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Abstract— Fluid bipedal locomotion remains a significant
challenge for humanoid robotics. Recent bio-inspired ap-
proaches have made significant progress by using small num-
bers of tightly coupled neurons, called central pattern gen-
erators (CPGs). Our approach exchanges complexity of the
neuron model for complexity of the network, gradually building
a network of simple neurons capable of complex behaviors. We
show this approach generates controllers de novo that are able
to control 3D bipedal locomotion up to 10 meters. This results
holds for robots with human-proportionate morphologies across
95% of normal human variation. The resulting networks are
then examined to discover neural structures that arise unusually
often, lending some insight into the workings of otherwise
opaque controllers.

I. INTRODUCTION

Walking robots are long-standing goal for the field of
robotics. Humanoid bipedal robots hold special sway. This
is in-part due to the practical importance of their devel-
opment. Anthropomorphic robots might be able to relieve
humans from dangerous or difficult work while capitalizing
on the wide variety of human-oriented services and systems
available. In addition to the practical utility of humanoid
morphologies, humans may also prefer interactions with
machines that have familiar form and motion. With this
perspective, we describe a methodology for the creation
of humanoid robot controllers with the ultimate goal of
reproducing the fluidity and function of human locomotion.

Our method is rooted in evolutionary robotics– a biolog-
ically inspired approach that loosely simulates the natural
control systems, using artificial neural networks, and their
design through evolutionary or learning processes [1]. Prior
work on the biologically inspired control of legged robots
has had two main focii. The first approach uses layered,
feed-forward networks of simple neuron models [2], [3]. A
second approach is the use of more complex and realistic
individual neuron models in highly interconnected networks.
The networks of the second approach resemble central pat-
tern generators (CPGs). CPGs are neural structures observed
in the spine of many vertebrates that are believed to be
responsible for the generation of cyclical patterns, such as
for locomotion control [4]. In part, the success of the CPG
approach results from the effort applied to careful design and
weight tuning [5]. Methodologies to automatically tune the
interconnection weights of CPGs have had some success,
both by evolutionary process [6] and by supervised learn-
ing [7].

In this contribution, we describe a method for the auto-
matic synthesis of controllers for bipedal locomotion using

a third biologically inspired approach: gradually growing
networks of simple neurons. Starting with a minimal network
of simple neuron models, like the first approach described
above, neural structures are gradually added through an evo-
lutionary process. In forgoing the inherent cyclical dynamics
of more complex neuron models, such as those typically
used in CPG-based controllers, the approach relies instead on
complex interconnections between the neurons. The choice
to use a simple neuron model is deliberate and embodies a
trade-off: the loss of inherently cyclical pattern generation in
exchange for the ability to modify the behavior in small steps
with topological changes. In comparison to previous work
using CPGs for bipedal locomotion, our approach moves
complexity out of the neuron model and into the network.

Our results show the de novo creation of neural net-
works capable of limited bipedal locomotion. Controllers
are evolved using a range of human-scale morphologies. In
addition, individual controllers can adapt, without additional
training, to previously unseen morphologies. The networks
are analyzed by searching for sub-graphs (motifs) that are
found more often in successful walking controllers than
would be expected by chance. This result provides some
practical insight into the workings of the neural networks,
slightly disturbing the veil that has historically separated suc-
cessful “black-box” neurocontrollers from an understanding
of their mechanism.

II. THE SIMULATED BIPEDAL ROBOT

The simulated robot is designed with a set of actuated
degrees of freedom (DoF) found to be minimal while still
allowing for an anthropomorphic walk. The masses and sizes
of body links, as well as the range of motion of joints, are
based on aggregate measurements of military personnel [8].

The angular position of each actuated joint is provided to
the controller. Sensory data are scaled so that the full range
of motion is reported as [−1, 1]. In addition, contact sensors
on each foot indicate whether the foot is in current contact
with the ground (−1) or not (+1), and sensors provide the
distance of each foot from the current center of mass (CoM),
as projected to the ground plane. The height of the waist
segment and the linear velocity of the CoM projected to the
ground plane are also provided as sensory input.

The controller specifies the target angle of each actuated
joint. The corresponding actuator applies torque to drive the
joint to the desired angle using PD control. The output signal
of the controller ranges within [0, 1], of which the central
0.8 range is linearly scaled to the full range of the joint,
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(a) Anthropometric simulated biped
robot.

Spine - 3 DoF (1 DoF)

Hip - 2 DoF (2 DoF)

Knee - 1 DoF (1 DoF)

Ankle - 3 DoF (0 DoF)

(b) Schematic diagram of robot.

Fig. 1. The robot has 15 degrees of freedom (DoF) in total. Seven of
those are actively controlled by the neurocontroller. The remaining DoFs
act under PD control and maintain a constant target position defined by the
standing-upright pose.

leaving 0.1 units at each extreme clamped to 0.0 and 1.0,
respectively.

Range
Joint, axis High Low Controlled

Spine, transverse −π/12 π/12 Yes
Spine, coronal −π/16 π/16 No
Spine, sagittal −π/16 π/16 No
Hip, transverse 0 0 No

Hip, coronal −π/48 π/24 Yes
Hip, sagittal −π/16 π/16 Yes

Knee 0 3π/4 Yes
Ankle, transverse −π/12 π/12 No

Ankle, coronal −π/12 π/12 No
Ankle, sagittal −π/4 π/4 No

TABLE I
THE ALLOWED RANGES FOR EACH JOINT OF THE AGENT. THE CONTROL

COLUMN INDICATES IF THE JOINT’S TARGET ANGLE IS SET BY THE

CONTROLLER. IF NOT, THE JOINT APPLIES TORQUE TO CENTER ITSELF

IN ITS RANGE.

III. NEURAL CONTROLLER

A. Neural Network

The neural networks used as controllers are composed of
a set of neurons, each with a single scalar activation level
y, and a set of weighted, directed connections between the
neurons.

Each neuron’s activation level is updated by linearly com-
bining its incoming connections’ activations and applying
the activation function, σ(x), to that sum to determine its
activation level for the next cycle:

yi = σ
( N∑

j=1

wjiyj

)
, σ(x) =

1
1 + e−x

, (1)

where σ is the sigmoid function and wji the weight of the
connection from the jth neuron to the ith. Neural updates
occur every 0.07 seconds of simulated time. This delay was
chosen to be within the observed range of spinal reflex
response times in humans [9].

To achieve state and time dependent behavior, the neural
network must rely on cycles in its topology, in a manner
analogous to cross-linked XOR gates forming an electronic
flip-flop. Note that in the sigmoidal neurons used here, such
cycles are the only way a network can store state internally.
To manage complex timing-based behavior, as is needed for
a motion controller, a network of simple neurons requires a
complex topology of inter-neuron connections.

B. Bilateral Symmetry
Bilateral symmetry of control was enforced by using two

identical and independently evaluated neural networks, each
controlling one side of the robot. The outputs of each net-
work drive the actuated joints on that side. Since the central
waist joint is not associated with either side, it is controlled
by the average of the activations of the waist-output neuron
on each network. The inputs of each network are likewise
set from per-side information. Although the topologies of the
two networks are identical, the internal activation states are
independent. In fact, since asymmetric motion is generally
required to initiate walking from a standing pose, the internal
states of the two control networks tend to diverge rapidly
during locomotion.

Each neural network has two bias nodes. The first bias
node has a constant activation of 1.0 and is the same for
both the right and left networks. The second bias node has
an activation of 1.0 for the right-side network and −1.0 for
the left. This per-side bias allows for asymmetrical behavior
even when sensory inputs are the same from both side. Two
tactile foot-contact sensor inputs are connected as same-side
and opposite-side.

Sensors Controller Actuators

Right

Left

Shared

NN

NN

Right

Left

Fig. 2. The controller is composed of two structurally identical neural
networks(NN), each accepts input signals from the shared and same-side
sensors. Likewise, each neural network drives the actuators of one side and
contributes to the control of the shared actuator.

IV. GENETIC ALGORITHM

The network topology and connection weights of the
neural controllers are determined by a genetic algorithm. Our
approach is heavily based on neuroevolution by augmenting
topology (NEAT) [10]. As in NEAT, the evolved genome is
represented as a set of connections between neurons, with
real-valued weights that correspond directly to the neural
connection weights wij in equation 1. The population size
was 512 individuals. In each generation, every genome was
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used to create two identical neural networks (right and left),
and the resulting controller was evaluated according to the
objective function (see section IV-D). Individual genomes
were divided into species based on network similarity (see
section IV-C), and the best-performing 25% of each popu-
lation were preserved, with the remaining population filled
by mating and mutating the best-performers to form the next
generation.

A. Scalar and Topological Mutations

Mutations to the directed-graph genotype are of two kinds:
structural and non-structural. The latter alter the weight of
a connection or a parameter of a neuron. Small alterations
(µ = 0, σ2 = 0.1) are most likely, though occasionally
entirely new values are chosen (at random uniformly in
the range (−0.1, 0.1)) as replacements. In an effort to bias
mutational changes toward newer structures, parameters that
are relatively new features in the genome are more likely to
be replaced than older ones.

Three types of mutation affect the neural topology. The
first splits an existing edge into two edges and a node. The
second introduces a directed edge between two previously
unconnected nodes, or between a node and itself. The third
removes an edge, and if the removal results in interior nodes
with no remaining connections, the nodes are removed as
well.

B. Cross-Over

The key innovation of NEAT is the introduction of “his-
torical markers” to label each neuron and connection. During
asexual reproduction, these markers are preserved and passed
to the offspring. During sexual reproduction, these historical
markers are used to determine genetic homology. The guid-
ing assumption is that genes with the same historical origin
(and therefore the same historical markers) will perform the
same function in the phenotype. Although this is, in essence,
an ad hoc approach with a key assumption that can, and may
often, fail, it has been shown to be among the most successful
machine learning approaches for simple benchmark control
problems such as double-pole balancing and predator-prey
simulations [11].

C. Speciation

In addition to enabling a more productive cross-over
operation, NEAT historical markers can also be used to
estimate the chance of mating success between individuals.
A distance metric groups the individuals of a population into
species, allowing sexual reproduction within a species con-
taining similar individuals. Such speciation greatly improves
the likelihood that the next generation will be viable. The
distance metric is defined as

δ =
G

Nk
+ cW, (2)

where G is the number of genes without a corresponding
historical marker in the genes of the other parent. The
constant c is a normalization factor based on the magnitude

of connection weights. N is the number of genes in the
larger genome, and k is a term allowing a scaling of the
effect of normalization based on the number of genes N .
Note that previous implementations of the NEAT algorithm
have used k = 0, while our implementation uses k = 1.
The effect of k = 1 is to measure genomic distance by
the ratio of differing genes to the total number of genes, in
contrast with k = 0, which considers the absolute number.
Comparing the ratio, rather than absolute number better
supports genomic distance calculations for the large networks
needed for bipedal locomotion. This modification was found
useful to ensure proper speciation for larger neural networks.

New structural innovations will likely differ significantly
(as measured by δ) from existing genomes, meriting classifi-
cation in a new species. Individuals only compete directly
with other members of their own species, providing pro-
tection to new innovations until they have time to optimize
their structure. This process is further assisted by giving new
species an artificial fitness bonus of 20% for their first few
generations.

D. Objective Function

Designing an objective function measure that accurately
quantifies the quality of an arbitrary attempt at bipedal walk-
ing is a challenging notion. One might reasonably include
a host of previously suggested factors, such as minimal
energy use [12], or similarity to recorded human motions.
Our approach is to instead use a very simple measure of the
fitness of a walk. In doing so, we rely on the anthropometric
body and torque limits to bias the search toward a human-like
walk.

Our objective function is

fwalk = kd max(‖proj!j #d‖, ε), (3)

where #d is the vector from the starting position to the
hindmost foot, and #j is the unit vector in the direction the
character is to walk. kd is a constant scaling factor, and ε
is a small positive value. We also experimented with more
complex fitness functions for locomotion, however 3 was
equally effective and used for the results presented here.

1) Early Termination: Identifying criteria for early ter-
mination of a trial is a useful way to improve the overall
speed of the evolutionary process, since the evaluation of
unpromising individuals is stopped as soon as one of the
conditions is met.
Waist height: If the z-coordinate of the waist segment’s
center of mass falls below a minimum height (50% of the
waist segment’s starting height), the simulation is terminated
and the genome’s final fitness is that computed in the
previous time-step.
Instability: If, during the course of the physical simulation,
significant numerical instability or joint divergence is de-
tected, the simulation is terminated and the genome’s final
fitness is set to the minimal allowed value, ε.
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2) Support Harness: A simulated harness provides lateral
and vertical and torsional support to the character. The
strength of the harness is gradually diminishes from full-
strength to exerting no force over the first 150 generations
according to hs = 1 − sin(π

2
g

150 ) where g is the current
generation. In addition to the stabilizing support, the harness
exerts a linear force in the direction of desired motion
of hsm(vd − ˙CoMy) where m is the total scalar mass
of the robot. The desired CoM velocity vd is intended as
a natural walking speed for the robot. Since we examine
a variety of robots with different dimensions and masses,
the natural walking speed must be generalized to physical
properties. The Froude ratio Fr provides a simple method to
estimate locomotion speeds based on the inverted pendulum
model [13]. Using this method, the desired CoM velocity is
vd =

√
glFr, where l is the leg length of the robot and g

the acceleration due to gravity of 9.81m/s2. Fr = 1
4 is used

to match a typical human-style walking gait [14].

V. RESULTS

The approach presented generates neural networks capable
of controlling the biped walking distances of up to 10
meters. Fully stable controllers, able to walk arbitrarily
long distances, were not produced. The authors suggest
that the subjective appearance of the resulting controllers
is interestingly organic and, considering that no motion
trajectories were provided to the system, surprisingly human-
like. Example joint angles for a typical successful walk
controller are shown in figure 3. This particular individual is
of medium female height, weight and hip-width.

Although evolutionary processes are stochastic by nature,
our approach is reliably able to find controllers capable of
walking short distances. Over the entire range of human
body shapes evaluated at walking, 93% of the runs found
controllers capable of walking upright for at least two meters
(28 out of 30 runs). The failures were for the heaviest (95th

percentile weight) and shortest (5th percentile height).
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Fig. 3. Joint angles observed for a robot with media female morphology
during the initiation phase and through several steps of a walk cycle.

A. Anthropometric Variation

Since we are partly concerned with controllers that pro-
vide human-like motion, we use robot morphologies whose
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Fig. 4. Hip/knee joint cycle in walking, including the gait-initiation phase.

Fig. 5. Five characters starting to walk from a line-up. The two left-most
(red) characters are 5th and 50th percentile height, weight and BIB females.
The three remaining characters (blue) are males, with the nearest character
5th percentile height and 95th percentile weight and BIB, the middle blue
character 95th height but 5th percentile weight and BIB, and finally the
farthest character 95th percentile in each height, weight and BIB. Each of
these characters evolved the behavior shown in a single evolutionary trial.

physical parameters mimic human dimensions. In addition,
the generality of the approach is an important measure of
success. To test the generality of our method in finding
human-style gaits, we use a sample of humanoid character
models from the normal human range of height, weight
and bi-iliac (hip) breadth (BIB) covering the 5th to 95th

percentile of each men and women.
Body segment sizes and weights are scaled linearly ac-

cording to the three measures (height, weight and BIB)
obtained from anthropometric data aggregated from over
30,000 individuals [8]. The relative proportions of segment
sizes and weights are fixed and listed in Table II.

Neural networks evolved controlling a single robot mor-
phology (height, weight and BIB). We then applied that
network to the control of different robot morphologies to
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Body Segment Height Proportion Mass Proportion
Trunk 31.2% 51.6%
Waist 6.2% 10.3%
Thigh (2) 31.0% 19.3%
Shank (2) 25.3% 9.3%
Foot (2) 6.2% 9.3%

TABLE II
THE ROBOT’S MORPHOLOGICAL PROPORTIONS REMAINED CONSTANT

AND ANTHROPOMETRIC. THE MASS PROPORTION OF BILATERALLY

REPEATED SEGMENTS SHOWS THE SUMMED MASS PROPORTION OF

BOTH SIDES.
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Fig. 6. This graph shows the effect of varying the physical model on the
fitness of a controller. The network evolved using a single robot morphology
with median female proportions. The dashed curve shows the distribution
of the population of human female heights, approximated as a Gaussian
distribution [8]. The dashed horizontal line is the fitness of the neural
network when controlling the robot used for the network’s evolution.

test the degree of generalization of the controller. With
robot morphologies within around one standard deviation
of normal human variation, the network is able to take a
few steps, traveling about half the distance it reaches when
applied to the morphology it evolved with. The results of
variation in height across a human-like range are shown
in Figure 6. That the network is able to adapt to robots
with large changes in simulated morphology hints that our
method might be robust to differences between simulation
and a physical robot, potentially reducing the problem of
the “reality gap” [15].

B. Patterns in the Network
The controller networks resulting from the evolutionary

search are generated through a random process tempered by
selection. As described, the structural mutations are fully
random– any potential edge is as likely as any other to
be added, and any existing edge is as likely as any other
to be split with a new neuron. Given that all evolutionary
changes to the neural network’s structure are random, one
might expect for the resulting networks to resemble random
networks. However, the networks evolved for locomotion
contain recurring patterns of interconnections that are signif-
icantly non-random. Recent work in the biological sciences
has proposed methods for finding such patterns, or motifs,
and determining the significance of their presence in a
collection of networks.

(a) p = 0.001 (b) p = 0.004 (c) p = 0.006 (d) p = 0.019

(e) p = 0.028 (f) p = 0.032 (g) p = 0.04 (h) p = 0.044

Fig. 7. A selection of some of the motifs common to successful controller
networks. Each subgraph is labelled with its p-value, that is, the probability
that the frequency of that motif in a randomized network is at least the
frequency of the motif in the controller network.

To identify significant motifs, we use the MAVisto [16]
software to compare the instances of each 3-node and 4-node
motifs in the best-performing network of the 500th gener-
ation for four different locomotion searches. Each search
uses a robot with median height, weight and BIB for a
human male. All four controllers are capable of walking at
least five meters. One of the four networks is reproduced in
Figure 8(e). Statistical significance of motifs is determined
for each network individually by comparing the motif fre-
quencies found in the controller network to frequencies found
in one thousand randomly generated networks with the same
distribution of vertex degrees. Self-loops were not included.
Figure 7 shows a selection of motifs that are significantly
(p < 0.05) more frequent in the evolved networks than in
random networks. Subfigures 7(g) and 7(h) show a span
of three neurons in mutual feedback, contributing a single
output. Variations of cycles dominate. This is notably in
contrast to similar analysis conducted with general biological
neural networks [17], but in agreement with the general
structure of CPGs.

Although not explored here, such motifs may have po-
tential to improve the evolutionary search process. Ideally,
the random changes that occur as part of the mutation
process would not be truly random, but instead would be
biased toward network topologies likely to exhibit the desired
behavior. Identifying particularly common or rare motifs
represents a first step in investigating this hypothesis.

C. Alternative Strategies

An evolutionary approach is rooted in specifying only
a generalized description of the desired behavior, and the
results can occasionally be unexpected or use unusual strate-
gies. Some evolutionary runs produced successful motion
strategies that differed from the desired human-like loco-
motion. Figure 9 shows a time-series sequence of one such
alternative strategy, a one-legged hopping motion. Note that
ankle target angles were not controlled by the neural network
and this motion results from coordinated use of the knee
and hip joints. Two additional strategies are shown in the
accompanying video.
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(a) Generation 100, 0.2m. (b) Generation 200, 3.2m.

(c) Generation 300, 5.9m. (d) Generation 500, 7.9m.

(e) Generation 700, 9.3m.

Fig. 8. Successive networks in a single evolutionary run show a gradually
increasing topology. The thickness of the connecting arrow corresponds to
the absolute value of the connection weight, with excitatory (positive-valued)
connections in black and inhibitory (negative-valued) connections in red
with inverted arrow-heads. Each network is labeled with the generation of
the network and the distance travelled.

VI. CONCLUSION

This work presents evolved neural network controllers
that show smooth motion, without the stiffness and phase
artifacts generally associated with methods based on a fixed
set of phases or states. The controllers are closed-loop, using
proprioceptive and tactile sensors to maintain balance for
limited periods.

The contributions of this work are (1) the use of NEAT
for the neuroevolution of biped controllers, (2) demonstrating
the generality of the method to a range of human-like mor-
phologies, (3) demonstrating the adaptability of individual
controllers to different morphologies, and (4) illuminating
the common structure of the evolved networks using motif
analysis.
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