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Abstract—Utilizing multiple paths between network hosts (such
as robots or sensors) will improve network performance, path
availability and connection reliability. This paper presents a
cross layer multiple path approach named Proxy Server based
Multipath Connection. Multiple paths are set up via a set of
intermediate proxy servers using IP tunneling. Packet distri-
bution and reassembly are achieved by inserting a thin layer
between the network layer and the transport layer. On the
sender side, packets are distributed across multiple paths based
on predefined striping schemes. On the receiver side, a double
buffer approach is proposed to solve the TCP sequence number
persistent reordering problem. A prototype was implemented on
the Linux and Windows systems. Experimental results show that
the proposed approach can improve network throughput and is
robust to network congestion and link breakage.

Index Terms—multipath, TCP, IP, proxy, tunneling

I. INTRODUCTION

One of the challenges in today’s distributed network sys-

tems is to improve network performance and robustness in

a heterogeneous network environment. The current network

connection model is mostly over a single path connection. The

success of the Internet is a credit to this simple yet powerful

connection model.

However, research indicates that the default network path

is usually not the best, and there may exist many alter-

nate paths which are usually much better [22, 23]. These

findings motivate the study of multipath connections, which

utilize multiple alternate paths between network hosts. The

traffic from a source can be spread over multiple paths and

transmitted in parallel over a network. Multipath connections

increase network aggregate bandwidth, thus improve network

performance. Multipath connections may also be used to cope

with network congestion, link breakage and potential attacks.

Multipath connections can be implemented at different layer

in the International Standards Organization (ISO) 7-Layer

Model. At the network layer, this topic has been studied

extensively under the name of multipath routing [5, 25],

particularly in wireless ad hoc network [15, 26]. Multipath

connections at the transport layer include mTCP [28] and

PTCP [11]. Other related works include approaches at the data

link layer [2] and at the application layer [10, 24].

This paper presents a novel multipath connection approach

named Proxy Server based Multipath Connection (PSMC)

by inserting a thin layer between the network layer and the

transport layer. The proxy servers can be set up on distributed

participating network hosts, such as robots or sensors. The

proposed thin layer approach has multi-facet advantages.

First, on the sender side, packet striping occurs below the

transport layer. Therefore, both Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP) can benefit from

multipath connections. The rationale of supporting UDP is as

follows. It is no doubt that TCP is used by the majority of

the current network applications. However, most TCP flows

are relatively small ones [29]. They do not gain as many

benefits as large TCP flows do from multipath connections.

On the other hand, the ever-increasing demands on real-

time multimedia services put tremendous interests on UDP.

Many audio / video transmission protocols, e.g., Voice over

IP (VOIP), Real-Time Streaming Protocol(RTSP) prefer UDP.

Whatsmore, most multimedia applications are the long-lived

ones with a large amount of transmission data. Therefore,

there is a great need for UDP friendly multipath connection

schemes.

Second, on the receiver side, packets are collected and

reassembled at the thin layer before the transport layer. It

is well-known that network packets transmitted over multiple

paths are likely to reach the destination out of the sequence

order. For TCP, this issue is prominent, and is usually referred

to as the TCP persistent reordering problem [4]. Experimental

results indicated that TCP reordering problem may signif-

icantly degrade overall network performance. We propose

a double buffer scheme to re-sequence TCP packets before

delivering packets to the TCP layer.

Third, the thin layer is on the top of the Internet protocol

(IP) layer, which allows multiple routes to be set up via a set

of intermediate proxy servers using IP tunneling and overlay

network. This design makes path management relatively sim-

ple and flexible. Paths can be added or removed at runtime

with a low operational cost. “Failed” paths or “bad” paths

can be detected, deleted or recovered with little impact on

overall performance. In other words, network robustness and

availability are improved.

The PSMC prototype was implemented on the Linux and

Windows systems. Experimental results are also presented.

The rest of this paper is organized as follows. Section 2

surveys related works. Section 3 presents design and imple-

mentation of PSMC. In Section 4 we discuss experimental

results. The conclusion is in Section 5.

II. RELATED WORKS

Early works on multipath include IBM SNA [9] and N. F.

Maxemchuk [17, 18]. Multipath can be achieved at different

layer, and each has pros and cons. Due to the widespread use
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Fig. 1. Architecture of Proxy server based multipath connections (PSMC)

of the TCP/IP protocols, the network and transport layer im-

plementations gain increasing interests. The closest multipath

schemes to our work are mTCP [28] and pTCP [11]. However,

both are designed for TCP only.

PSMC is built on an overlay network [6], and can be

extended to use other overlay architectures, i.e., [13]. Overlay

network is a commonly used architecture to support multi-

path connections because it can utilize the existing Internet

infrastructure [28]. Overlay-based techniques also include De-

tour [22] and RON [3].

Previous works on TCP persistent reordering problem in-

clude TCP-PR [4]. TCP-PR uses timers to keep track of

packet transmission for TCP reordering. Related works on

TCP congestion control in a lossy environment includes TCP

Westwood [8]. Westwood uses measured “residual bandwidth”

to set TCP congestion window size upon fast retransmit.

Multipath connections can also be used to improve network

reliability and security. For example, authors in [19] proposed

approaches to improve network robustness by sending redun-

dant error correction information along with the normal traffic.

Similar idea of inserting a thin layer in the ISO 7-layer

model has appeared in [16] for mobile ad hoc networks.

III. THE DESIGN OF PSMC

A. System Overview

Figure 1 is a diagram to illustrate the architecture of a

PSMC system. The multipath sender module is responsible

for packet distribution among selected multiple routes. Packets

are distributed among the normal direct route and the alternate

indirect routes based on packet striping algorithms. The in-

termediate connection relay proxy servers examine incoming

packets, and forward them to the destination through selected

routes. The multipath receiver module collects packets, re-

sequences packets, and delivers packets to the upper layer.

By using some existing network measurement tools [14, 21],

the network monitoring module in PSMC can passively watch

traffic condition and collect statistic information (e.g., through-

put, error rate, round trip time). A communication channel is

set up between end hosts to periodically exchange network

information and control messages. The path management

module is responsible for finding an optimal set of paths,

recruiting new paths, and removing unwanted paths.

Some notations used in this paper are summarized as

follows. Assuming n routes between end hosts, the available

bandwidth, loss rate, round trip time (RTT), and one way

delay (OWD) on route i are noted as BWi, pi, RTTi, OWDi

respectively, i = 1...n.

B. Packet Striping on the sender side

PSMC supports flexible packet striping schemes, including

round robin, least usage, least connection, block based, or

customized schemes by end users.

For round robin scheme, theoretically speaking, the data

striping ratio should be the same as the ratio of available

bandwidth on each route. For example, if there are two

routes with the available bandwidth of 10Mb and 5Mb, then

the data striping ratio should be 2:1. In a dynamic network

environment, the sender can adaptively adjust its data striping

ratio based on traffic statistics collected through passive mon-

itoring. To avoid possible traffic oscillation, each route leaves

a certain amount of bandwidth unused. Algorithm 1 shows the

adaptive data striping scheme based on round robin. Historical

information from the previous two observation windows is

used to predict future traffic pattern.

Algorithm 1 Adaptive data striping algorithm

1: system initialization
2: during observation window period i
3: if previous traffic information is available
4: average traffic data between window i − 1 and i − 2
5: set data striping ratio to bandwidth ratio
6: elseif not enough traffic information available
7: set data striping ratio to 1
8: end if
9: use weight round robin scheme to distribute packets

10: continue to collect traffic information
11: exchange traffic information via communication channel
12: return to step 2 for the next observation window i + 1

The block striping scheme allows the sender to send blocks

of packets along multiple paths. This is ideal for multimedia

applications using layered coding schemes (i.e., [12]). End

users can also customize data striping ratio on the fly through

the /proc file system. This provides more flexibility and allows

PSMC to be integrated with other applications more easily.

The packet striping mechanism in PSMC can be installed

on one end-host or two end-hosts. In the first case, only data

packets from sender are spread out over multiple routes, the

return ACK packets from receiver still go through the main

direct route. This is “one-way multipath”. In the second case,

both forwarding packets and return packets are sent through

multiple routes. This is “two-way multipath”

A labeling algorithm is used in PSMC to search for the

maximum aggregate bandwidth between two end hosts and

select the best set of paths to use. The algorithm is based on

the classic solution for maximum network flow problem [7].

We also study the problem to select disjoint paths or paths with

minimum jointness, which is a NP-complete problem. Heuris-

tic algorithms can be used to obtain approximate solutions.

Due to the page limit, the details of the above algorithms are

not presented in this paper.

C. The double buffer approach for packet reordering

The “persistent reordering” problem is a common issue in

a multipath environment. For UDP, it is generally regarded as
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application’s responsibility to solve the problem. Many UDP

applications, i.e., RealPlayer streaming, solves the problem

internally. The scheme we proposed for TCP reordering can

be easily customized to support UDP packet reordering.

We focus on the TCP reordering problem below. Usually the

TCP receiver observes the sequence numbers of the received

packets, and generates duplicate ACK (Dup ACK) for each

out-of-sequence segment. After a few (usually 3) Dup ACKs,

the sender enters the TCP fast retransmit.

The rational of our double buffer approach for TCP re-

ordering is as follows. The TCP fast retransmit mechanism

is based on the premise that the out-of-order packet is an

indication of packet loss. However, it is usually not true in

a multipath environment because of parallel transmission of

packets. Therefore, a more reasonable approach is to hold

packets in a temporary buffer (before the TCP receiving buffer,

therefore there will be “double buffers”), and wait for other

expected packets to come. If expected packets arrive in time

(before the temp buffer is full), then the whole in-sequence

segment can be delivered to the TCP layer. If the temp

buffer is overflowed without receiving expected packets, this

indicates a likely real packet loss. TCP Fast retransmit should

be triggered.

The size of the temp buffer needs to be carefully chosen.

If the buffer size is too small, then the buffer does not have

enough room to hold all waiting packets. If the buffer size is

too large, then it takes too long to trigger fast retransmit for a

real packet loss. Either way will degrade network performance.

Obviously the upper limit of the buffer size should be

smaller than the TCP congestion window size cwnd, otherwise

the packet flow will stop.

BufferSizemax < cwnd (1)

Now we study the lower limit of the buffer size. Without loss

of generality, we assume route 1 has the largest one way delay

(slowest) among all routes, OWD1 = OWDmax; and route k
has the smallest bandwidth, BWk = BWmin. For simplicity,

the unit of BWi is packet/second.

In the initialization stage of the buffer, at the moment of

OWD1, the first packet on route 1 reaches the destination;

and on route i, there are ((OWDmax − OWD1) ∗ BWi + 1)

packets reach the destination. To avoid false trigger of TCP

fast retransmit, all these packets need to be hold in the

buffer. So the first lower limit of the buffer size is B1 =∑
n

i=1
((OWDmax − OWD1) ∗ BWi + 1)

In the steady stage of packet transmission, during the period

of 1/BWmin, route k has two consecutive packets arrived; and

on route i, at most BWi/BWmin + 1 packets arrive. All these

packets need to be hold in the temp buffer, so the second lower

limit of the buffer size is B2 =
∑

n

i=1
(BWi/BWmin + 1)

The actual minimum buffer size should be greater than

max{B1, B2}. Usually B1 > B2, therefore we have

BufferSizemin >

n∑

i=1

((OWDmax − OWD1) ∗ BWi + 1) (2)

It is observed from the above formulas that the buffer size

is not only related to routes’ latencies and bandwidths, but

also to the differences or variances of these parameters. This

is intuitive because a fast link combined with a slow link may

require a larger buffer size than two moderate links do. This

indicates that “unbalanced” links may slow down the overall

network performance. Our experimental results also confirmed

it. Therefore, if possible, routes with similar traffic parameters

should be used in a multipath environment.

In practice, the actual size of the TCP double buffer should

be adjusted adaptively based on traffic condition. If there are a

lot of packet losses (lossy environment), the buffer size should

be smaller to trigger fast retransmit in a shorter period of time.

If there are not a lot of packet losses, the buffer size can be

larger to avoid unnecessary fast retransmit.

Algorithm 2 illustrates the adaptive double buffer scheme

for packet reordering.

Algorithm 2 Double buffer algorithm for packet reordering

1: system initialization
2: PSMC module checks the incoming packet
3: if the packet is in-sequence
4: forward the in-sequence segment to the TCP handler
5: increase the buffer size by 1
6: elseif the packet is out-of-sequence
7: put the packet in buffer
8: if the buffer is full, trigger fast retransmit end if
9: reduce the buffer size by 1

10: end if
11: ensure the buffer size stays within the limits by calculating

formula 1, 2
12: return to step 2 to process new packet

D. TCP congestion control window size

Another TCP related issue in multipath connections is to set

the appropriate value of the TCP congestion control window

size cwnd after fast retransmit. Upon a packet loss, cwnd is

usually cut in half. However, research indicates that a more

appropriate value should be the “residual bandwidth” [8].

In multipath connections, the aggregate packet loss rate is

pall = 1 −
∏

n

i=1
(1 − pi). It is usually much higher than pi.

If blindly cutting cwnd in half for a packet loss, then the

available bandwidths will not be used efficiently.

Assuming on the sender side, the packet striping ratio is si.

If route m is the route causing packet loss, then the residual

bandwidth cwndnew = (
∑

n

i=1
si − sm)/

∑
n

i=1
si ∗ cwndold. An

approximate value cwndnew = (n−1)/n∗cwndold can be used,

especially when paths have similar traffic parameters.

E. PSMC with UDP

There are several issues to be addressed for UDP. First, mul-

tipath connections increase aggregate bandwidth with a price

of higher loss rate. This may be unacceptable to some mul-

timedia protocols. Redundant or error correction information

can be sent over multiple paths to solve the problem [1, 19].

Second, UDP is an “aggressive” protocol without built-in

transmission rate control and congestion control. A congested

link that is only running TCP is approximately fair to all users.

However, when UDP data is introduced into the link, there is

no requirement for the UDP data rates to back off, forcing

the remaining TCP connections to back off even further.

This is unfair to TCP. Previous works on shared congestion
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Fig. 2. A PSMC prototype testbed

detection include [21, 27]. A solution used in PSMC is to

calculate the UDP transmission rate limit for each path to

control aggressiveness of UDP and achieve fairness for all

connections. The UDP limit can be negotiated between end

hosts through the communication channel based on application

requirements and network monitoring.

IV. EXPERIMENTAL RESULTS

A. Prototype implementation

A PSMC prototype was implemented on the Linux kernel

2.4 and 2.6, and can be migrated to other operating systems.

A kernel patch was created to provide kernel information

and user interface to the rest of PSMC modules. To re-

duce maintenance overhead, the kernel patch was restricted

to net/ipv4/ip output.c, net/ipv4/tcp input.c and net/ipv4/tcp.c

files with less than 10 lines of code changes.

The PSMC system was designed into several independent

modules based on functionalities. The PSMC is a loosely-

coupled system which allows modules to be loaded, unloaded

and maintained dynamically upon operational request. This

design greatly enhances system manageability, usability and

flexibility.

The interface between PSMC modules and end users was

through /proc file system. End users can input parameters

and adjust system behavior at runtime. The communication

channel was built on secure socket connection with OpenSSL.

We set up several testbeds consisting of the Linux and Win-

dows systems to try out the PSMC prototype. Figure 2 shows

one of the testbeds. To simulate real Internet traffic, some

experimental results presented in this paper were collected by

using PlanetLab [20].

B. Result analysis

Figure 3(a-b) shows the impact of double buffer on network

performance. The x axis is number of paths in use. The y axis

is aggregate bandwidth and bandwidth utilization, respectively.

Bandwidth utilization is defined as the percentage of the actual

aggregate bandwidth and the total available bandwidth. In the

test, bandwidth and RTT on each path is 5Mb/s and 20ms,

respectively. Bandwidth and RTT parameters are controlled

by a software agent on network nodes. We also performed

tests with other bandwidth and RTT values, the conclusions

presented in this paper remain unchanged.

Without double buffer, TCP multipath connections can not

utilize available bandwidth effectively. When more than 5

paths in use, its performance is even worse than that of single

path connection due to TCP persistent reordering problem.

Figure 3(a-b) also shows that packet reordering has little

impact on UDP.

With double buffer, the aggregate bandwidth in multipath

connections increases when the number of paths increases.

However when there are more than 10 paths, the aggregate

bandwidth actually starts to decline slowly. This is due to

multipath overhead. As the number of paths increases, the

packet loss rate increases; the double buffer size gets bigger;

and takes longer to respond to a real packet loss. All these

factors slow down system performance.

Figure 3c indicates that the actual processing overhead of

PSMC code in the Linux kernel is limited and not the major

source of multipath overhead. The dark bar is for single path

connection, and the white bar is for PSMC with only one

path in use. It shows that when PSMC is used as single path

connection, its performance is comparable to a true single path

connection. This indicates the processing overhead of PSMC

code itself is limited.

Figure 4(a-b) shows the impact of “bad” or “unbalanced”

path. Notation (m,n) on x axis means m paths in use with

a bandwidth ratio of 1 : 1 : ... : 1 : n. For example, (2,

1/2) means 2 paths with a bandwidth ratio of 1:1/2. The

figures indicates that bad or unbalanced paths have significant

negative impacts on performance. This is because when paths

get unbalanced, the double buffer size gets bigger. When

packets lost, it takes longer to enter fast retransmit. In other

words, a “slow” link may drag down the overall performance.

Figure 4a also shows that bad paths have bigger impact on

multipath without double buffer than multipath with double

buffer. This is because multipath without double buffer has

poorer capability to deal with packet reordering. Figure 4b

further depicts the impact of bad path. We can observe that as

the number of paths increases, the impact of bad path becomes

more significant. This can be explained that the increased

number of paths will complicate the TCP reordering problem.

Figure 4(a-b) suggests that we should eliminate bad paths or

uneven paths when their bandwidths are below the 1/10 of

the average bandwidth. In practice, we usually pick 4 to 8

paths with similar network parameters to achieve maximum

aggregate bandwidth.

Figure 4c shows the impact of double buffer size. When the

buffer size is around 15k - 35k, the performance is acceptable.

When the buffer size goes beyond 40k, the bandwidth utiliza-

tion drops quickly, because a larger buffer size means a longer

period of time to trigger fast retransmission. When the buffer

size goes below 10k, the bandwidth utilization drops quickly

too, because the buffer is too small to hold all packets for

reordering.

Figure 5 shows the impact of new congestion window size.

By setting cwnd to (n-1)/n*cwnd instead of 1/2*cwnd upon

fast retransmit, the bandwidth utilization increases, and the

system becomes more robust to packet loss. However, the dif-
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Fig. 3. The impact of double buffer in PSMC
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TABLE I
INITIAL SET UP TIME OF MULTIPLE PATHS

Number of paths Set up time (second)

2 10.3

5 12.1

10 14.8

50 20.4

ference between (n-1)/n*cwnd and actual residual bandwidth

seems not significant. The results indicate that (n-1)/n*cwnd

is a reasonable approximation to set congestion window size.

Now we study path related issues. Table I shows the initial

set up time of multiple paths. The delay primarily comes

from secure communication between participating hosts. The

relative long initial set up time makes PSMC more suitable

for long-live flows. We can also observe that the initial set up

time is scalable to the number of paths in use.

Table II shows the time to detect, delete, and add paths at

run time. We first started a large web download task with 5

paths in use (i.e. 1000 seconds to finish the download). We

then launched a DDoS attack against one path to break it down.

It took 4.1 seconds to detect the “bad” path by the PSMC

network monitoring module. It took another 5.8 seconds to

remove the bad path from the routing list, and 5.7 seconds

to recruit a new path. The traffic flow continued without stop

or significant fluctuation. It took 1022 seconds to finish the

download. The overhead is 2% , which is trivial to most long-

live flows.

TABLE II
PATH DETECTION, DELETION AND ADDITION

Action Time (second)

Detect a bad path 4.1

Delete a bad path 5.8

Add a new path 5.7

Download without attack 1000

Download with attack 1022

Overhead (1022-1000)/1000 = 2%
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Fig. 5. The impact of congestion window size.

We also run UDP tests on PSMC. The first test used

real player video streaming. We played a constant-bit-rate

(CBR) video at a rate of 5Mb/s. There were 10 paths of

2Mb/s available. By using single path connection, the video
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constantly paused and entered buffering mode. By using 3

paths in parallel, the video can be viewed smoothly. The

second UDP test used a UDP packet generator. There were 10

paths of 2Mb/s, 1 path of 200Kb/s, 1 path of 20Kb/s available.

We found out that for UDP, PSMC can effectively utilize

aggregate bandwidth, and bad paths have limited impact on

aggregate bandwidth. We also run a UDP/TCP competition

test. There was a multipath connection using two sub-paths

with the total bandwidth of 6Mb/s, and 2 TCP flows of 2Mb/s

each running on the connection. Then we launched a UDP

flow without rate control. We observed that the UDP flow

quickly consumed most of the available bandwidth, leaving

little share for TCP flows. Then we enforced a rate limiting

on UDP packets (1Mb/s), and the TCP flows started to recover.

We have done experiments mentioned in this section on

several different testbeds and environments. Due to page limit,

the results are not presented here, but most findings are

coherent to what we presented in this section.

V. CONCLUSION

In this paper, we design and implement a Proxy Server

based Multipath Connection (PSMC) system, which can utilize

multiple routes between two end hosts in parallel by striping

and reassembling packets across these routes. We summarize

the key issues in a multipath system and provide our solutions.

The experimental results show that PSMC can make good

usage of network resources and significantly improve network

performance and robustness.
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