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Abstract—This paper presents a method for multi-view

3D modeling of human bodies using virtual stereopsis. The

algorithm expands and improves the method used in [5],

but unlike that method, our approach does not require

multiple calibrated cameras and/or carefully-positioned

turn tables. Instead, an algorithm using SIFT feature

extraction is employed and an accurate motion estimation

is performed to calculate the position of virtual cameras

around the object. That is, by employing a single pair

of cameras mounted on a same tripod, our algorithm

computes the relative pose between camera and object

and creates virtual cameras from the consecutive images

in the video sequence. Besides not requiring any special

setup, another advantage of our method is in the simplicity

to obtain denser models if necessary: by only increasing

the number of sampled images during the object-camera

motion. As the quantitative results presented here demon-

strate, our method compares to the PMVS method, while

it makes it much simpler and cost-effective to implement.

I. INTRODUCTION

Object modeling has a wide range of applications in

several areas such as: robotics [1], [18], virtual reality

[9], [14], and even medicine and health care [16], [7].

In the latter case, creating 3D models of the human

body can pose an even greater challenge due to the lack

of texture in the human skin. This problem forces the

use of unconventional methods, that is, methods that are

not based only on intensity correlation. Hence, many

approaches involving constrained global optimizations of

photometric discrepancy functions have appeared in the

literature recently. Some of these works were surveyed,

evaluated, and can be found in [17]. In [8], for exam-

ple, the authors reported a successful reconstruction of

the human body using mult-view.However, the method,

which was based on the detection of boundary motion

extracted from the level set, still required specialized

parallel PC hardware and software for efficient use

of computation resources (e.g. load balancing). Other
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methods, such as [20], proposed a deformable model

for 3D reconstruction of the human face. In this work,

while the use of a reference face did away with the in-

tensity correlation problem by aligning and warping the

reference model with the observed face, their approach

could only capture geometric properties of the face.

So, additional post-processing for texture mapping was

required in order to achieve a realistic representation of

the face. Other more traditional approaches require range

scanners, structured-light scanners, or any other sort of

active sensor [10], [19], [13]. Those methods produced

high quality models through the use of a controlled

light source, such as a laser. However, the trade off

was usually the high cost and the long time required

for image acquisition.

Today, possibly one of the most successful approaches

using only cameras is the patch-based multi-view system,

or PMVS [5]. This method utilizes multiple images

and their corresponding calibration matrices to recon-

struct accurate 3D models of most objects, including

human body and outdoor scenes. The approach starts

with a sparse set of corresponding features, which are

then expanded to the nearest projected pixels, forming

3D rectangular patches. The algorithm iterates between

matching, expansion and filtering while it optimizes the

reconstruction under photo consistency and global visi-

bility constraints. The results were favorably contrasted

to other 3D reconstruction methods in [17]. However,

the method requires the use of well calibrated cameras

and turn table positions.

In this paper, we propose a new method for 3D

modeling that uses multiple virtual views from a single

stereo pair. Our approach, while it is multi-view based,

does not require a large number of calibrated cameras

positioned around the object. Instead, our method only

requires a single pair of calibrated cameras and a mo-

tion detection algorithm that estimates the position of

virtual cameras as the object moves with respect to such

cameras. Besides the much lower cost and despite the

much simpler setup, the 3D models created using this ap-

proach is highly comparable to the original PMVS, while

maintaining the same computational efficiency. Also, as
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the original PMVS, our method works well on various

objects, including human faces, as we demonstrate in the

results section. Another great advantage of our method

is in the simplicity to obtain denser models if necessary:

by only increasing the number of sampled images during

that object-camera motion.

The paper is organized as follows. First, we introduce

the proposed framework. Next, the method for estimation

of the camera-object motion is explained in Section

II-B. Finally, the experimental results and discussion are

presented in Section III, followed by the conclusions in

Section IV.

Figure 1: Proposed Framework for Virtual Multi-View

3D Modeling

II. PROPOSED FRAMEWORK

Our framework for 3D object modeling consists of

six majors steps. Figure 1 depicts such steps, which are:

1) Multiple pairs of stereo images are captured by 2

calibrated cameras while the object moves freely with

respect to the cameras; 2) A SIFT-based feature extrac-

tion algorithm [3], [11] establishes the correspondence

between various points on every stereo pair sampled;

3) The intersection between the sets of points from

two consecutive pairs of images is determined. That

is, the algorithm finds identical feature points from the

left-right image pair obtained at camera-object position

i and the subsequent pair obtained at camera-object

position i+1; 4) The 3D coordinates of every point in the

intersection above is calculated; 5) The transformation

between camera-object poses are estimated using the 3D

coordinates above; and 6) The previous transformations

are used to create virtual poses of the camera and fed into

a patched-base multi-view software [5] to reconstruct a

3D model of the object.

In the next subsections we explain further each of the

steps above.

A. Real vs. Virtual Cameras

As we explained earlier, the input images are captured

by a single pair of 640x480 pixel stereo cameras, as

Figure 2: System setup for the Proposed Framework

shown in Figure 2. Our system relies on two Firewire

cameras connected to an embedded device that acquires

both images at the exact same time. The cameras are

mounted on the same tripod and are calibrated off-line

using the CalTech Calibration Toolbox [2].
In the original PMVS method, the reconstruction

algorithm also relies on a small number of calibrated

cameras: in that case there are three cameras. However,

unlike in our system, their approach expands the num-

ber of views by employing a carefully-positioned turn

table. That is, each camera acquires multiple images of

the object, while the turn table is carefully rotated at

pre-determined angles. In our method, we achieve an

accuracy as good as that of the original PMVS, but we

rely only on two cameras and no turn table. Instead, in

order to obtain an arbitrary number of multiple views of

the object, we resort to virtual cameras.

As illustrated by Figure3, our stereo cameras take

images of the object as it moves freely about the camera.

This motion of the object is interpreted by the algorithm

as if it was the motion of the cameras. Better yet, as if

the image sequence acquired by the cameras were taken

by different cameras at slightly different poses: that is

what we refer to as virtual cameras. In that sense, as the

object moves in one direction, the algorithm computes

the motion as if it was made by the cameras in the

opposite direction. In fact, since the cameras are firmly

mounted on the same tripod, there is really no different

whether it is the camera or object that is actually moving.

The problem becomes simply that of finding the pose of

the virtual camera, as it is described in detail in Section

II-B3.

B. Motion Estimation of Virtual Camera

The most important part of the proposed framework

is to estimate the relative motion between camera and

object, and from that to calculate the pose of the virtual
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Figure 3: L,R are the real cameras, while L′,R′ are the

estimated virtual cameras due to the motion of the object

O (from solid to dotted lines).

(a)

(b)

Figure 4: Detecting Identical Features from 2 sets of

Matching Features

cameras. This is done by the following three steps of the

algorithm.

1) Determining Correspondences in the Image Do-

main: First, since we are only interested in feature points

on the actual object, the background must be subtracted

from the foreground using the algorithm presented in [4].

After that, the framework finds matching points between

all pairs of stereo images using the SIFT algorithm

[3], [11] implemented as a Matlab toolbox[6]. The

parameters for this function are adjusted to maximize the

number of matching features, but in order to eliminate

any possible mismatch by the algorithm, we apply a

simple epipolar constraint and a stochastic analysis over

the disparity between left and right images to eliminate

possible outliers. Next, the framework uses two left

images corresponding to two consecutive positions of

the camera-object to establish correspondences between

these positions. That is, it runs again the SIFT algorithm,

but this time using the left image at position i and the left

image at position i+1. The three sets of points – that is,

left-right at i, left-right at i+1, and left-left at i and i+1 –

are used to establish the correspondence between feature

points in space, as we describe in the next section.

2) Determining Correspondences in Space: Given the

matching features for the left and right images, our

frameworks also detects matching features between two

consecutive positions. As shown in Figure 4a), we use

Ωi = {(~li, ~ri)
j}n

j=1 to denote a total number of n

matching features at position i, where ~li and ~ri repre-

sent the image coordinates of the matching feature on

the left and right images. In Figure 4b), the identical

features between position i and i+1 are defined by

Ci,i+1 = Ωi ∧ Ωi+1, where ∧ represents the SIFT

matching operation.

The identical features Ci,i+1 provide four different sets

of image coordinates, as illustrated in Figure 5, which

will be used to estimate the motion of the camera. We

will explain the details of this step in the next section.

3) Calculating the Pose of Virtual Cameras: The

only constraint on the motion of the object is that this

be a rigid motion. That is, in this work, we assume

that a simple translation and rotation can describe the

movement of the feature points from position i and

position i+1. Given that, and given the sets of 3D points

Πi and Πi+1, the transformation Li+1HLi
from position

i to position i+1 relates these two sets by the following

expression:

Πi+1 = Li+1HLi
∗ Πi (1)

To determine Li+1HLi
we need only 2 pairs of points

– each pair provides 3 equations for the total of 6 DOF.

However due to noise and camera calibration errors, in

practice, Li+1HLi
can be better determined through an

optimization method using an over specified set of data.

The optimization is done by minimizing the sum of

the distances:
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(a) (b)

(c) (d)

Figure 5: Identical features detected at different positions

of camera-object. a) Left image at position i. b) Right

image at position i. c) Left image at position i+1. d)

Right image at position i+1

argminR,t

∑

j

||M i+1

j − [R | t] ∗ M i
j || (2)

where M i
j and M i+1

j are elements of Πi and Πi+1,

respectively, that is, the 3D coordinates of feature points

at positions i and i + 1. And, R and t represent the

rotation and translation component of Li+1HLi
. In order

to find R and t, we used the Levenberg–Marquardt

optimization algorithm on the objective function (2).

Since we define one of the positions of the left camera

to be the world reference frame, W , the transformation

from any virtual position of the left camera to this

reference frame can be computed as:

Li+1HW =Li+1 HLi
∗Li HW

Also, since the cameras are mounted on the same

tripod, their relative pose never changes and therefore,

any virtual position of the right camera can be easily

calculate using the following relation:

RiHW =Ri HLi
∗Li HW =R HL ∗Li HW

where RHL is the relative pose between left and

right cameras which is obtained off line by the camera

calibration.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present both quantitative and qual-

itative results from our virtual multi-view 3D modeling

Figure 6: Reconstructed 3D face using 16 images

framework. As for the qualitative part, we used the

algorithm applied to human faces and human body.

Quantitatively, we also compared the accuracy in the

3D reconstruction by applying the algorithm to a human

skull dataset used as a standard dataset in the original

PMVS [5]. In that case, we computed the difference

between the two approaches, ours and that in [5], and

regarded the PMVS as the ground truth.

A. Reconstruction of the human body

In this experiment, the person to be modeled stood

in front of the cameras with his right side turned to

the cameras. We start the image acquisition at 30fps

while the human rotated by 1800 in front of the cameras.

Since the time to complete the 1800 rotation and the

consequent number of images acquired may vary, we

subsampled the images by a variable factor that led to

a totally of 16 images – 8 images for each camera – or

one image roughly every 22.50.

We ran the SIFT algorithm to find corresponding

feature points, as explained in section II-B1. In average,

the SIFT algorithm returned about 150 matching points

between left and right images, and a few dozens of other

matching points between two consecutive left images. In

the end, the algorithm is capable of finding between 15

and 20 points in common for each pair of consecutive

positions. Those are the points used to compute the

transformation matrix Li+1HLi
. After running the opti-

mization and obtaining the virtual camera poses for each

of the 16 images, the same images and the calculated

camera poses were input to the patch-based multi-view

program. The outcome of the program for this 3D model

of the human face is shown in Figure 6.

B. Increasing the Density of the Model

As we mentioned earlier, one of the major advantages

of our method is in how easy it is to increase the density

of a 3D model. That is, if an application requires a

denser 3D model, all that one needs to do within our

framework is to change the sampling factor used in the
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Figure 7: Reconstructed 3D face using 70 images

Figure 8: Reconstructed 3D Human Upper Body

above steps. There is no need to add more calibrated

cameras or to calibrate positions of turn tables. As Figure

6 shows, various gaps (blue spots) are present in the 3D

model, in special on the head where the low-resolution

cameras used and the hair makes it harder to find feature

correspondences. To reduce the number of such gaps in

the model, we can increase the number of virtual poses of

the cameras by simply increasing the number of sampled

images after image acquisition.

Figure 7 shows such a model when 70 images were

sampled. By comparing the 3D model obtained in Figure

6 and the model in Figure 7, we can see that the second

model is qualitatively better than the first. In Figure 8,

we show another qualitative result using our method, this

time for the human upper body. In this case, we used

14 images taken from another pair of cameras, using a

different settings. For example, for this experiment the

baseline between the 2 cameras is approximately 2m.

In the next section, we analyze our results in a more

quantitative manner.

C. Quantitative Analysis

We performed the first quantitative analysis of our

method assuming that the PMVS provided the ground

truth. For that, we used the skull dataset, which contains

24 calibration matrices, for each of the 24 images taken

by 3 cameras and 8 positions of the turntable. In order to

test our algorithm, we selected a subset of those images,

that is, 16 images among the 24 available – or 2 of the

original 3 cameras used by the PMVS. We also selected

(a) skull reconstruction using PMVS

(b) skull reconstruction using proposed approach

Figure 9: Comparison: PMVS and our method

Size of Object (LxWxH in

mm)

Error in reconstruction

(mm)

498.8 × 498.9 × 612.9 4.5

Table I: Accuracy of our method with respect to PMVS

the respective camera calibration matrices, but we used

only the first pair of camera calibrations and compute all

other transformations according to the steps described by

our framework. That is, we assumed that no other camera

pose or calibration parameters were available and that

all necessary data had to be computed from the images

and their feature points as already explained. Finally,

to generate the so called ground truth, we also ran the

original PMVS algorithm for the same 16 images. As

we can see from Figures 9a and 9b, the two results are

quite similar.

Also, in order to measure the difference between the

two 3D models, we used the Iterative Closest Point (ICP)

[15] to match the 3D cloud of points from our approach

to the cloud of points obtained by the original PMVS. As

shown in Table I, the average error was only 4.5 (mm),

which means that the two 3D models were only 4.5mm

different from each other. Compared to the dimensions

of object, which were about or greater than 500mm, the

error in 3D reconstruction was less than 1% with respect

to the original PMVS approach.

Finally, we collected accurate 3D data using a struc-

ture laser scanner as presented in [12], [13]. We used

two objects, an angel and a bunny. Figure 10 and Table

II summarize the results for those two objects.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Quantitative Results obtained using two ob-

jects: (a) and (d) images of the angel and bunny used for

testing; (b) and (e) 3D model created using our method;

(c) and (f) the error between ground truth (blue dots)

and 3D model obtained by the method (green dots for

angel and red dots for bunny)

Object Number

of

Views

Error

(mm)

Max

error

Percentage

<1 mm

Percentage

<1.5 mm

Bunny 7 .49 5.9 85.5% 93.4%

Angel 12 1.24 11.4 89% 96%

Table II: Accuracy of our method for real objects

IV. CONCLUSION

This paper presented a novel approach of multi-view

3D modeling using virtual cameras and object-camera

pose estimation. This work is a significant extension to

the PMVS method as it eliminates the need for multiple

camera calibrations or any other special apparatus. Also,

as we demonstrated in the result section, our method can

be run for different densities of the 3D model, without

any change in the setup of the cameras and/or their cal-

ibration. In the future, we intend to integrate the feature

matching using SIFT and the relative motion estimation

between camera and object into the optimization step

in the PMVS algorithm. That change should further

improve the performance and computational complexity

of the proposed method.
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