterovitz and V. Duindam for

thoughts and advice, and S. Faridani for help on ANSYS.

REFERENCES

[1] R. Alterovitz, K. Goldberg, J. Pouliot, R. Taschereau, and I.-C. Hsu.
Sensorless planning for medical needle insertion procedures. In
IEEE/RSJ Int. Conf. Int. Rob. and Sys., pages 3337–3343, Oct.

[2] A. Bicchi and V. Kumar. Robotic grasping and contact: a review. In
IEEE/RSJ Int. Conf. Int. Rob. and Sys., pages 348–353, 2000.

[3] W. Cai, S. J. Hu, and J. X. Yuan. Deformable sheet metal fixturing :
Principles, algorithms, and simulations. J. of Manufacturing Science

and Engineering, 118(3):318–324, 1996.
[4] M. Cavusoglu, F. Tendick, M. Cohn, and S. Sastry. A laparoscopic

telesurgical workstation. IEEE Trans. Rob. and Aut., 15(4):728–739,
Aug 1999.

[5] J.-S. Cheong, K. Goldberg, M. Overmars, and A. van der Stappen.
Fixturing hinged polygons. In IEEE Int. Conf. Rob. and Aut., pages
876–881, 2002.

[6] G. Fichtinger, E. C. Burdette, A. Tanacs, A. Patriciu, D. Mazilu,
L. L. Whitcomb, and D. Stoianovici. Robotically assisted prostate
brachytherapy with transrectal ultrasound guidance–phantom experi-
ments. Brachytherapy, 5(1):14–26, Jan. 2006.

[7] K. G. Gopalakrishnan and K. Goldberg. D-space and deform closure
grasps of deformable parts. Int. J. of Rob. Res., 24(11):899–910, 2005.

[8] G. Guthart and J. Salisbury, J.K. The intuitiveTM telesurgery system:
overview and application. In IEEE Int. Conf. Rob. and Aut., pages
618–621 vol.1, 2000.

[9] S. Hirai, T. Tsuboi, and T. Wada. Robust grasping manipulation of
deformable objects. In IEEE Int. Symp. Assembly and Task Planning,
May 2001.

[10] C. Holleman, L. Kavraki, and J. Warren. Planning paths for a flexible
surface patch. In IEEE Int. Conf. Rob. and Aut., volume 1, pages
21–26, May 1998.

[11] A. M. Howard and G. A. Bekey. Recursive learning for deformable
object manipulation. In Proceedings of the 8th Int. Conf. on Advanced

Robotics, pages 939–944, 1997.
[12] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust

simulation of large deformation. In Symp. on Computer Animation,
pages 131–140, 2004.

[13] F. Lamiraux and L. E. Kavraki. Path planning for elastic plates under
manipulation constraints. In IEEE Int. Conf. Rob. and Aut., pages
151–156, 1999.

[14] A. Madhani, G. Niemeyer, and J. Salisbury, J.K. In IEEE/RSJ Int.

Conf. Int. Rob. and Sys.
[15] V. Mallapragada, N. Sarkar, and T. Podder. Robot assisted real-time

tumor manipulation for breast biopsy. In IEEE Int. Conf. Rob. and

Aut., 2008.
[16] R. Menassa and W. D. Vries. Optimization methods applied to

selecting support positions in fixture design. ASME J. of Engineering

for Industry, 113:412–418, 1991.
[17] M. Moll and L. Kavraki. Path planning for deformable linear objects.

IEEE Trans. Robotics, 22(4):625–636, Aug. 2006.
[18] S. Rodriguez, J.-M. Lien, and N. M. Amato. Planning motion in

completely deformable environments. In IEEE Int. Conf. on Robotics
and Automation, pages 2466–2471, Orlando, FL, May 2006.

[19] M. Saha and P. Isto. Motion planning for robotic manipulation of
deformable linear objects. In IEEE Int. Conf. Rob. and Aut., pages
2478–2484, May 2006.

[20] G. Sutherland, P. McBeth, and D. Louw. Neuroarm: An mr compatible
robot for microsurgery. In Computer Assisted Radiology and Surgery,
volume 1256, pages 504–508, 2003.

[21] R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar,
D. Stoianovici, P. Gupta, Z. Wang, E. Dejuan, and L. Kavoussi. A
Steady-Hand Robotic System for Microsurgical Augmentation. Int. J.

of Rob. Res., 18(12):1201–1210, 1999.
[22] R. H. Taylor. Robots as surgical assistants: Where we are, wither we

are tending, and how to get there. In AIME ’97: Proceedings of the

6th Conf. on Artificial Intelligence in Medicine in Europe, pages 3–11,
London, UK, 1997. Springer-Verlag.

[23] R. Z. Tombropoulos, J. R. Adler, and J. Latombe. Carabeamer:
A treatment planner for a robotic radiosurgical system with general
kinematics. Medical Image Analysis, 3:3–3, 1999.

[24] M. Torabi, K. Hauser, R. Alterovitz, V. Duindam, and K. Goldberg.
Guiding needle insertions using single-point tissue manipulation. In
IEEE Int. Conf. Rob. and Aut., May 2009.

[25] X. Yu, H. J. Chizeck, and B. Hannaford. Comparison of transient
performance in the control of soft tissue grasping. In IEEE/RSJ Int.

Conf. Int. Rob. and Sys., San Diego, CA, October 2007.

4097


