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Abstract— The paper studies formation control of multi-agent
systems under a directed acyclic graph. In a directed acyclic
graph, the agents without neighbors are leaders and the others
are followers. Leaders move in a formation with a time-varying
velocity and followers can access the relative positions of their
neighbors and the leaders’ velocity. A local formation control
law is proposed in the paper based on pursuit strategies and
necessary and sufficient conditions for stability and convergence
are derived. Moreover, the results are extended to the case
with arbitrary communication delays, for which the steady-state
formation is presented according both the control parameters
and time delays.

I. INTRODUCTION

Increasing applications of multi-agent systems (e.g., mi-

crosatellite clusters, unmanned aerial vehicles (UAVs), au-

tonomous underwater vehicles (AUVs) and sensor networks)

have enabled researchers to pay more attention to the study

of multi-agent systems [1], [2]. A fundamental problem in

multi-agent systems is formation control [3], which is also

related to emergent behaviors in nature such as flocks of

birds, schools of fish, and colonies of bacteria [4]. Presently,

three approaches are often used for formation control: leader-

following [5], behavior-based approach [6], and virtual struc-

ture method [7]. Motivated by the effectiveness of leader-

following approach in nature [8], it has attracted significant

attention [9]–[15].

Using nearest neighbor rules, a group of agents are

controlled to eventually agree on the common heading of

the leaders so that they move in a formation with a con-

stant speed [9]. In addition, artificial potential based control

strategies are used for a group of agents to reach a desired

formation with a constant velocity [11]. However, moving

with a time-varying velocity and holding a formation pattern

are more attractive. Shi et al. [16] extend the work of [11] by

allowing time-varying velocity for the leaders, but it requires

that the acceleration of the leaders should be available to all

follower agents. In [13], under the condition that all agents

know a common time-varying reference velocity, passivity

is used as a design tool for formation control where the

interaction graph is bidirectional.

In this paper, the interaction topology of agents is assumed

to be a directed acyclic graph (DAG), in which the agents

without neighbors are leaders and the others are followers.

Leaders move with a prescribed time-varying velocity while
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holding a formation pattern, and the followers are able to

obtain the relative positions of their neighbors. Moreover, the

leaders’ velocity can be transmitted to every follower (possi-

bly with some time delays) through wireless communication

network. First, we consider the case without time delays. For

this, a formation control strategy is presented, in which each

follower pursues its neighbors with certain pursuit strength

and pursuit angle. Then necessary and sufficient conditions

are obtained to ensure that the group of agents can achieve

a formation while moving. Moreover, the steady-state for-

mation can be adjusted in terms of the pursuit strengths

and pursuit angles. Second, we consider the case where

multiple transmission delays exist. For that, we indicate that,

when the leaders perform uniform velocity motion and/or

uniformly accelerated motion, the agents are still able to

achieve a formation under the same condition. Moreover, it is

observed that small time-delays and acceleration parameters

lead to a slight variation of steady-state formation compared

with the one achieved without time delays. Our formation

control strategy is extended from usual consensus algorithms

[17], [18]. But unlike some work (e.g., [12]) which adds

virtual displacements to solve the formation control problem,

we add a rotation to each relative position vector so that

any desired formation pattern can be achieved by designing

suitable rotation angles. The controller obtained is very

easy for implementation such as using image-based control.

Moreover, under the interaction topology of directed acyclic

graph we discuss in the paper, each follower’s performance

can be analyzed separately, so heterogeneous dynamics are

allowed within the framework.

The paper is organized as follows. In Section II, we

formulate the formation control problem. In Section III,

the control strategy is proposed and necessary and suffi-

cient condition for convergence is presented. Section IV

discusses the impacts of communication time-delays and

system switching on steady-state formations. Simulations are

presented in Section V. Section VI concludes our work.

II. PROBLEM SETUP

A directed graph (digraph) G = (V , E) consists of a non-

empty node set V = {1, 2, · · · , N} and an edge set E ⊆
V×V . An edge of G is denoted by an ordered pair of nodes,

e.g., (i, j), meaning that the edge leaves node i and enters

node j. A walk is an ordered sequence of nodes such that

any two consecutive nodes in the sequence correspond to an

edge of the digraph. If the nodes in a walk are distinct, the

walk is called a path. If a walk starts and ends at the same

node and all other nodes on the walk are distinct, it is called
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a cycle. A digraph without cycles is a directed acyclic graph

(DAG).

In this paper, the neighboring relationship of networked

agents is schematically represented by a DAG, where each

node represents an agent. In a DAG, the agents, which have

no incoming edge, are called leaders, and the other agents

are called followers. Suppose that the indices of the agents

are arranged in such a way that agent i for i ∈ {1, 2, · · · , Nl}
is a leader and agent i for i ∈ {Nl + 1, Nl + 2, · · · , N} is a

follower. Follower i’s neighbor set is denoted by

Ni = {j ∈ V|(j, i) ∈ E}.
Two examples of DAG are given in Fig. 1.

(a)

(b)

Fig. 1. Two examples of DAG. The gray nodes are leaders and the solid
ones are followers.

Each follower knows relative positions of its neighbors by

some onboard sensors (e.g., cameras). Furthermore, wireless

communication devices are equipped on the agents so that

the leader’s velocity information can be transmitted to the

followers. Our problem is to design a distributed control

strategy for each follower using the local information of rel-

ative positions of its neighbors and the time-varying velocity

obtained from leaders through wireless communication so

that all agents make a collective motion while holding a

formation pattern.

III. COLLECTIVE MOTION WITHOUT TIME-DELAYS

Let zi ∈ C denote the position of agent i in the plane.

Each agent has a single-integrator kinematics

żi = ui,

where ui ∈ C is the control input.

The leaders perform collective motion with the time-

varying velocity v0(t) in a predefined formation. We consider

the following control for each follower i

żi(t) =
∑

j∈Ni

kije
ιαij (zj(t) − zi(t)) + v0(t), (1)

where the proportion kij > 0 is called the pursuit strength,

the offset angle αij ∈ [−π, π) is called the pursuit angle,

and ι =
√
−1 is the imaginary unit. Furthermore, we call

wij = kije
ιαij the pursuit weight from agent i to agent j

and call

wi =
∑

j∈Ni

wij

the pursuit degree of follower i.

Next, we introduce the description of a formation in

the plane. A formation is defined by a set of N complex

numbers, i.e., [c1, c2, · · · , cN ]. It should be cleared up that

this description is independent of the translation of complex

plane. In other words, when we say a group of N agents is

in a formation [c1, c2, · · · , cN ], the trajectories of the agents

in an inertia frame can be written as zi(t) = ci + ξ(t)
(i = {1, 2, · · · , N}) for some translation ξ(t).

It is assumed that leaders in the group move with

a time-varying velocity v0(t) while holding a formation

[c1, c2, · · · , cNl
]. So each leader’s trajectory can be written

as

zi(t) = ci + ξ(t), i = 1, . . . , Nl,

where ξ(t) satisfying ξ̇(t) = v0(t) is the translation of

the group. Now we construct a moving frame whose origin

trajectory is ξ(t) with respect to some inertial frame. We let

ẑi(t) = zi(t) − ξ(t) (2)

and rewrite the dynamics of each follower in the moving

frame. Then we have

˙̂zi(t) =
∑

j∈Ni

wij(ẑj(t) − ẑi(t)). (3)

When wij is real, system (3) is just a consensus algorithm

investigated in [18] using algebraic graph theory and matrix

theory. For identical complex wij , Pavone and Frazzoli [19]

use it to obtain rendezvous, circular motion, and/or loga-

rithmic spiral motion under ring-coupled structure. Recently,

Ren [20] extends the results of [19] to a digraph having

a spanning tree so that the group of agents can still have

similar circular motion or rendezvous behaviors. Instead, we

consider different complex wij for each neighbor pair. Under

the interaction structure of directed acyclic graph which does

not need to satisfy the assumption in [20], we show that (3)

can be used to achieve any desired formation pattern other

than the motion in [19], [20].

Applying Laplace transform on both sides of (3), we have

sẐi(s) − ẑi(0) =
∑

j∈Ni

wij(Ẑj(s) − Ẑi(s)) (4)

or

Ẑi(s) =
ẑi(0)

s + wi

+
∑

j∈Ni

wij

s + wi

Ẑj(s) (5)
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where ẑi(0) is the initial state of ẑi, Ẑi(s) and Ẑj(s) are the

Laplace transform of ẑi(t) and ẑj(t), respectively.

First, we present a result on the response of system (3)

with respect to exponential convergent inputs.

Lemma 3.1: For system (3), suppose that ℜ(wi) (the real

part of wi) is positive. If ẑj(t) (j ∈ Ni) takes the form

tme−φt where m ≥ 0 is an integer and ℜ(φ) > 0, then ẑi(t)
takes the same form and converges to 0.

Proof: Since ℜ(wi) is positive, we know from (5) that

ẑi(t) always contains an exponentially convergent term

ẑi(0)e−wit. Due to the superposition principle, we can con-

sider just one input ẑj(t) = tme−φt for (3) while assuming

others are zero. The Laplace transform of ẑj(t) = tme−φt is

Ẑj(s) =
m!

(s + φ)m+1
.

Thus, we obtain the corresponding term in (5)

wij

s + wi

Ẑj(s) =
wij

s + wi

m!

(s + φ)m+1
.

If wi = φ,

L
−1(

wij

s + wi

Ẑj(s)) =
wij

m + 1
tm+1e−wit.

If wi 6= φ,

L
−1(

wij

s + wi

Ẑj(s)) = a0e
−wit +

m+1
∑

k=1

aktk−1e−φt,

where L −1 denotes the inverse Laplace transform and ak ∈
C (k = 0, 1, · · · , m + 1) is a constant depending on wij , φ

and m. In both cases, L −1(
wij

s+wi
Ẑj(s)) takes the form of

tme−φt and therefore it converges to zero. �

Next, we present our main result on formations.

Theorem 3.1: Consider a group of N agents where leaders

move with a time-varying velocity v0(t) in a formation

[c1, c2, · · · , cNl
] and followers’ dynamics are defined in (1).

The group of agents achieves a formation

[c1, · · · , cNl
, cNl+1, · · · , cN ],

where

ci =

∑

j∈Ni
cjwij

wi

for i ∈ {Nl + 1, · · · , N}

if and only if the pursuit degree wi of every follower i (i =
Nl + 1, · · · , N ) has positive real part.

Proof: (⇐=) After the translation of (2), leaders are static

in the moving frame, i.e.,

ẑi(t) = ci for i = 1, 2, · · · , Nl.

Firstly, we consider a set of followers whose neighbors

are only leaders. Denote this set by A1. For any i ∈ A1, we

have

Ẑi(s) =
ẑi(0)

s + wi

+
∑

j∈Ni

wijcj

s(s + wi)

=
ẑi(0)

s + wi

+
∑

j∈Ni

cjwij

wi

(

1

s
− 1

s + wi

)

.

(6)

Applying the inverse Laplace transform, we obtain

ẑi(t) = ẑi(0)e−wit +

∑

j∈Ni
cjwij

wi

(1 − e−wit). (7)

If ℜ(wi) > 0, the transient component exponentially con-

verges to zero and the steady-state of ẑi(t) is

ci =

∑

j∈Ni
cjwij

wi

.

Next, consider a set of followers whose neighbors are in

A1 or just leaders. Denote this set by A2. According to

Lemma 3.1, the transient component of any follower i ∈ A2

converges to zero, too. Its steady state can be similarly

obtained, which is

ci =

∑

j∈Ni
cjwij

wi

(8)

depending on its neighbors’ steady states.

Repetitively, the steady-states of all agents can calculated

and constant values, which means the group of agents

achieves a formation [c1, · · · , cNl
, cNl+1, · · · , cN ]. More-

over, the trajectory of each agent i is given by

zi(t) = ci + ξ(t).

They move as a whole with the same velocity v0(t).

(=⇒) If there is a follower i such that ℜ(wi) ≤ 0, then its

transient component converges to infinity. Thus, no formation

can be achieved. �

Remark 3.1: From (8), we know that if a follower has

only one neighbor, then it will eventually converge to the

position of its unique neighbor. Therefore, to achieve a

formation without overlapping agents, each follower requires

at least two neighbors.

IV. TIME-DELAYS AND SYSTEM SWITCHING

In cooperative control of multi-vehicle systems, velocity

information exchange is often necessary (e.g., [11], [12]).

Usually, each vehicle’s velocity information is measured

by itself and then transmitted to others through wireless

communication. Therefore, there exist transmission delays.

Moreover, transmission delays may be different for different

receiving agents.

Consider now that there is a constant time-delay τi for

agent i to receive the velocity of leaders. Then, the control

strategy (1) becomes

żi(t) =
∑

j∈Ni

wij(zj(t) − zi(t)) + v0(t − τi). (9)

In fact, time-delays also exist in measurement, which is

exploited in [21], [22]. Generally, these measurement delays

are much less than transmission delays. Thus, we only

consider transmission delays in the paper.

Applying the coordinate transformation (2), we obtain the

dynamics of follower i in the moving frame as

˙̂zi(t) =
∑

j∈Ni

wij(ẑj(t) − ẑi(t)) + v0(t − τi) − v0(t). (10)
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Applying the Laplace transform to (10) generates

Ẑi(s) =
ẑi(0)

s + wi

+
∑

j∈Ni

wij

s + wi

Ẑj(s) +
V0(s)

s + wi

(e−τis − 1)

(11)

where V0(s) is the Laplace transform of v0(t).

It is observed that Ẑi(s) consists of two parts: The

first one
ẑi(0)

s + wi

+
∑

j∈Ni

wij

s + wi

Ẑj(s) has been discussed in

Section III; The second one
V0(s)

s + wi

(e−τis−1) is introduced

by the time-delays.

For the case with time-delays in communication, we

suppose that leaders’ time-varying velocity has the following

form

v0(t) = b01(t) + b1t,

where b0, b1 ∈ C and 1(t) is the step function. That is,

leaders are under uniform velocity motion or uniformly

accelerated motion, which are much common in practice.

The Laplace transform of v0(t) is then

V0(s) =
b0

s
+

b1

s2
.

Thus,

V0(s)

s + wi

(e−τis − 1)

=

((

b1

w2
i

− b0

wi

)

1

s + wi

+

(

b0

wi

− b1

w2
i

)

1

s
+

b1

wi

1

s2

)

×(e−τis − 1)
(12)

and

L −1

(

V0(s)

s + wi

(e−τis − 1)

)

=

(

b1

w2
i

− b0

wi

)

(ewiτi − 1)e−wit

+

(

b0

wi

− b1

w2
i

)

(1(t − τi) − 1(t)) − b1

wi

τi.

(13)

Integrated with Theorem 3.1, we have the following result.

Theorem 4.1: Consider a group of N agents where leaders

move with a time-varying velocity v0(t) = b01(t) + b1t in

a formation [c1, c2, · · · , cNl
] and followers’ dynamics are

defined in (9). The group of agents achieves a formation

[c1, · · · , cNl
, cNl+1, · · · , cN ],

where

ci =

∑

j∈Ni
cjwij

wi

− b1

wi

τi for i ∈ {Nl + 1, · · · , N}

if and only if the pursuit degree wi of every follower i (i =
Nl + 1, · · · , N ) has positive real part.

Proof: The proof is similar to the one for Theorem 3.1.

The only difference is in the steady state of each follower,

which is presented below. Given constant inputs for agent i’s

neighbors in moving frame, then from (11), (6), and (12), we

have

Ẑi(s) =
ẑi(0)

s + wi

+
∑

j∈Ni

cjwij

wi

(

1

s
− 1

s + wi

)

+

(

(
b1

w2
i

− b0

wi

)
1

s + wi

+ (
b0

wi

− b1

w2
i

)
1

s
+

b1

wi

1

s2

)

(e−τis − 1)

Applying the inverse Laplace transform gives

ẑi(t) = ẑi(0)e−wit +

∑

j∈Ni
cjwij

wi

(1 − e−wit)

+(
b1

w2
i

− b0

wi

)(ewiτi − 1)e−wit

+(
b0

wi

− b1

w2
i

)(1(t − τi) − 1(t)) − b1

wi

τi.

Because ℜ(wi) > 0 and τi ≪ ∞, the steady state of ẑi(t) is

ci =

∑

j∈Ni
cjwij

wi

− b1

wi

τi. (14)

Thus, the conclusion follows. �

From the theorem, we can see that when the leaders’

velocity is v0(t) = b0 + b1t, the agents under control law

(1) are still able to achieve a formation (different from the

desired one) despite the existence of transmission delays. In

other words, time-delays do not affect the stability of the

system.

suppose that leaders velocity v0(t) may switch with re-

spect to a switching signal σ(t). According to Theorem 4.1,

if each follower’s pursuit degree has a positive real part, the

agents still converge to form a steady formation as long as

the time interval is long enough.

In a DAG, some edges may be disconnected because of

obstacles or breakdown of sensors, and some edges may be

added in. Both situations cause a switching topology. It can

be observed that even for a switching topology, as long as

each follower’s pursuit degree in every interaction topology

has positive real part, the system is still stable.

V. SIMULATIONS

In this section, we illustrate how to design the parameters

in control strategy of (1) to achieve the desired formations.

Furthermore, we also present simulations when time-delays

exist and the acceleration b1 switches.

We consider a group of eight agents, two of which are

leaders. The DAG describing the relationship of the agents

and the desired formation are shown in Fig. 2. Suppose that

the leaders move in the formation of [0,1] with the time-

varying velocity v0(t). Then, we consider how to derive the

pursuit strength and pursuit angle for each follower in (1) to

achieve the desired formation.

We first design w41 and w42. According to (8), −ι =
w42

w41 + w42

. We set w41 = 1, and then w42 =
√

2

2
e−ι 3π

4 .

Obviously, Re(w41 + w42) > 0. Similarly, we get w31 =
eι 2π

3 , w34 = 1, w52 = 1, w54 = ι. Other pursuit weights can

also be calculated similarly as follows: w63 = w31 = eι 2π
3

and w64 = w34 = 1. Note that the pursuit weights are not

unique. From the pursuit weights, we can obtain the pursuit

strength and pursuit angles easily.
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Fig. 2. A DAG and the desired formation (the complex number in bracket
is the agent’s coordinate).

The collective motion is simulated as shown in Fig. 3, in

which v0(t) = 0.01t + ι0.02t sin(0.2t).

For the same DAG and the desired formation in Fig. 2,

we consider the situation where time-delays exist. Suppose

that the time-delay is defined by τ3 = τ4 = τ5 = 5 and

τ6 = τ7 = τ8 = 10. Because the acceleration is small

numerically, the time-delays are supposed to be much longer

than the general cases in order to illustrate the variations of

formations explicitly. The switching procedure is as follows:

at t = 0, v0 = 0.4+0.1ι and the acceleration b1 switches to

−0.02ι; at t = 30, the acceleration b1 switches to −0.02 +
0.1ι; at t = 50, the desired velocity 1.5ι is reached and the

acceleration b1 switches to zero. We show the formations at

t = 29, t = 49, and t = 56 in Fig 4, Fig 5, and Fig 6,

respectively. Notice that, the formations in Fig 4 and Fig 5

are different from the desired formation due to the nonzero

acceleration and time-delays. Furthermore, it is observed that

the distinction is more obvious when ‖b1‖ is bigger, and the

formation recovers to the desired one while making uniform

rectilinear motion.
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Fig. 3. Eight agents make a time-varying motion in the desired formation.
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Fig. 4. Formation at t = 29 and b1 = −0.02ι.
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Fig. 5. Formation at t = 49 and b1 = −0.02 + 0.1ι .
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Fig. 6. Formation at t = 56 and b1 = 0.

VI. CONCLUSIONS

This paper studies the formation control problem of multi-

agent systems under directed acyclic graphs. We extend

the existing pursuit algorithms by taking into account of

leaders’ velocity, and derive a formation control strategy

for followers. Supposing that the leaders move in a forma-

tion with a time-varying velocity, necessary and sufficient

conditions are presented for all the agents to reach desired

formations. We also discuss the impacts on the formations

when communication delays and system switching exist.

Finally, through simulation, we specifically describe how to

design pursuit strength and pursuit angles for each follower

to reach a desired formation, and illustrate the variations of

the formation caused by time-delays.

In the paper, we suppose that the directed acyclic graph,

wireless communication network, pursuit strength, and pur-

suit angles are well established in advance, but it is more

attractive if these can be constructed and optimized by the

agents themselves. Collision avoidance is another issue to be

considered in the future.
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