
Using Petri nets to specify and execute missions for Autonomous
Underwater Vehicles

Narcı́s Palomeras, Pere Ridao, Marc Carreras
University of Girona, Edifici Politecnica IV,

Campus Montilivi 17071 Girona, Spain
Carlos Silvestre

Institute for Systems and Robotics.
Instituto Superior Tecnico Lisbon, Portugal

Abstract— This paper presents the design and implementa-
tion of a Mission Control System (MCS) for an Autonomous
Underwater Vehicle (AUV) based on Petri nets. In the proposed
approach the Petri nets are used to specify as well as to
execute the desired autonomous vehicle mission. The mission
is easily described using an imperative programming language
called Mission Control Language (MCL) that formally describes
the mission execution thread. A Mission Control Language
Compiler (MCL-C) able to automatically translate the MCL
into a Petri net is described and a real-time Petri net player
that allows to execute the resulting Petri net onboard an AUV
are also presented.

I. INTRODUCTION

There are several potential AUV applications being ex-
ploited by various organisations around the world: envi-
ronmental monitoring, oceanographic research and mainte-
nance/monitoring of underwater structures are just a few
examples. AUVs are attractive for the use in these areas
because of their size and their non-reliance on human opera-
tors. However, with the utilisation of AUVs and Intervention-
Autonomous Underwater Vehicles (I-AUV) appears a new
necessity: How to define a mission for these autonomous
vehicles? A new set of tools is required to allow scientific and
industrial operators to describe a mission, upload it into the
vehicle and execute it in real-time. This set of tools is called
Mission Control System (MCS). A MCS is the part of a
control architecture that is in charge of coordinating the high-
level phases to be carried out by the vehicle in order to fulfil
a predefined mission. Each high-level phase is denominated
as a task which can be executed by means of activating some
vehicle primitives (basic robot commands or behaviours).
The MCS must define how the mission should be divided
into a set of tasks and how primitives are combined to fulfil
each task.

The development of a MCS for an AUV lies at the inter-
section between a Discrete Event System (DES) responsible
for enabling and disabling basic primitives when some events
are produced and the Continuous State Dynamic Control
System (DCS) used for every primitive to achieve a specific
goal. The DES must ensure the consistency in the resulting
controller avoiding to drive the vehicle into a dead-lock

This research was sponsored by FREEsubNET (MRTN-CT-2006-036186)
and the Spanish government (DPI2008-06548-C03-03).

situation and simultaneously ensuring the reachability of one
of the final states described in the mission. This is the
main reason for choosing the Petri net formalism as the
DES representation to model, program and execute AUV
Missions.

One of the first works in this area using Petri nets
was the coordination model for mobile robots proposed in
[1] where some Petri Net Transducers (PNT) were used
to translate the commands generated for the organisation
level into something understandable for the execution level.
In marine robotics, the researchers of the IST in Lisbon
developed a MCS called Coral to be used in the MARIUS
AUV [2]. The system was based on Petri nets in charge
of activating the vehicle primitives needed to carry out
the mission. The French AUV Redermor [3], designed for
military applications of inspection and mine recovery, also
uses Petri nets for modelling the Behaviours and a Lisp
interpreter is employed to execute them in real time. In the
CNR-ISSIA, Italy, a system based on Petri nets was designed
to control an underwater robot [4]. In other fields like the
RoboCup, Petri nets have been used by several teams [5] [6]
for coordination and control purposes.

Following on the previously related works, a generic
MCS for AUVs based on Petri nets was proposed in [7].
The generalities of this MCS are reviewed in Section II.
Because the direct manipulation and construction of the Petri
nets used in the MCS rapidly becomes cumbersome for
complicated missions, a high level language called Mission
Control Language (MCL) able to automatically compile into
a Petri net is presented in Section III. The compiler developed
to translate a MCL Program into a Petri net is described
in Section IV and the software in charge of executing the
resulting Petri net in real-time is introduced in Section V
before the conclusions.

II. THE MISSION CONTROL SYSTEM

As mentioned above, the MCS of a vehicle deals with
the mission definition as well as with its execution. In this
paper, a new proposal for a MCS based on the Petri net
formalism is presented. Instead of using graphic tools to
describe the mission Petri net, our approach uses a Mission
Control Language (MCL) which automatically compiles into
a Petri net. The adoption of this formalism will allow us to

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4439

Fig. 1. Complete architecture for the Ictineu AUV.

construct a reliable mission control Petri net by joining small
Petri nets, used as Petri net Building Blocks, equipped with
the required properties to ensure that the whole mission Petri
net accomplishes the set of desired properties.

A. Architecture Abstraction Layer

Our intention has been to design a MCS as generic as
possible and to allow for an easy adaptation to different
control architectures. To achieve this goal an Architecture
Abstraction Layer (AAL) is used (see Fig. 1). The AAL
is in charge of the communications between the MCS and
the vehicle architecture making it architecture-independent.
It offers an interface based on two types of signals: Actions
and Events. Actions enable or disable basic primitives within
the vehicle architecture. Events are used for the vehicle
architecture to notify changes in the state of its primitives.
The AAL depends on the control architecture being used
allowing the MCS to remain architecture-independent. With
the AAL, it is possible to use this MCS approach in different
vehicles with different architectures. This is achieved by
defining the basic actions that can be executed by the vehicle
and the events that can be transmitted back to the MCS. Then
the AAL must be reprogrammed with the mapping between
the MCS messages and the vehicle primitives.

B. Primitives

Primitives are basic robot functionalities offered by the
vehicle control architecture. A discussion of the basic func-
tionalities for an AUV can be found in [2]. For an AUV a
primitive can range from a basic sensor enabling (enable-
Compass) to a complex behaviour activation (e.g. navigate
towards a 3D way-point: goToWayPoint).

Primitives have a goal to be achieved. For instance, the
goal of the KeepDepth primitive is to drive the robot at a
constant depth within an uncertainty interval. In general, a
primitive can be enabled or disabled sending an action from

the MCS through the AAL. Depending if the primitive is able
to achieve its goal or not, if a failure is detected, etc. different
events can be generated by the primitive being submitted
through the AAL to the MCS.

C. Petri net Building Blocks

Petri net Building Blocks are the basic building structures
of our MCS. These Petri net Building Blocks are used
to program a mission as well as to execute it. They are
defined using the Petri net formalism and must ensure some
properties:

1) Petri net Building Blocks must be free of deadlocks.
2) The reachability graph of every Petri net Building

Block must show that the set of places marked when
all the possible transitions have already been fired after
starting in the rest-state with a valid input marking
are the places marked in the rest-state plus a valid
combination of output places.

3) All the structures used in a mission must share the
same interface, that is, they must have the same input
and output places.

To achieve the first property, several techniques for dead-
lock avoidance using Petri nets can be found in the literature
(see [8]). The second property ensures the reachability of
the desired states when the Petri net Building Blocks are
executed and progress from the begin state towards the end
states. This property can be tested through a reachability
analysis. It is well known the state explosion problem when
performing a reachability analysis, however, at this level,
Petri net Building Blocks are kept small enough and hence
the reachability analysis is not a problem.

The third property introduces the concept of interface. A
Petri net interface is composed by a set of input places Pi

where ∀pk∈Pi
• pk = Ø and a set of output places Po where

∀pk∈Po
pk• = Ø in which Pi ∪ Po are used as a fusion

places to build more complex structures using different Petri
net Building Blocks. It is possible to design any kind of
interface but all the structures used to define a mission must
share the same interface. Fig. 2(a) shows an example of a
task with an interface composed by Pi = {begin, abort}
and Po = {ok, fail}.

There are two different types of Petri net Building Blocks:
Tasks and Control Structures. Both of them accomplish the
above presented properties, however, their characteristics and
usefulness differs as detailed hereafter.

D. Tasks

Tasks are Petri net Building Blocks that communicate
with the robot architecture by means of Actions and Events.
Actions are associated to transitions in the Petri net being
executed whenever the related transition is fired. Events
communicate changes detected by the vehicle architecture to
the mission Petri net. Every event is associated to a particular
place. If an specific event is triggered by a primitive in the
control architecture, its related place receives a token.

Missions are programmed commanding the control flow of
tasks. Task execution triggers the execution of the primitives

4440

(a)

(b)

Fig. 2. (a) Simple Task with time-out. (b) Sequence control-structure.

TABLE I
DESCRIPTION OF ELEMENT IN FIG. 2

Task
T0 Send action Enable primitive.
T1...T4 Send action Disable primitive.
T3 Timed transition. Fired after a time-out.
POk , PFail Event place. Receives a token when the associ-

ated primitive changes its state to Ok/Fail.
POff Event place. Receives a token when the associ-

ated primitive changes its state to off.
Control Structure

begin2,
abort2, ok2,
fail2

Fusion places (interface) to the first structure in
the sequence.

begin3,
abort3, ok3,
fail3

Fusion places (interface) to the second structure
in the sequence.

as well as the detection of the corresponding events. Fig. 2(a)
shows a task able to launch a primitive and to stop it when
a primitiveOk or a primitiveFail event is raised or the T3

time-out expires (see Table. I for a description about some
places and transitions in Fig. 2).

E. Control Structures

The Petri net Building Blocks used to aggregate other Petri
net Building Blocks with the objective of modeling more
complex actions by controlling the flow among different
execution paths are called control structures. The resulting
net is a new Petri net Building Block that satisfies the desired
Petri net properties, as inherited from the original Petri
net Building Blocks, this operation will be denominated by
composition. It is worth noting that it is not necessary to span
the whole reachability tree of the resulting Petri net to ensure
the deadlock free as well as the state reachability properties.
Spanning it, would have a very high computational cost
as the complexity of the Petri Net that results from the
composition operation can be very large. These properties

Fig. 3. Composition of the tasks Goto() and AchieveHeading() with the
control structure SEQ.

are guaranteed by construction and hence a mission program
implemented according to these rules progresses from its
starting state to an exit state without sticking into a deadlock.
It can be proved that this set of Petri net Building Blocks
is closed with respect to the composition operation. Hence,
the result of a composition of some Petri net Building
Blocks with the above presented properties is a new Petri
net Building Block, for which the same properties hold by
construction without the need of further verification.

If two tasks called GoTo() and AchieveHeading(), each one
described by the Petri net reported in Fig. 2(a), are composed
by the sequence control structure shown in Fig. 2(b), the
resulting Petri net will be as the one presented in Fig. 3.

Depending on the selected interfaces, different control
structures can be defined. Based on the above presented
interface Pi = {begin, abort} and Po = {ok, fail}, MCL
provides some popular control structures while others may
be defined by the programmer, if needed.

• Sequence: It is used to execute one Building Block after
another (see Fig. 2(b)).

• Try-Catch-Do: Executes the Try block in parallel with
the Catch block. If the former finishes before the later,
the Catch block is cancelled and the execution continues
after the Try-Catch-Do structure. However, if the Catch
block finishes first, the Try block is aborted and the Do
block is executed.

• Parallel-And: Executes two Building Blocks in paral-
lel. If both Building Blocks finish in an ok place the
whole control structure finishes with an ok. Otherwise,
the Parallel-And finishes with a fail.

• Parallel-Or: Executes two Building Blocks in paral-
lel. The first structure to finish aborts the other. The
Parallel-Or finishes with the final state of the first
Building Block to end.

• If-Then-Else: Executes the Building Block inside the
If statement and depending if the Building Block ends
with an ok or a fail the Building Block inside the Then
statement or the Else statement is executed respectively.

• While-do: Executes the Building Block inside the While
statement. If this Building Block finishes with an ok
executes the do statement, otherwise ends with an ok.
If the do statement finishes with an ok executes again
the while statement otherwise ends the whole structure

4441

with a fail.

III. THE MISSION CONTROL LANGUAGE

In this section, the structure of a MCL program is pre-
sented.

A. Actions and Events

The primitive behaviours as well as the events must
be specified in the MCL program. Actions are defined
using the actionid = Primitive(list of parameters)
command where the parameters can be literals (’l’) or
variables (’st’) that must be instantiated during the mis-
sion definition. Events are defined by the command
place id(initial number of tokens) = event id. When
the event event id is generated in the robot control archi-
tecture, the place place id of the Petri net mission receives
a token. Example 1 defines the necessary actions and events
used in the task Goto().

It is worth noting that the way in which actions and events
maps are implemented depend on the control architecture of
the robot. Hence, the definition of this map is used to tailor
MCL to a particular control architecture. Therefore different
MCL mission programs for the same vehicle will share the
same version of these maps.

Example 1 Actions & Events Definition

actions {
enableGoto = GotoPrimitive(l: enable, st: waypoint);
disableGoto = GotoPrimitive(l: disable);
...

}
events {

pGotoOff (1) = eventGotoDisabled;
pGotoOk(0) = eventGotoOk;
pGotoFail(0) = eventGotoFail;
...

}

B. Building Block Patterns

To define a new Petri net Building Block, it is necessary to
specify its internal structure called Building Block Pattern.
This is done by defining a set of places (P) with the
placeid(number of tokens).connectionid command, a set
of transitions (T) using the transitionid command and a
set of arcs (A) defined using the sourceid → destinationid

command. It is necessary to indicate the connection identifier
for every place. This connection identifier is used to distin-
guish which places belong to the interface (connection id =
1) and which of them do not (connection id = 0). More-
over, the connection identifier is used in the control structures
to specify how Petri net Building Blocks are connected
among them. For instance, the sequence control structure
shown in Fig. 2(b) which sequences two Building Blocks
must have internal fusion places (with connection id = 2
and 3) to connect with the interface of the two structures to
be sequenced. Both the initial number of tokens of a place
and the connection identifier are set to 0 by default.

It is also possible to use any available Petri net editor1

with Petri Net Mark-up Language (PNML)2 support to define

1For instance the pipe2 editor available on: http://pipe2.sourceforge.net
2http://www.pnml.org

a Building Block Pattern and include the file in the MCL
program using the command patternid = pnml file;.

The Building Block Pattern for the task presented in
Fig. 2(a) is described using MCL notation in Example 2.

Example 2 Building Block Pattern Definition

AchieveOneGoal {
places {

begin.1; abort.1; ok.1; fail.1; exe;
primitiveOff; primitiveOk; primitiveFail;

}
transitions {

T0; T1; T2; T3; T4;
}
arcs {

begin.1 → T0; primitiveOffT0; T0→ exe;
primitiveOk → T1; exe→ T1; exe→ T2; exe→ T3;
exe → T4; primitiveFail→ T3; abort.1→ T4;

T1 → ok.1; T2→ fail.1; T3→ fail.1;
}

}

C. Tasks

To define a task a Building Block Pattern must be in-
stantiated. Once the Building Block Pattern is chosen the
related actions, events and time-outs must be associated to
the corresponding places and transitions. The task header is
composed by a list of parameters corresponding to those used
in the actions linked to the transitions. For instance, if a task
has to execute the primitive enableGoto it must include in
its header the parameter waypoint used in this action.

Example 3 shows a task instantiated from the task pattern
presented in Example 2. The task is used to guide a robot
towards a way-point having an associated time-out.

Example 3 Task Definition

AchieveGoto(waypoint): AchieveOneGoal {
a: enableGoto → T0;
a: disableGoto → T1, T2, T3, T4;
t: 120 → T3;
e: pGotoOff → primitiveOff;
e: pGotoOk → primitiveOk;
e: pGotoFail → primitiveFail;

}

D. Control Structures

The following control structures are provided in the MCL:
sequence (;), parallel-and, parallel-or, if-then-else, try-
catch-do and while-do. Each one of these control structures
can be overloaded defining a new pattern with the same
name. When a control structure is used to aggregate two
structures (sequence, parallel and while) two sets of inter-
faces with connection identifiers 2 and 3 must be provided.
If a control structure aggregates three control structures
(if-then-else or try-cath-do) three sets of interfaces with
connection identifiers 2, 3 and 4 must be provided instead.

E. Mission Program

Once the tasks and the control structures have been defined
a mission can be coded in MCL. This is the only section
that must be rewritten for every new mission if the same
vehicle control architecture is used. MCL control structures
are very similar to those provided by other popular languages
and tasks can be seen as function calls. Hence, program-
ming a new mission using MCL becomes very simple.

4442

Example 4 describes a test mission to perform a survey
path while gathering images. The robot uses an acoustic
modem to check the availability of USBL position fixes
through the modem. The program switches between AU-
TONOMOUS USBL or AUTONOMOUS mode depending
on their availability. When not available, navigation is done
by FOG-DVL dead reckoning. Water leakage as well as the
battery level are being checked during all the survey mission.

Example 4 MCL code to define a survey Mission

mission {
try {

Devices(ON);
Mode(AUTONOMOUS USBL);
Logs(ON);
parallel {

while (True()) {
if(HeartBeat(TIMEOUT)) {

Mode(AUTONOMOUS USBL)
} else {

Mode(AUTONOMOUS)
}

}
} or {

AchieveAltitude(SafeAltitude);
parallel {

KeepAltitude(SafeAltitude)
} or {

ObstacleAvoidance(true)
} or {

Goto(START WAYPOINT);
Ligths(ON);
Camera(DOWNLOOKING,ON,FREQUENCY);
Holonomic2DPath(CtHeading, GridPath, TIMEOUT);
Ligths(OFF);
Camera(DOWNLOOKING, OFF, FREQUENCY);
Goto(END WAYPOINT)

};
Surface();
Logs(OFF);
Devices(OFF)
}

} catch {
parallel {

Timeout(MISSION TIMEOUT)
} or {

LowBattery(MinBatteryLevel)
} or {

WaterLeakage()
}

} do {
AbortMission()

}
}

IV. THE MISSION CONTROL LANGUAGE - COMPILER

The process to generate a Petri net from a MCL program
is divided in four steps: (1) Generate a generic Petri net for
every pattern; (2) Instantiate the Petri nets of the task patterns
adding the actions, the events and the time-outs to build all
the Petri net tasks; (3) Use the mission program to generate
a tree in which the nodes are the control structures and the
leaves are the tasks; (4) Traverse the tree aggregating first
the control structures among them and then the tasks to build
the whole Petri net.

The procedures involved in the implementation of steps
(1) and (2) are trivial. While the code is being parsed by
the compiler a Petri net is generated for every task. The
compiler only checks if the patterns are correctly connected
with valid places and transitions or vice-versa and that all
the ’st’ variables used by the actions in a task appear also
in the task header.

while

True() If-then-else

HeartBeat(…) Mode(…) Mode(…)

Id Task

0 True

1 HeartBeat

2 Mode

Fig. 4. Fragment of Example 4 processed as an AST.

Step (3) can be seen as the translation of the imperative
code written by the user into a functional form. This process
consists of building an Abstract Syntax Tree (AST). Fig. 4
shows how lines 7 to 13 from Example 4 are translated
to its corresponding AST. Finally, in step (4) the recursive
Algorithm 1 is applied. The AST generated in step (3) and a
vector relating the referenced tasks with their connectionid

are used as input parameters (see Fig. 4). The algorithm
explores the tree and composes all the control structures
recursively. If a task is found during this process it is renamed
with a valid connection identifier and their parameters are
added to its enabling control structure. When the whole tree
is explored, each Petri net task is included in the mission.
Note that Petri net tasks are not replicated, instead, only
one Petri net task structure is included in the whole Petri
net mission even though it can be called several times from
different control structures. Moreover, all the places that
reference the same event are joined to keep only one place
for every primitive event.

Algorithm 1 GeneratePN(AST t, vector<task> vt) ret PN
if t.root = ”mission” then

//If the tree root tag is ’mission’ call GeneratePN(..) for its first child
pn = GeneratePN(t.child[0], vt)
//Compose every task with the rest of the control structures
for i = 0 to size(vt) do

pn = Compose(vt[i], pn)
end for
for i = 0 to size(events) do

pn = Compose(event[i], pn)
end for

else
//If the root is not ’mission’, load the control structure indicated in it
pn = Load(ControlStructure[t.root])
//For every child, do:
for i = 0 to size(t.child) do

if t.child[i].type = ”task” then
//If it is a task change the connection id. for the id. of this task
ChangeConnectionsId(i, vt, pn)
//Put the parameters of this task in the pn transition that enables it
TakeParameters(i, vt, pn)

else
//If the child is another control structure call GenaratePN(..) for this child
pnTmp = GeneratePN(t.child[i], vt)
//Compose both PN
pn = Compose(pnTmp, pn)

end if
end for

end if
//All places with the same event reference are groupped
GroupEvents(pn)
return pn

The Compose() function is used to aggregate several Petri
nets using their fusion places. It joins the places, transitions
and arcs from the two nets and, while fusion places are
shared combining the arcs and adding the tokens. Fig. 3
shows the aggregation of two tasks within a sequence control

4443

structure.

V. THE REAL-TIME PETRI NET PLAYER

The code generated by the MCL-C represents a single Petri
net nammed Mission Program, described using an XML-
based interchange format for Petri nets called Petri Net
Markup Language (PNML). A particular extension had to be
introduced in the PNML in order to properly implement the
communication facilities offered by the AAL in the language,
namely to define the actions that are sent from the Petri net
player to the vehicle control architecture and the events gen-
erated there to be fed back. The Petri net player implements
in real-time the discrete event system described by the PNML
file applying the basic Petri net transition rule to execute the
whole Mission Program Petri net. To do this, it has to control
all the timers associated to timed transitions, fire enabled
transitions non-deterministically, send the vehicle primitive
actions to the AAL and transform the events received from
the AAL to marked places within the Mission Program. This
object implemented in C++ uses the Transmission Control
Protocol (TCP/IP) to communicate with the AAL and is
executed in real-time inside the AUV control architecture.

As shown in Figure 1, the program describing the mission
is written by the user using the MCL. The MCL-C transforms
this code into a Petri net described using PNML and the
real-time Petri net player executes this Mission Program
communicating with the vehicle control architecture through
the AAL. The rest of the picture shows the Ictineu AUV
architecture [9] with a set of behaviours that act as vehicle
primitives and some perception modules which turn the raw
data gathered from the sensors into estimated variables to be
used by the robot behaviours.

As an example of how the Petri net player executes a mis-
sion let us consider the steps performed to execute the Petri
net in Fig. 3. First, the beginseq place (the superscript refers
to the Petri net that the corresponding place or transition
belongs to) is marked with a token. Then transition T seq

0 fires
marking the places begingoto and exeseq

1 . Because the GoTo
primitive was formerly deactivated (the primitiveGoTo

off place
was initially marked) the transition T goto

0 fires, launching the
enablePrimitiveGoTo action through the AAL. This action
starts the GoTo control behaviour within the control architec-
ture which is responsible for the robot guidance. Moreover,
the exegoto place becomes marked reflecting the fact that the
GoTo control behaviour is currently running. When the vehi-
cle arrives to its destination, the place primitivegoto

ok receives
a token and the GoTo() task finalises firing the transition
T goto

1 . This firing launches the disablePrimitiveGoTo action
that will disable the GoTo primitive restoring the marking of
the primitiveGoto

off place. Simultaneously, the place okgoto is
marked. If the vehicle is unable to reach the desired way-
point or the time-out controlled by the timed transition T goto

3

fires, the same disablePrimitiveGoTo action will be sent but
the failgoto place, will get marked instead. If the Goto() task
finalises marking okgoto, task AchieveHeading() is executed
in the same way as Goto(). However, if the Goto() task

finalises marking failgoto, then the place failseq is marked
finalising the execution of the whole control structure.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the results of an ongoing research
project which aims at designing and implementing a flexible
MCS easy to be tailored for different control architectures.
Following a brief introduction on the need of using AUVs
and the typical functions required to a MCS some relevant
MCSs based on Petri nets are commented. After this in-
troduction, the proposed MCS and the MCL are presented.
In the approach presented in the paper, Petri nets are used
to safely model the tasks and the control structures. All
these Petri net Building Blocks have been designed free
of deadlocks and reusable. It has been shown that it is
possible to compose Petri net Building Blocks to generate
the whole mission. To describe the mission, instead of
directly manipulate the Petri nets using graphical tools, a
high level imperative language, called MCL, which compiles
into a Petri net is used. MCL presents agreeable properties
of simplicity and structured programming and offers the
means for sequential/parallel, conditional and iterative task
execution. The MCL-C is the tool in charge of translating
the MCL language into a Petri net that can be automatically
executed by the vehicle using a real-time Petri net player.

The MCL-C has been completely programmed resorting
to ANTLR3 and a preliminary version can be download
from http://eia.udg.edu/∼npalomer. All tests have been done
using the Ictineu AUV [9] and the e-puck robot using the
webots simulator4. Future work will involve adding multiple
vehicle coordination capabilities in the MCS/MCL allowing
the management of missions involving several robots.

REFERENCES

[1] F. Wang, K. Kyriakopoulos, A. Tsolkas, and G. Saridis, Systems, Man
and Cybernetics, IEEE Transactions on, vol. 21, no. 4, pp. 777 – 789,
Jul 1991.

[2] P. Oliveira, A. Pascoal, V. Silva, and C. Silvestre, “Mission control
of the marius auv: System design, implementation, and sea trials,”
International Journal of Systems Science, Jan 1998.

[3] M. Barbier and J. Lemaire, “Procedures planner for an a.u.v.” 12th
international symposium on Unnmanned Untethered Submersible Tech-
nology, p. 8, 2001.

[4] M. Caccia, P. Coletta, G. Bruzzone, and G. Veruggio, “Execution con-
trol of robotic tasks: a petri net-based approach,” Control Engineering
Practice, vol. 13, no. 8, pp. 959–971, 2005.

[5] V. Ziparo and L. Iocchi, “Petri net plans,” Proc. of ATPN/ACSD Fourth
International Workshop on Modelling of Objects, Components, and
Agents, 2006.

[6] H. Costelha and P. Lima, “Modelling, analysis and execution of multi-
robot tasks using petri nets,” Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems, Jan 2008.

[7] N. Palomeras, P. Ridao, M. Carreras, and C. Silvestre, “Towards a
mission control language for auvs,” 17th IFAC World Congress, 2008.

[8] M. V. Iordache, J. O. Moody, and P. J. Antsaklis, “Automated synthesis
of deadlock prevention supervisors using petri nets,” Technical Report
of the ISIS Group at the University of Notre Dame, p. 56, Jul 2002.

[9] D. Ribas, N. Palomeras, P. Ridao, M. Carreras, and E. Hernandez,
“Ictineuauv wins the first sauc-e competition,” Robotics and Automa-
tion, 2007 IEEE International Conference on, pp. 151 – 156, Mar 2007.

3http://www.antlr.org
4http://www.cyberbotics.com

4444

