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Abstract— Intelligent vehicles require accurate localization
relative to a map to ensure safe travel. GPS sensors are among
the most useful sensors for outdoor localization, but they still
suffer from noise due to weather conditions, tree cover, and
surrounding buildings or other structures. In this paper, to
improve localization accuracy when GPS fails, we propose
a sequential state estimation method that fuses data from a
GPS device, an electronic compass, a video camera, and wheel
encoders using a particle filter. We process images from the
camera using a color histogram-based method to identify the
road and non-road regions in the field of view in front of the
vehicle. In two experiments, in simulation and on a real vehicle,
we demonstrate that, compared to a standard extended Kalman
filter not using image data, our method significantly improves
lateral localization error during periods of GPS inaccuracy.

I. INTRODUCTION

Among the challenges involved in building a safe intel-

ligent vehicle, localization is among the most important,

because without precise knowledge of the vehicle’s location

with respect to its surroundings, autonomy is impossible.

Although GPS devices are extremely useful for localization,

they are not sufficient by themselves, because satellite signal

quality varies with weather and proximity to trees and

buildings. The problem is especially acute in urban areas.

Under these circumstances, accurate and robust localization

relies critically on additional sensors or filtering techniques.

There is a great deal of previous work using Kalman filters

to improve GPS-based vehicle localization. Cooper et al. [1]

propose an extended Kalman filter (EKF) model for vehicle

navigation that incorporates a GPS device and an inertial

navigation system (INS). Sadiadek et al. [2] improve the

EKF for GPS/INS localization using fuzzy logic to adapt

prediction and sensor noise strength. Thrapp et al. [3] and

Bonnifait et al. [4] demonstrate EKFs that fuse GPS and

odometry data, and Panzieri et al. [5] use an EKF to fuse

GPS, INS, odometry, and laser scanner data. Machine vision

techniques are also proving useful; Georgiev [6] presents a

method using camera pose estimation to improve localization

in urban environments when GPS performance becomes low.

The method fuses GPS, odometry, and compass data using

an EKF, but when the EKF’s uncertainty grows too large,

monocular vision is used instead of the GPS signal. Agrawal

and Konolige [7] present a localization method using stereo

vision and GPS. In their work, visual odometry is fused with

GPS measurements using an EKF.

Although the EKF is efficient, linearizing the motion and

sensor models can introduce inaccuracy, and its assump-

tion of a Gaussian posterior distribution over vehicle poses

means it can fail when the true distribution is non-Gaussian,

especially when it is multi-modal [8], [9]. To solve this

problem, Dellaert et al. introduce a localization method for

indoor mobile robots using particle filter called Monte Carlo

localization (MCL) [10] and apply the technique to the task

of vision-based localization [11]. This work demonstrates the

robustness of particle filters for localization with ambiguous

sensor information.

In our work, we complement a GPS device, compass, and

wheel encoders with machine vision to address GPS inaccu-

racy, and we use a particle filter to address linearization error

and the limitations of the Gaussian posterior assumption.

Our machine vision technique extracts road regions from

the field of view in front of the vehicle. By comparing

the observed road region with that expected based on a

candidate vehicle position and a predefined map, we can

compute the likelihood of the observation given the candidate

vehicle position and, to the extent that the map and road

region classification are accurate, thereby improve vehicle

localization precision.

II. ROAD REGION CLASSIFICATION

We use a forward-pointing camera and road region clas-

sification to improve localization accuracy. As shown in

the flowchart in Fig. 1, we perform Gaussian smoothing to

reduce image noise then classify each pixel in the image

as road or non-road using a H-S color histogram. We then

transform the classification results from the image plane

to the (robot-relative) ground plane using a pre-calculated

planar homography. The resulting robot-relative road region

measurement vector can be used for vehicle localization.

A. Hue-Saturation Histogram

We use a 2D histogram to represent the distribution of

road pixels’ color. Histograms are attractive because they

are simple to calculate and easy to use. We use the hue

and saturation components in the HSV color model [12]

to determine whether each pixel is likely to be on the

road or not because, unlike the RGB color space, HSV
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Fig. 5. Waypoints for simulated vehicle trajectory in Experiment I.
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Fig. 6. Experimental results in simulation when the GPS error is small.
(a) Lateral error. (b) Longitudinal error. (c) Heading error.

better than the particle filter in terms of heading error. This

is because under normal circumstances, when the GPS error

is small (variance of 0.06 meters), the Kalman based method

is more precise than our method. However, from the results

shown in Fig. 3, it was clear to us that the particle filter

performs better than the Kalman filter during periods of

unreliable GPS, so we simulated vehicle motion again from

left to right along the trajectory shown in Fig. 5 under five

GPS error conditions: small Gaussian error, lateral shift,

longitudinal shift, large Gaussian error, and GPS signal loss.

1) Small GPS error: The GPS error was distributed as

a 2D Gaussian with variance 0.06 meters and mean at the

ground truth. The results in Fig. 6 show that the KF (shown

in blue) performs best since the particle filter sample set may

not contain a particle perfectly positioned at the ground truth.

2) Shift of GPS in lateral direction: We shifted the GPS

error distribution from the ground truth by 0.3 meters in the

lateral direction (upward in Fig. 5) and added Gaussian noise

with a variance of 0.3 meters. As shown in Fig. 7, with the

addition of visual road region information, our particle filter-

based method substantially decreases lateral error.
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Fig. 7. Experimental results in simulation when the GPS is biased in the
lateral direction. (a) Lateral error. (b) Longitudinal error. (c) Heading error.

3) Shift of GPS in longitudinal direction: We again shifted

the GPS error distribution from the ground truth by 0.3

meters but this time in the longitudinal direction (rightward

in Fig. 5). As shown in Fig. 8, our localization results become

slowly biased by the GPS error. This is because the difference

in appearance of the road regions in the longitudinal direction

is small, so the distribution of the posterior depends strongly

on the biased measurements from the GPS and compass.

4) Extreme GPS error: We set the GPS error variance to

be high (5 meters). The results in Fig. 9 show that the PF’s

estimates are smoother and closer to the ground truth.

5) GPS signal loss: Finally, we blocked the GPS for some

time. The only observation data used to measure the vehicle’s

position and orientation were from the compass and camera.

The results in Fig. 10 show that our localization method is

nevertheless close to the ground truth in the lateral direction,

although the longitudinal error is high, since the road region

images do not differentiate longitudinal positions well.

In each of these five cases, we checked whether the results

of our method significantly decrease localization error or not.

The graphs in Fig. 11 compare the localization error from

our method and the EKF-based method in each condition.

The blue vertical bars represent the absolute mean error of

our method, the red bars represent the absolute mean error

of EKF localization, and the vertical error bars indicate 95%

confidence intervals. Paired t-test with Bonferroni correction

at α = 0.05 were used to test the statistical confidence of the

results, and the evaluation shows that the error rates for our

method are significantly different from the EKF error rates

in every condition.

The results (Fig. 11(a)) show that our method can signif-
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Fig. 8. Experimental results in simulation when the GPS is biased in the
longitudinal direction. (a) Lateral error. (b) Longitudinal error. (c) Heading
error.
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Fig. 9. Experimental result in simulation when the GPS error is extremely
high. (a) Lateral error. (b) Longitudinal error. (c) Heading error.
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Fig. 10. Experimental results in simulation when the GPS signal is lost
for some time. (a) Lateral error. (b) Longitudinal error. (c) Heading error.
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Fig. 11. Evaluation of our proposed method compared to EKF-based
localization. (a) Lateral error. (b) Longitudinal error. (c) Heading error.

icantly decrease lateral localization error in comparison to

the Kalman filter based localization method. In the case of

small GPS error, although our method gives higher error, the

difference is only approximately 10 centimeters on average,

which is acceptable for vehicle localization.

For longtitudinal error (Fig. 11(b)), our method gives more

precise results than the KF in the case of longitudinal shift

of GPS and extreme GPS error. For other cases, our method

is worse because the variability of road region appearance

in longitudinal direction is small, and the filter thus ends up

relying more heavily on the noisy odometry measurements.

The chart in Fig. 11(c) shows that our method does

not improve orientation estimation. In the simulation, we

used a small constant compass error, so the KF is more
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Fig. 12. Real vehicle PA-PA-YA used in Experiment II.

 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

Y
 (

m
.)

X (m.)

Kalman Filter

Particle Filter

GPS+Compass

Odometry

(a) (b)

Fig. 13. Experiment II results. (a) Map of the traversed road. (b) Local-
ization results.

precise at predicting vehicle heading. As we previously

noted, when sensor errors is small, there may be no sampled

particle positioned perfectly on the ground truth, limiting the

accuracy of the particle filter.

B. Experiment II: Real vehicle

In Experiment II, we implemented our localization method

on PA-PA-YA, an electric golf cart (shown in Fig. 12). It

is driven by two DC motors and equipped with a GPS,

a compass, three encoders (two for the drive wheels and

one for the steering wheel), and an IEEE-1394 camera. The

control system runs on a 2.0 GHz Pentium Core 2 Duo with

2 GB of RAM with GNU/Linux (Ubuntu 8.04).

We drove the vehicle at a speed of 5 to 10 km/hr to

avoid dependency of control on the localization method used.

To create a situation with noisy odometry and GPS, we

chose a path covered by trees and containing speed bumps

as shown in Fig. 13 (a). We drove the vehicle along the

center of the road. The results of the experiment are shown in

Fig. 13(b), which clearly shows that our localization method

gives results that are more precise than pure odometry and

more smooth than the Kalman filter.

V. CONCLUSION

We have shown that our proposed vehicle localization

method can increase accuracy in situations where GPS is

unreliable. Our machine vision method identifies the road

region in front of the vehicle, and our particle filter fuses

that result with GPS, compass, and odometry measurements.

Although longitudinal error is reduced only moderately by

our method, lateral error is substantially reduced. We con-

sider lateral error to be more serious than longitudinal error,

because lateral error could cause the vehicle to leave its lane

or go off the road.

The proposed localization method can be improved to

further reduce longitudinal error. One possible solution is

to use additional observation data such as visual odometry.

Another solution may be to use other kinds of sensor such

as a laser scanner in addition to the camera.
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