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Abstract— This paper presents a study on the optimal base
location and arm motion of a mobile manipulator for door
opening task. Numerical simulation results show that the base
location where the manipulability of the two-link arm is almost
degenerated at the start and end points of door opening is
optimal. We show by analysis that the location has an advantage
in supplying kinetic energy to the door by using torques at the
joints of arm. In order to represent properly the arm motion
near a singular point of manipulability, the rotational motion of
the door is parameterized by piecewise fifth order polynomials
of time, and the parameters of polynomials are optimized to
minimize the joint torques.

I. INTRODUCTION

The development of robots that help us at home currently
attracts many researchers. Mobile manipulators would be
useful at home, because they can move around and do
various tasks by their manipulator[1]. The tasks that the
mobile manipulators are expected to do include conveying
something from one room to another one, taking something
out of a refrigerator or a drawer, and so on. To accomplish
such tasks, opening a door is an important sub-task and
should be done as efficiently as possible.

The researches on door opening by a mobile manipulator
have been performed from various points of view, because
the task provides many challenging problems such as de-
tection of the door knob by a vision system, grasp of the
knob by a robot hand, and so on[2]. To pull or push a
door, a mobile manipulator can utilize the motion of both the
mobile base and the manipulator[3]. However, in this paper,
we assume that the location of the mobile base is fixed during
opening the door and the door is opened by using only the
manipulator, because the mobile base is usually much heavier
than the manipulator and the motion of the base may cause
large energy consumption especially when the door is opened
quickly. Even under the assumption, we can choose the base
location before starting the door opening. Optimal motion
planning of a manipulator with fixed or mobile base has also
been extensively studied so far[4], [5], [6], [7]. Some studies
use kinematic or geometric criteria for optimization to avoid
obstacles and singular configurations of manipulability of the
robot arm. Other studies use dynamic criteria to minimize the
input forces and torques.

In this paper, we deal with the problem of finding the
base location and arm motion for a mobile manipulator that
minimize the integral of squared joint torques during opening
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a door. It is assumed that the mobile manipulator has a planar
two-link arm and pulls a door to open it. Although this
problem looks relatively simple, it is interesting when the
singular configuration of the two-link arm and its effect on
the optimization results are taken account of. For a planar
two-link arm, the manipulability is degenerated when the
arm is stretched out[8]. We call such configuration of the arm
singular configuration in this paper. Since the velocity vector
of the end effector is restricted to a certain direction at the
singular configuration, motion planning of the manipulator
through the singular configuration is difficult. Some methods
to overcome the difficulty by using a time scale transforma-
tion have been proposed[9], [10]. In the case of door opening
task, the end effector path is specified by the path of the
door knob. Therefore, the end effector should follow a path
called degenerate path in [10] when the arm is in a singular
configuration at the start or end point of door opening. Then,
the acceleration of the end effector along the path cannot
be obtained by bounded joint torques, but the fourth time
derivative of the end effector’s position along the path can
be generated. Therefore, we use fifth order splines of time
to represent the rotational motion of the door. By using the
parameters of the splines, the problem of finding the optimal
arm motion at each base location becomes a parametric
optimization problem. Numerical simulation results show
that the location where the two-link arm is in the singular
configuration at both the start and end points of door opening
is optimal. We provide a theoretical explanation to the results
by considering the energy supplied to the system by the
joint torques. At the singular configuration, the energy can
be generated most efficiently when the door is sufficiently
heavier than the robot arm.

II. PROBLEM FORMULATION

We suppose that a mobile manipulator approaches a door,
stops at a location near the door, grasps and opens it. The
door is closed and at rest at the start time. The robot has a
two-link arm, and the two joints of the arm are supposed to
rotate about the perpendicular axis. Then, we can consider a
planar problem of opening the door.

For simplicity, we make the following assumptions.
1) There are no frictions on the door such as frictional

torque at the hinge and air resistance.
2) The connection between the door knob and the hand

of the manipulator is modeled as a free joint.
3) The mobile base of the robot is fixed on the ground

during opening the door.
Although there are many types of robot hands proposed so
far, the torque generated at the hand is supposed to be small.
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Fig. 1. Door opening by two-link manipulator

Therefore, the second assumption is made in this paper. And,
when the door is opened quickly, the third assumption would
be suitable because the robot’s mobile base tends to be heavy.

Under the assumption 2), the system composed of the
mobile manipulator and the door has four revolute joints (Fig.
1). The joint between the robot base and the first link of the
arm is called Joint 1, and the joint between the first link and
second link of the arm is called Joint 2. Joint 3 is the free
joint that is described in the assumption 2), and Joint 4 is
the hinge of the door. We choose a coordinate frame, (x, y),
whose origin is placed on Joint 4, and the x axis is set to
be along the door at the start time. The location of the robot
base is denoted as (xb, yb), and the angles of Joint 1 and 2
are denoted as θ1 and θ2 respectively. The input torques at
Joint 1 and 2 are expressed as τ1 and τ2 respectively. The
angles and the torques are represented in vector forms as
θ = [θ1, θ2]T and τ = [τ1, τ2]T . The angle of the door with
respect to x axis is expressed as ϕ, and the conditions on ϕ
at the start time, t = 0, and the end time, t = T , are given
as follows:

(ϕ, ϕ̇)|t=0 = (0, 0) , (ϕ, ϕ̇)|t=T = (ϕT , 0) . (1)

We introduce the following cost function as a criterion for
optimization.

Jc(ξ) =
∫ T

t=0

τ2
1 + τ2

2 dt , (2)

where ξ represents the parameters for optimization and is
chosen as the location of robot base and the trajectory of
door angle:

(xb, yb) , ϕ(t) . (3)

Solving the optimal door opening problem is finding the
parameters that minimize Jc:

ξ∗ = arg min Jc . (4)

Remark 1: The total mechanism shown in Fig. 1 can be
regarded as a four-bar mechanism where Joint 1 and Joint 2
are actuated redundantly, and there are many researches on
the singularity of closed chains such as [11]. However, in this

paper, we will treat the system as the one composed of a two-
link manipulator and the door, and will focus on the effect
of the singular configuration of the two-link manipulator on
the optimization problem.

III. TWO-LINK MANIPULATOR GRASPING A DOOR

A. Kinematics
The dimension of the configuration space of the system in

Fig. 1 is only one, because the locations of Joint 1 and 4 are
fixed. Therefore, if the angle of the door ϕ(t) is specified,
the angles of the arm, θ(t), can be calculated from ϕ(t).
Denoting the position of Joint 3 as pe = [xe, ye]T , we can
express it by the following two ways:

pe = f1(ϕ) =
[

−l3 cos ϕ
−l3 sinϕ

]
, (5)

pe = f2(θ) =
[

xb + l1 cos θ1 + l2 cos(θ1 + θ2)
yb + l1 sin θ1 + l2 sin(θ1 + θ2)

]
, (6)

where li is the length between Joint i and i + 1. From (5)
and (6), the system has the following constraint between θ
and ϕ:

Ψ(θ, ϕ) = f2(θ) − f1(ϕ) = 0 . (7)

From the above equation, we can obtain two points of θ for
each ϕ when θ2 ̸= 0. To get a unique solution of θ, we
choose one of them that satisfies θ2 ≥ 0. From (6), we can
obtain the following equations:

ṗe = Jθ̇ , (8)

p̈e = Jθ̈ + J̇ θ̇ , (9)

where J is the Jacobian matrix of f2 and can be written as

J =
[
−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

]
.

(10)
By using (5), (8) and (9), we can obtain θ̇ and θ̈ from ϕ(t)
as long as det(J) ̸= 0 ⇔ θ2 ̸= 0.

B. Dynamics
From the inverse kinematics in the above subsection, the

equations of motion of the system can be written by using
ϕ(t) as in the following form:

[τ1, τ2, 0]T − EF = K(ϕ, ϕ̇, ϕ̈) , (11)

where F = [F1, F2]T is the force applied to the door by
the robot arm at Joint 3. The matrix E can be calculated as
follow:

ET =
[
∂Ψ
∂θ

,
∂Ψ
∂ϕ

]
=

[
J,

∂Ψ
∂ϕ

]
. (12)

It is obvious that we cannot determine τ and F from (11),
which means that the system is indeterminate. Moreover, the
first and second rows of (11) can be rewritten as

τ − JT F = M(θ)θ̈ + h(θ, θ̇) , (13)

where the kinetic energy of the two-link arm can be ex-
pressed by using M(θ) as

Ea = (1/2)θ̇T M(θ)θ̇ , (14)

and h can be expressed as h = Ṁ(θ)θ̇ − ∂Ea/∂θ.
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IV. OPTIMIZATION METHOD

Since ϕ(t) in ξ is an infinite dimensional parameter, it
is difficult to find the optimal solution ξ∗ that minimizes
the cost function (2) rigorously. Therefore, we approximate
ϕ(t) as fifth order spline functions of time, and find the
coefficients of splines that minimize the cost function. The
location of the robot base (xb, yb) is discretized into a grid,
and, at each grid point, the quasi-optimal motion of the door
is calculated by using the spline functions.

A. Search for optimal motion of door
We divide the time interval [0, T ] by n and assume that

the trajectory of ϕ(t) in each time interval [ti, ti+1] (i =
0, · · · , n−1 and tj = jT/n for j = 0, · · · , n) is expressed by
a fifth order polynomial function of time, φi(t), as follows:

φi(t) = ϕi + bi(t − ti) + ci(t − ti)2 + di(t − ti)3

+ei(t − ti)4 + fi(t − ti)5 , (15)

where ϕi, bi, ci, di, ei and fi are scalar parameters. To make
the input torque τ continuous, we choose the functions φi(t)
so that they satisfy

φi(ti+1) = φi+1(ti+1) , φ̇i(ti+1) = φ̇i+1(ti+1) ,

φ̈i(ti+1) = φ̈i+1(ti+1) , (16)

where i = 0, · · · , n − 2. When the polynomials satisfy (1)
and (16), there are 3n− 1 independent parameters, and they
can be chosen as

Φ = (ϕ1, · · · , ϕn−1, e0, f0, · · · , en−1, fn−1) . (17)

Here, we assume that the angle ϕ(t) monotonically increases
at t = ti and put a constraint that 0 ≤ ϕ1 ≤ · · · ≤ ϕn−1 ≤
ϕT . At each location of the robot base, we search for the
values of Φ that minimize the cost function (2) by the Quasi-
Newton method.

B. Search for optimal location of robot base
The grid search method is used to find the optimal base

location. The region of (xb, yb) defined by [xmin, xmax] ×
[ymin, ymax] is divided into a grid, where each rectangle is
given by ∆x×∆y. By calculating the cost function at each
grid point by the method in IV-A, we can find the optimal
location of the robot base.

C. Solution to indeterminate dynamics
A unique solution of joint torque τ cannot be obtained

from (11). But, by minimizing ∥τ∥ at each time instance,
we can determine τ uniquely. First, we can find a vector
g = [g1, g2, g3]T ∈ R3 such that gT E = 0. There always
exists g that satisfies gT E = 0 because E ∈ R3×2. Then,
from (11), we can obtain

g1τ1 + g2τ2 = gT K . (18)

Any torque τ satisfying (18) can achieve a specified motion
of the door ϕ(t). When ∥τ∥ is minimized, τ should be
expressed as

τ = kτ [g1, g2]T , (19)

where kτ is a scalar parameter. By using (11) and (19), we
can obtain τ and F uniquely.
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V. NUMERICAL SIMULATIONS

In this section, we will show the optimal solution obtained
by numerical simulations. To find the optimal values of Φ
under the constraint that 0 ≤ ϕ1 ≤ · · · ≤ ϕn−1 ≤ ϕT , the
MATLAB function fmincon was used. The goal angle of the
door, ϕT , is set to be π/2 at T = 2.0[s], and the time interval
[0, 2.0] is divided into four sub-intervals, that is, n = 4. The
initial value of Φ is given so that the initial spline curves
coincide with a single third order spline curve that satisfies
(1). Then, for ∀i, the initial values of di are the same, and
the initial values of ei and fi are zero. The lengths of door
and two links of the arm are chosen as 0.5[m]. The mass
and inertia of door are set to be 32.1[kg] and 2.51[kg·m2].
The mass and inertia of the first and second links of the arm
are set to be 6.19[kg], 1.30 × 10−1[kg·m2], 1.55[kg] and
3.23 × 10−2[kg·m2] respectively.

At first, the grid points of (xb, yb) were made by choosing
∆x and ∆y as 0.05[m], and the cost function Jc defined by
(2) was calculated at each point. Figure 2 shows the contour
plot of Jc, and the location that has the minimum of Jc in
this figure is (xb, yb) = (−0.9,−0.9). Next, to obtain more
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accurate solution of the optimal location, the grid points of
(xb, yb) around (−0.9,−0.9) were made by choosing ∆x
and ∆y as 0.001[m], and Jc was calculated at each point.
Figure 3 shows the contour plot of Jc, and the optimal
location in this figure is (xb, yb) = (−0.911,−0.911). The
value of the cost function J is 6.58[N2m2s] at the location.

Here, we consider the location denoted as S in Fig. 3
where (xb, yb) = (−0.9114,−0.9114). When the robot base
is located at S, the matrix J defined by (10) is degenerated
at the start and end points of time (Fig. 6). We call such
a location as singular location in this paper. It should be
noted that the location (−0.911,−0.911) obtained in Fig.
3 is the closest to the singular location S among the grid
points. Figures 4 and 5 show the time histories of (ϕ, ϕ̇, ϕ̈)
and τ . Around the start and end points of door opening, the
arm pulls the door strongly to accelerate or decelerate it, and
the acceleration of the door angle is small between t = 0.5[s]
and t = 1.5[s].

VI. SINGULARITY ANALYSIS

The results in V show that the location close to the point
S has an advantage in minimizing the cost function Jc.
We will show by analysis that the singular configuration of
manipulability is useful for providing the energy to the door
efficiently by joint torques.

t = 0

t = T

S

Fig. 6. Singular location S of robot base for ϕT = π/2

F

δθ1

δθ2
δpe

τ2τ1

Fig. 7. Small displacements at the singular configuration

A. Removement of singularity by differentiation

From (8) and (9), ṗe and p̈e are restricted to one dimen-
sional space when θ2 = 0 and θ̇ = 0. That is,

eT
θ1

ṗe = eT
θ1

p̈e = 0 , (20)

where eθ1 = [cos θ1, sin θ1]T . On the other hand, the fourth
order time derivative of pe can be represented as

p(4)
e = Jθ(4) + 3

(
∂J

∂θ1
θ̈1 +

∂J

∂θ2
θ̈2

)
θ̈ + R(θ, θ̇, θ̈, θ(3))θ̇ ,

(21)
where R(θ, θ̇, θ̈, θ(3)) is a 2 × 2 matrix and (∗)(i) denotes
the ith order time derivative of (∗) (i = 3, 4). The matrices
∂J/∂θ1 and ∂J/∂θ2 can be calculated as

∂J

∂θ1
=

[
−l1 cos θ1 − l2 cos(θ1 + θ2) −l2 cos(θ1 + θ2)
−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

]
,

(22)
∂J

∂θ2
=

[
−l2 cos(θ1 + θ2) −l2 cos(θ1 + θ2)
−l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

]
. (23)

Therefore, even if θ2 = 0 and θ̇ = 0, we can choose τ which
satisfies eT

θ1
p
(4)
e ̸= 0.

B. Energy supplied by joint torques

We consider the case where the base of the robot is located
at the singular point S and the manipulator of the robot
pulls the door which is at rest. By a suitable coordinate
transformation, it can be assumed without loss of generality
that the joint angles at the singular configuration satisfy
θ = [0, 0]T ≡ θ0. Then, we consider small displacements
of the joint angles and the position of the end effector, and
denote them as δθ and δpe (Fig. 7).
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First, we derive the relationship between δpe and δθ.
Although it is usual to use the first order approximation,
δpe = J(θ0)δθ, it is not enough to represent the relationship
at the singular configuration[12]. By using the higher order
term, it can be represented as follows:

δpe = J(θ0)δθ +
[

O(δθ2)
O(δθ3)

]
, (24)

where
J(θ0) =

[
0 0

l1 + l2 l2

]
. (25)

From (24), when δpe ̸= k[O(δθ), 1]T for ∃k, the small
displacements of joint angles should satisfy

δθ1 ≈ − l2
l1 + l2

δθ2 . (26)

Since δpe ̸= k[O(δθ), 1]T along the path of the door knob,
we obtain δpe = O(δθ2).

Next, we consider the statics of the system. Since all
the work done by the joint torque τ is equal to the energy
supplied to the door by the force at Joint 3, F , we obtain

WJ = τT δθ = τT O(
√

δpe) = FT δpe . (27)

This equation means that an infinitesimal torque τ can cause
a finite force F and supply WJ to the door in statics.

When we consider the dynamics of the system, we have
to do more complicated analysis. To simplify the analysis,
we make the following assumptions:

4) The end effector grasps a mass point whose mass is
denoted as m̂3, and m̂3 is much larger than the mass
and inertia of the arm.

5) At the start point, the arm and the mass point are at
rest, and a bounded and constant torque τ is applied
at the joints for t ≥ 0.

Under the assumption 4), the force F can be expressed as

F = m̂3p̈e = m̂3(Jθ̈ + J̇ θ̇) . (28)

From (13) and (28), we can obtain

(M + m̂3J
T J)θ̈ = τ − h − m̂3J

T J̇ θ̇ . (29)

Since θ̇ = 0 at the start point under the assumption 5), we
can approximate θ̈ as

θ̈ ≈ (M + m̂3J
T J)−1τ . (30)

Therefore, the small displacement of θ at t = δt can be
represented as

δθ ≈ δt2

2
(M + m̂3J

T J)−1τ . (31)

Then, the work done by joint torque τ can be written as

WJ = τT δθ ≈ δt2

2
τT (M + m̂3J

T J)−1τ . (32)

From the assumption 4), when the matrix J is not degener-
ated, WJ can be approximated as

WJ ≈ δt2

2
τT (m̂3J

T J)−1τ ≡ WJ1 . (33)

On the other hand, when the matrix J is degenerated, we
can calculate the work WJ from (32) as follows:

WJ ≈ δt2

2
τ̂T Mτ̂ + m̂3(cT τ)2

det M + m̂3cT Mc

≈ δt2

2
(cT τ)2

cT Mc
, (34)

where c = [l2,−(l1 + l2)]T , τ̂ = [τ2,−τ1]T and we used the
assumption 4). From (34), in order to maximize WJ , we can
choose τ as

τ ∥ c . (35)

In other words, to minimize ∥τ∥ for ∃WJ , we can choose τ
as in the above equation. Then,

WJ ≈ δt2

2
∥c∥2∥τ∥2

cT Mc
≡ WJ2 . (36)

From (33) and (36), we can see that WJ1 ≪ WJ2 because of
the assumption 4). Therefore, at the singular configuration,
the joint torque τ can generate the energy most efficiently
when m̂3 is large enough.

It should be noted that the generated work WJ is not
directly transmitted to the kinetic energy of the door. From
(13), we obtain

τT δθ − FT Jδθ = δEa . (37)

From (25) and (26), a small increase of the energy of the
door, δEd, can be approximated as

δEd = FT Jδθ ≈ 0 . (38)

Therefore, we obtain WJ ≈ δEa. Consequently, first, the
work done by the joint torque, WJ , is stored in the arm as
the energy of the arm, δEa, and then, the energy δEa is
transmitted to the door through the joint between the arm
and the door. That is to say, if once the system composed
of three links, the two-link arm and the door, has an kinetic
energy, the rotation of the door is necessarily caused by the
energy because the angle ϕ is the only degree of freedom of
the system.
Remark 2: Since δEa = 0 in statics, we obtained (27)
at the singular configuration. In dynamics, δEa plays an
important role to supply the energy to the system. At the
singular configuration, δEa is generated by joint torques
independently of the mass m̂3 from (36).

Remark 3: In Fig. 5, we can see that the torque τ satisfies
approximately (35) when the configuration of the manipu-
lator is close to the singular one. Moreover, the torque is
larger around t = 0 and T than at other time instances. The
arm pulls the door strongly around the start and end times,
and generates or eliminates the energy efficiently around the
singular configuration.

Remark 4: We used the fifth order spline functions of time
to represent the time history of the angle ϕ(t). Since p̈e = 0
and p

(4)
e ̸= 0 for a bounded torque τ at the start point, it

is necessary to use more than fourth order splines. When
the third order splines that are more common were used in
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Fig. 8. Time history of door angle ϕ

the numerical simulations presented in V, we obtained the
optimal base location at (xb, yb) = (−0.909,−0.909). The
location is also very close to the singular location S, but
the cost function increases as the location (xb, yb) becomes
closer to S than (xb, yb) = (−0.909,−0.909). It is because,
as t approaches 0 or T , the torque τ becomes much larger
than the one in Fig. 5.

Remark 5: In the above analysis, we assume that the mass
of door is sufficiently larger than the one of the arm. When
the mass of the door is set to 3.87× 10−3 [kg], the optimal
location is obtained at (xb, yb) = (−0.79,−0.90). If the door
is lighter than the arm, we cannot obtain WJ1 ≪ WJ2.

VII. JOINT FORCE LIMITATION

From the above analysis and numerical results, the way
of obtaining the minimum cost function is pulling the door
strongly around the singular configuration. However, the
strong pull of the door tends to cause a large joint force
F , and the robot hand may not sustain the force. Therefore,
we introduce the limitation of the force at Joint 3 as

∥F∥ ≤ Fmax , (39)

where Fmax is the maximum force sustainable by the hand.
The third row of (11) is a constraint on F if the door angle
ϕ(t) is given. When there exists F that satisfies both the
third row and (39), we can find easily τ that minimize ∥τ∥ at
each time instance. The details of this procedure are omitted
because of limited space. When Fmax is set to be 20.0[N],
numerical simulation results show that the optimal location
of the robot base is (xb, yb) = (−0.909,−0.910) and the
optimal cost is J = 11.76[N2m2s]. Figures 8 and 9 show
the time histories of (ϕ, ϕ̇, ϕ̈) and F . The limitation on F is
satisfied as shown in Fig. 9, while the maximum of ∥F∥
is about 35[N] in the results in V. The acceleration and
deceleration of the door around the start and end points
become smaller than in Fig. 4.

VIII. CONCLUSIONS

In this paper, we investigated the optimal base location
and arm motion of a mobile manipulator for door opening
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task. When the cost function is set to be the integral of the
squared norm of joint torques, numerical results show that the
location where the manipulability of the arm is degenerated
at the start and end point is optimal. We explained that
the joint torques can do the work efficiently at the singular
configuration of the arm when the door is sufficiently heavier
than the arm. These results would be useful for motion
planning of a mobile manipulator that is required to do
various tasks.
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