
  

  

Abstract—This paper describes a technique for estimating the 

attitude of a UAV by monitoring the visual horizon. An 

algorithm is developed that makes the best use of color and 

intensity information in an image to determine the position and 

orientation of the horizon, and infer the aircraft’s attitude. The 

technique is accurate, reliable, and fully capable of real-time 

operation.  Furthermore, it can be incorporated into any 

existing vision system, irrespective of the way in which the 

environment is imaged (e.g. through lenses or mirrors). 

I. INTRODUCTION 

TTITUDE stabilization is critical for any aircraft that is 

required to fly autonomously. Traditionally, autopilots 

achieve attitude stabilization by using rate gyros to sense and 

correct unwanted rotations in yaw, pitch, and roll [1].  While 

this method has proven to be effective and is a standard 

feature of many autopilot systems, it is susceptible to drift 

during flights over long durations. The reason is that the rate 

gyros only sense angular velocities, and do not provide an 

absolute orientation reference.  Thus, the orientation of the 

aircraft in yaw, pitch, and roll is obtained by integrating the 

rate signals – a process that can lead to substantial noise-

induced drift [1]. One solution to this problem is to use 

sensors that provide direct information on absolute 

orientation. For example, 3-axis magnetometers, used 

together with gyroscopes and/or accelerometers, can deliver 

information about an aircraft’s absolute orientation [2]. 

However, when used by themselves they will not sense 

rotations about an axis that is parallel to the direction of the 

local magnetic field [2]. Another way of deriving absolute 

orientation is to take advantage of the fact that the sky is 

usually brighter than the ground (in the visible spectrum) or 

darker than the ground (in the infrared), and use this to 

determine which direction is “up”. Infrared sensors are a 

compact, lightweight, and cost-effective means of 

implementing this technique to stabilize roll and pitch [3], 

[4]. However, they are susceptible to errors when the sun is 

low in the sky. Another vision-based method for determining 

attitude involves capturing a wide-angle view of the 

environment, including the horizon. The position and 

orientation of the horizon, obtained after segmenting the 
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image into sky and ground, can be used to infer the aircraft’s 

attitude [5], [6]. While this technique is more robust to 

variations in the sun’s position, it can be computationally 

intensive and challenging to implement in real time because 

sophisticated spectral and intensity analysis is required to 

achieve reliable sky/ground segmentation. Another approach 

has been to use specially designed VLSI chips to extract 

horizon information in real time from an array of 

photodiodes [7]. While this approach is attractive, its current 

accuracy is likely to be limited because it uses only intensity 

information to locate the horizon. 

Here we describe a technique for estimating the roll and 

pitch attitude of an aircraft, based on sensing the horizon in a 

visual image. The advantages of the technique are that (a) it 

locates the horizon reliably over a large variety of images, 

(b) it is relatively simple to implement in real time, (c) it can 

be incorporated into any vision system (e.g. narrow angle, 

wide angle or panoramic), irrespective of the way in which 

the environment is imaged (e.g. through lenses or mirrors), 

and (d) it can be piggybacked onto an existing vision system 

that serves other functions, such as terrain following, 

obstacle avoidance, and surveillance. 

The goal of this work is to produce a robust horizon 

detection method that is computationally efficient, allowing 

implementation in real-time while leaving time for other 

image processing tasks. 

II. HORIZON DETECTION METHOD 

The proposed horizon detection method consists of four 

stages: 

A. Enhance sky/ground contrast 

B. Determine optimum threshold for sky/ground 

segmentation 

C. Convert horizon points to vectors in the 

viewsphere 

D. Fit 3D plane to horizon vectors to estimate 

attitude 

A. Enhance Sky/Ground Contrast 

Arguably, the most important stage of visual horizon 

detection is the accurate separation of sky from ground. This 

problem has been tackled in various ways including 

morphological smoothing [8], using the blue image channel 

with or without intensity weighting [9], using a support 

vector machine (SVM) [10], using a combination of color, 

texture and a Hidden Markov Tree [11], Multiscale Linear 

Discriminant Analysis (MLDA) [12], and interclass 

difference maximization [13]. 
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In this study we seek a single linear transformation of the 

RGB color space that provides, with high probability, a good 

separation of sky and ground classes. Because many 

approaches have used image brightness or a single color 

channel as the input for classification, we wish to investigate 

and quantify the benefit of using a combination of the three 

standard color channels. This dimensionality reduction is 

performed as a preprocessing of the image to reduce 

computational complexity. We used a data set of 124 images 

collected from flight trials, and from the internet, that 

provided large variations in the color, brightness and texture 

of sky and ground e.g., snow, desert, farm land, and inner 

city, as well as variations in the white balance and the 

cameras that were used to capture the images. Each image 

was segmented into sky and ground by a human operator 

(S.T.) to obtain “ground truth” data. 

Methods that depend on brightness alone will sample 

approximately the Y component of the YUV color space, and 

make the reasonable assumption that sky is brighter than 

ground. The conversion from red, green, and blue (RGB) 

image channels into brightness (Y) and color (UV) is given in 

(1), where RGB values span the range [0,255]. 
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The histogram of color (UV) components for all pixels in 

our data set images is shown in Fig. 1a. We see that, in this 

transformation, points representing the sky (blue) lie 

approximately in the opposite direction to points 

representing the ground (green/brown). The color component 

can effectively be reduced from two dimensions down to one 

by rotating the UV space such that the majority of the data is 

aligned with the U’ axis as shown in Fig. 1b. 

 

  
Fig. 1. (a) Histogram of the UV color components of every pixel of all 124 

images. Brighter whites contain more points. The background depicts the 

colors of points in this color space. (b) Same as (a) but rotated by 38 

degrees to new axes U’V’. 

 

Using the manually segmented data set we can plot the 

histograms of brightness and transformed color separately 

for sky and ground, as in Fig. 2 and 3. It can be seen in these 

figures that, on average, there is a large overlap in both the 

brightness and the color of sky and ground. 

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  50  100  150  200  250

Y Ground

Y Sky

 
Fig. 2. Histogram of pixel brightness (Y) plotted separately for sky and 

ground. Each curve is normalized by the total number of sky or ground 

pixels respectively. Classes overlap by 30.5%. 
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Fig. 3. Histogram of transformed pixel color (U’) plotted separately for sky 

and ground. Each curve is normalized by the total number of sky or ground 

pixels respectively. Classes overlap by 22.2%. 

 

If we were to segment our images by applying a threshold, 

then the best choice of threshold would be at the location 

where the sky/ground histograms cross. From these plots we 

see that such a threshold performed on either brightness or 

color alone would result in a significant percentage of 

misclassified pixels, 30.5% if using Y, and 22.2% for U’. 

Further, we plot in Fig. 4 the histogram of brightness 

versus color. We see in this plot that the sky and ground 

classes can be further distinguished by combining 

information from the two histograms appropriately. 

 

  
Fig. 4. 2D Histograms of color (U’, horizontal axis) versus brightness (Y, 

vertical axis). The blob in the lower-left represents the ground pixels while 

the blob in the upper right represents the sky pixels from manual 

classification. (a) Histogram of U’ versus Y, (b) histogram of 4U’ versus Y 

and rotated by 40 degrees. 

 

If we use only the horizontal axis of the brightness/color 

histogram in Fig. 4b by projecting the vertical axis onto the 

horizontal, which we will call C, we obtain a substantial 

reduction in the overlap of the sky/ground distributions down 

to 8.6%, as shown in Fig. 5. This shows that we can get a 

better separation of sky and ground by combining the 

statistics of brightness and color. The transformation from 
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RGB to C is given in (2) which is obtained by performing the 

stated transformations on the YUV color space. Note that at 

runtime, the only computation performed for sky/ground 

contrast enhancement is the use of (2). 

 

3.8243.1363.016.1 −++−= BGRC  (2) 
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Fig. 5. Histogram of combined pixel brightness and color (C) plotted 

separately for sky and ground. Each curve is normalized by the total 

number of sky or ground pixels respectively. Classes overlap by 8.6%. 

 

The above procedure attempts to find a projection onto a 

single line through the RGB color space that minimizes the 

overlap of the sky/ground classes. This can also be 

accomplished through classical linear discriminant analysis 

methods such as Fisher’s Linear Discriminant (FLD) [14]. 

Methods such as Ettinger’s [13] use something akin to FLD 

to exhaustively search for the maximum difference between 

sky/ground classes in each image, which can be very 

computationally expensive. On the other hand, preprocessing 

the image with an optimal linear transformation is 

computationally efficient and effective in reducing the 

sky/ground overlap to less than 9%. 

B. Determine Optimum Threshold for Sky/Ground 

Segmentation 

We will now be working with histograms as they are 

measured from images, without foreknowledge to which 

class each pixel belongs, which gives a histogram similar to 

the sum of the sky/ground histograms in Fig. 5. In practice 

we divide C by two to avoid the saturation seen in Fig. 5, and 

we add 128 and clamp C to the range [0,255]. 

It is intuitively clear that the crossover point of the 

sky/ground distributions will change from one image to the 

next. Such changes can occur with changes in the relative 

areas of sky/ground and also in images where the ground is 

unusually similar, or unusually different, from the sky. This 

can be caused by variations in white balance, or flight at very 

high altitudes resulting in a blue haze over the ground, or 

flight during periods of dark cloud cover. 

Much previous work has been done on automatic 

thresholding (surveyed in [15]), but here we propose a 

computationally simple approach that allows prior 

knowledge of the average aircraft dynamics and imaging 

areas to be incorporated. The technique is histogram based, 

and relies partly on Bayesian prior probabilities. It makes use 

of prior knowledge in two ways. Firstly, in an imaging 

system in which the image captures almost the full 

viewsphere, we can say that the most likely location of the 

threshold in the integral histogram space is at the 50% point, 

i.e. there are likely to be just as many sky pixels as ground 

pixels in the image (in the special case of an imaging system 

that captures the full view sphere and is being flown at high 

altitude, sky and ground will always cover equal areas, 

irrespective of the orientation of the aircraft). Thus, from this 

standpoint, the prior probability density function for the 

location of the threshold can be assumed to be a Gaussian 

function with its peak at the 50% point (see Fig. 6b). Note 

that in Fig. 6b the tails of the Gaussian have been trimmed at 

the extreme ends because in practice these areas are a very 

poor choice for a threshold. Secondly, it is likely that most of 

the pixels in the image possess colors that correspond to 

either the ground or the sky, with very few pixels 

representing colors that do not belong to either class (or that 

cover both classes).  From this standpoint, the most likely 

locations for the threshold would be at positions that 

correspond to local minima of the histogram (the lower the 

minim, the greater the likelihood). Thus, the prior probability 

density function for the location of the threshold can be 

assumed to be a Gaussian function with its peak at a 

histogram value of zero (see Fig. 6a). 
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Fig. 6. Weighting functions, (a) used on the normalized logarithm of the 

histogram, and (b) used on the normalized integral of the histogram. 

 

Following the above reasoning, the chosen threshold, T in 

(5), is the one with the maximum score, S, as calculated in 

(4) over all possible clamped C values, c ∈ [0,255]. 
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where N(x,µ ,σ) is the Gaussian normal distribution, hc is 

the normalized log of the histogram of the image, and ic is 

the normalized integral histogram. 

Even though the prior Gaussian distribution for the 

threshold location prefers to segment the number of pixels 

into two equal parts, the algorithm is relatively robust even 

in extreme cases where this assumption is not true. The 
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image in the example of Fig. 8 contains less than 4% sky 

pixels, yet the automatic thresholding procedure chooses a 

threshold value of 120 for C (see Fig. 9). Without modifying 

the assumed width of the prior Gaussian distribution for the 

threshold, this case is close to the limits of the method. The 

best threshold value in this image would have been around 

144 but the area bias has prevented the selection of such a 

high value. The contrast enhancement has allowed the 

threshold to shift without significant degradation of 

performance because the sky/ground classes are well 

separated. The performance of the method improves 

substantially as the percentage of sky increases to 10% or 

more. Examples of applying the first two stages of horizon 

detection to images not in the collected data set are provided 

in Fig. 7 and Fig. 8 (images from www.freephotos.lu). 

 

 (a) 

 (b) 

 (c) 
Fig. 7. Examples of (a) images not included in the collected data set, (b) 

contrast enhanced images using (2), and (c) automatic threshold results. 

 

    
 (a) (b) (c) 
Fig. 8. (a) Original image with < 4% sky. (b) Contrast enhanced image. (c) 

Result of automatic thresholding (at a level of 120 in this case). 
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Fig. 9. Composition of the threshold score for the image in Fig. 8b. (a) 

Weight from the normalized log(Histogram). (b) Weight from the 

normalized integral histogram. (c) Combined weight which is the score S. 

To check the performance of the first two stages, we ran 

the contrast enhancing and thresholding procedure on the 

entire data set of 124 images and compared this with the 

manual segmentations. The set contained ten very unusual 

images that caused relatively large misclassifications of 10% 

or more. However, the remaining 114 images had an average 

misclassification rate of 1.69% with a standard deviation of 

2.38%. This is well below the expected error rate given by 

the overlap in the histogram of the contrast parameter C.  

Thus, it is clear that a substantial benefit is being gained 

from the automatic thresholding procedure developed here. 

C. Convert Horizon Points to Vectors in the Viewsphere 

Once the horizon points are determined by using the 

threshold, we compute the viewing direction of each of these 

points as a unit vector in a viewsphere centered on the nodal 

point of the system. As a consequence, the proposed scheme 

will work on any imaging system (incorporating any camera, 

lens and/or reflective surface) as long as the system is 

geometrically calibrated. The model needs only a function 

that converts pixel coordinates to view direction. We use the 

“OcamCalib” toolbox [16] and a toolbox based on the 

calibration procedure in [17]. For a high altitude flight where 

the effects of horizon topography are negligible, the correct 

horizon points should lie on an equatorial plane that passes 

through the centre of the viewsphere [0,0,0]
T
. 

D. Fit 3D Plane to Horizon Vectors to Estimate Attitude 

The method used for fitting a plane is the repeated 

application of a linear least squares fit to a subset of the 

horizon vectors. In this fit we constrain the plane to pass 

through the centre of the viewsphere which is especially 

beneficial in systems with a smaller field of view. Vectors 

are discarded from the fit based on their distance from the 

currently fitted plane. The termination criterion used is when 

we have discarded 50% of points from the fit, but we could 

also use a criterion based on the variance of the fitted points 

from the plane estimate, but at the expense of increased and 

more variable execution time. 

III. IN-FLIGHT PERFORMANCE 

Flights were performed using a trainer aircraft with 

various vision systems mounted to the front. The engine was 

repositioned above the wings to give the vision system a less 

obscured forward view. A Microstrain inertial measurement 

system was mounted rigidly to the vision system to provide 

an attitude reference. 

The plots in Fig. 11 are from a manually controlled flight 

using a vision system that is specially designed for terrain 

following [18]. Fig. 10 shows one image from this flight. We 

measured the error statistics between the horizon-based 

attitude estimates described here, and inertial estimates. The 

standard deviations of the differences in roll and pitch were 

3.31 and 3.01 degrees respectively. 
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Fig. 10. Image from an in-flight trial at time=102.3s. Green points indicate 

the boundary between sky/ground. Red line is the fitted horizon plane. Note 

fewer horizon outliers at altitude. 
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Fig. 11. (a) Horizon roll estimate, and (b) horizon pitch estimate compared 

to inertial roll and pitch estimates during an in-flight trial. 

 

We note that there is a periodic variation in the roll and 

pitch errors. To determine if this variation was due to the 

inertial estimate we compare this to a hand-held test, with 

results shown in Fig. 13, and a representative image from the 

sequence in Fig. 12. The hand-held sequence used a forward 

looking fisheye lens with a 180 degree field of view. The 

periodic component of the error was very small in this case. 

So we conclude that the majority of the error in the flying 

sequence was due to a large periodic error in the inertial 

estimate during flight. The standard deviations of roll and 

pitch error for the hand-held sequence were 1.39 and 1.69 

degrees respectively. 

Upon inspecting the video sequences, one might expect 

the hand-held sequence to have a higher error variance than 

the in-flight sequence because the trees at ground level can 

be seen to cause noise in the attitude estimate. Such errors 

should decrease with altitude. However, we observed the 

opposite, probably due to the periodic variation in the 

inertial signal. So, we expect the true error variance in flight 

to actually be less than that measured on the ground. 

Short segments of these two test sequences are contained 

in the accompanying video. 

 
Fig. 12. Image from the hand-held sequence at time=63.7s. Green points 

indicate the boundary between sky/ground. Red line is the fitted horizon 

plane. Note dark clouds ignored by thresholding, trees ignored by plane-fit. 
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Fig. 13. (a) Horizon roll estimate, and (b) horizon pitch estimate compared 

to inertial roll and pitch estimates during a hand-held trial. 

IV. COMPLEXITY COMPARISON WITH OTHER METHODS 

Due to the difficulty in obtaining ground-truth for aircraft 

attitude, most papers do not provide a quantitative measure 

of error in their estimates of roll and pitch. However, we 

have included in Table I a comparison of execution times for 

various published studies on visual attitude estimation. 

 
TABLE I 

COMPARISON OF EXECUTION TIMES FOR VISUAL ATTITUDE ESTIMATION 

Estimation Method Run Time at 

1.0GHz (ms) 

Notes 

Proposed method 2.4 300x200, 1.2ms 

@ 2.0GHz 

Inter-class difference 

maximization, [13], used in 

[7] and [19]. 

30 320x240, 33ms @ 

0.9GHz 

MLDA, [12] 80 128x128, 33ms @ 

2.4GHz 

Wavelet descriptors, [11] 216 640x480, 120ms 

@ 1.8GHz 

SVM segmentation + Hough 

transform, [10] 

224 to 504 320x240, 120ms + 

200 to 600ms @ 

0.7GHz 

Morphological smoothing + 

Hough transform, [8] 

300 352x288, 67ms @ 

3.0GHz 
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V. PERFORMANCE COMPARISON WITH OTHER METHODS 

We have implemented the method in [13] to compare to 

our own flight sequences and found that both methods 

produce almost identical results, with the exception of 

extreme noise. Because we robustly fit a plane to horizon 

candidate points we can effectively ignore around 50% of 

extreme outliers, while a global search, as described in [13], 

will often be offset. That being said, the method in [13] is 

superior when the noise is image noise rather than 

misclassification, such as when using analog video 

transmission, but our system is implemented onboard the 

aircraft so there is no such extreme noise and thus no 

performance cost incurred. 

Compared to others, the proposed method is very efficient 

to execute due to the prior fitting of a model that allows 

dimensionality reduction of the image data. This approach is 

very different to [13] where an exhaustive search over all 

values of roll/pitch is performed in every frame to find a 

maximum sky/ground class difference. Our efficiency comes 

at the cost of having no guarantee that it will operate 

accurately with scenes that are significantly different from 

the training data e.g. operation over oceans is unlikely to be 

successful with our current training data. 

From our tests we have seen that our method performs 

well in varied conditions of cloud, sun, altitude and different 

imaging systems, and is resistant to false horizon edges e.g. 

from large trees, sky reflection from lakes or from CCD 

camera blooming when the sun is in full view. 

VI. CONCLUSION 

This paper has introduced a robust and computationally 

efficient method for visual attitude estimation, useful in 

control of UAVs. We have quantified the misclassification 

rate in sky/ground classes when using brightness only, color 

only, and a near optimal combination of both. The proposed 

method makes best use of color information for the 

separation of sky/ground classes, but will also work on 

brightness images with a significantly higher rate of pixel 

misclassification, due to the error-correcting attributes of the 

robust plane fitting. 

Compared to other methods, we have used a simple and 

fast, yet effective method for automatic threshold selection 

that is successful in reducing the expected misclassification 

rate. 

We introduce the idea of fitting the horizon in a camera 

independent way, by using a camera calibration model to 

convert horizon points into viewsphere vectors. This allows 

the horizon detection system to be piggybacked onto any 

existing imaging system whose geometry has been 

calibrated. 

The combination of techniques used in this work form a 

robust horizon detection system that executes in a relatively 

short time and has the potential to be implemented very 

 

efficiently. Future work will include gathering statistics for 

the priors used in thresholding, and automating the color 

space optimization. 
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