
Encoding User Motion Preferences in Harmonic Function Path Planning

Giles D’Silva and Manfred Huber

Abstract— Humans have unique motion preferences when
pursuing a given task. These motion preferences could be ex-
pressed as moving in a straight line, following the wall, avoiding
sharp turns, avoiding damp surfaces or choosing the shortest
path. While it would be very useful for a range of applications
to allow robot systems or artificial agents to generate paths with
similar specific characteristics, it is generally very difficult to
capture and reproduce them from observed information since
user trajectories can not be easily generalized. To address this,
this paper introduces an approach that modifies a harmonic
function path planner to model the user’s motion preferences as
parameters which could then be used to generate new paths in
similar environments without the risk of collisions or incorrect
paths. Given a small set of user-specific trajectories and starting
from an initial, generic parameter configuration, this approach
incrementally minimizes the difference between the direction of
the user trajectory segments and the gradient of the parametric
harmonic function by modifying its underlying parameters,
thus capturing the trajectory preferences. Subsequently, these
parameters could be transferred to new, locally similar envi-
ronments and used to generate new paths. The use of harmonic
function parameters to represent the user preferences not only
facilitates customization of the path planner but also assures
that the customized planner remains complete and correct.

I. INTRODUCTION

Human motions to achieve a similar task are usually

distinctive and particular to their individualistic preferences.

Being able to capture such preferences and generate corre-

sponding paths would be very useful for a range of applica-

tions of robot systems or artificial agents, including assistive

wheelchairs, social robots, intelligent game characters, or

characters for social agent simulations, by allowing them to

better address the user’s implicit objectives and by generating

more realistic and diverse navigation behavior. To address

this need for more realistic or customized trajectories, path

planners that optimize global performance metrics [1] and

systems that generate more realistic human paths have been

studied [2], [3]. However, while these systems generate mod-

ified trajectories, the criteria used do generally not represent

individual preferences (but rather reflect global performance

metrics or effects imposed by the system dynamics) and are

designed manually rather than extracted autonomously from

examples of the navigation preferences.

One way to allow for broader personalization of the

autonomous generation of paths would be to pre-program

the path planner for each individualistic motion behavior.

However this would be a highly complex task given the

G. D’Silva is with the Department of Computer Science and
Engineering at the University of Texas at Arlington, TX 76019,
giles.dsilva@mavs.uta.edu

M. Huber is with the Department of Computer Science and Engineering at
the University of Texas at Arlington, TX 76019 huber@cse.uta.edu

large number of possible preferences for each user. A better

approach would be to model and autonomously learn these

preferences so that they can be automatically generated from

user information and be applied to new environments.

In this paper, a Harmonic function path planner was

selected as the basis for an approach to path personalization

because of its robustness, completeness, ability to exhibit

different useful modes of behavior, and rapid computation

[4]. The boundary conditions used by the harmonic function

motion planner assure that the agent maintains safe distances

from obstacles. To achieve the personalization, motion pref-

erences, represented through a set of trajectories extracted

from the system whose preferences are to be captured, are

modeled in the form of weight modifications that are then

used in the path planning process to generate paths with sim-

ilar ”characteristics”. The weight modifications are learned

automatically by minimizing the directional error between

the user trajectories and the computed gradient, allowing the

planner to optimize its policy. Since the influence of different

weights on the error decreases exponentially with distance,

a local assumption of weight influence on the error is used

to make the error minimization tractable.

The remainder of the paper first discusses related work

before the methodology and the algorithm are introduced

and evaluated on a number of path modification examples.

To simplify the notation, the derivation throughout this paper

is illustrated for a two dimensional path planning problem.

However, the approach can easily be extended into higher

dimensional configuration spaces, allowing it to be applied

to arbitrary path planning domains.

A. Related Work

Harmonic functions have been used by a number of

researchers to generate smooth, collision-free paths. Among

these, a number of approaches have also addressed the

question of modifying the paths that are generated by either

modifying parameters within the function representation or

by altering the boundary conditions under which the function

is relaxed. The boundary conditions selected can give rise

to different harmonic functions and the resulting paths vary

with respect to safety. In [5] a new harmonic function was

formulated by taking a linear combination of two common

boundary conditions to generate minimum time paths from

every point in the environment to the goal. However, this

approach towards path modification has limitations with

respect to the number of different paths that can be generated.

Path modification techniques have also been proposed in [6]

[7], where a hybrid planner combines harmonic functions

with probabilistic roadmaps to generate minimal paths.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5394

To achieve more flexible customization, the research by

Coelho [1] addresses how the conductances in a 2D resistive

grid of a harmonic function-based motion controller can be

adjusted to optimize a user-specified performance criterion.

The methodology used to update these conductances over

a grid equivalent circuit uses a policy iteration algorithm

in which the control policy is repeatedly modified until the

optimal policy generates a gradient which optimizes the

given performance index. The paths generated are safe and

the capability to reach its goal (correctness) is preserved at

every step of the policy iteration. However, this approach

is aimed at global optimization of the overall potential

function rather than at capturing locally expressible trajectory

preferences from user trajectory data. Trevisan [8] follows a

similar path to the modification of paths and shows that a

number of potential functions exist that do not possess local

minima based on which Fabio [9] proposed adding external

force fields to counteract the natural tendency of the agents to

follow the direction provided by the planner. This approach

suggests creating a potential field that includes a bias vector

that encodes separate weight changes for each dimension and

represents an external force field which captures different

agent preferences. However, the approach does not provide

any means to automatically extract the desired external force

field characteristics and, through the choice of the bias vector,

introduces limitations in terms of the types of customizations

that can be achieved. The approach presented in this paper

alleviates these limitations by allowing weights to be modi-

fied independently and by providing a framework that allows

for the automatic derivation of local weight changes.

II. METHODOLOGY

In this research, a modified harmonic function path planner

is used to generate customized policies. The distinctive paths

which the planner generates are here a direct result of the

preferences provided by a set of user specified trajectories.

Fig.1 shows an overview of the learning and evaluation

process used to extract the preferences from the sample

trajectories and translate them into weight parameters for

the harmonic function path planner.

Fig. 1. Desired path generation overview

In this approach, weights are learned using an iterative

process in which weights are modified and the harmonic

potential is re-relaxed to reflect changes in the computed

gradient. In every iteration the error is computed to determine

whether the user trajectories are successfully approximated

and if the error is below a threshold the process terminates.

A. Harmonic Functions

Harmonic functions for path planning were first proposed

by Connolly and Grupen [4] and have since been widely

used. Harmonic functions generate legal paths from any point

in the configuration space, if they exist, and the path taken is

a gradient descent on the potential field,, where φ is defined

over a domain Ω ⊂ ℜn and satisfies Laplace’s equation:

∇2φ =

n∑

i=1

∂2φ

∂x2
i

= 0

The control policy generated by a harmonic function path

planner is generic in nature and paths that are stereotyped

by user preferences remain unexplored. To address this, the

harmonic function used here utilizes a grid-based potential

where the value at a grid cell is computed as a weighted

average over its neighbors. This always assures the absence

of local extrema and thus ensures the correctness of the

paths generated. Let φ(xi, yj) be the potential value of the

harmonic function for a cell located at xi, yj and wn(xi, yj)
be the weight that connects the cell to its surrounding

neighbors. The equation for the modified harmonic function

in two dimensions can then be represented as

φ(xi, yj) = (φ(xi−1, yj) ∗ w1(xi, yj)

+φ(xi+1, yj) ∗ w2(xi, yj)

+φ(xi, yj+1) ∗ w3(xi, yj)

+ φ(xi, yj−1) ∗ w4(xi, yj))

(1)

where,

w1 + w2 + w3 + w4 = 1

1) Weight Representation: The interdependence of the

weights in Equation (1) can lead to constraints that have to

be obeyed when optimizing the potential field. To alleviate

these constraints, the weights are modeled here by functions

with independent parameters which are used in later sections

to capture the preferences of user motion trajectories. In par-

ticular, the four weights at each node are represented by the

three independent parameters g0, g1, g2 where g0 represents

a balancing factor between the X and Y dimensions while

parameters g1 and g2 model the bias between neighbors in

the X and Y dimension, respectively. Let w1, w2, w3 and w4

be the four weights of a node connecting it to each of its

neighbors, then the harmonic function in parametric form at

x, y can be represented as

φ(x, y) = g0[g1φ(x− 1, y) + φ(x + 1, y)(1− g1)]

+(1− g0)[g2φ(x, y − 1) + φ(x, y + 1)(1− g2)]
(2)

where,

0 ≤ g0, g1, g2 ≤ 1

To remove the limit constraints, the three parameters are

further encoded by three sigmoid functions gi = σ(ti) =

5395

1
1+e−ti

in order to obtain independent, unconstrained pa-

rameters, ti, which are updated by the algorithm. The value

of this sigmoid function converges to 0 as the sigmoid

parameter ti → −∞ and to 1 as ti → ∞. Given these pa-

rameter transformations, all updates made to the parameters

are independent of each other and do not result in a conflict

when minimizing the error function.

2) Potential Field Relaxation: Given a set of values for

the weight parameters, successive over-relaxation (SOR) is

used to solve the homogeneous system of linear equations

(see Equation (1)) representing the solution to the harmonic

function. This technique is based on the Gauss-Seidel iter-

ative method but converges much faster by accelerating the

approximation through a relaxation factor c, where 0 ≤ c ≤
2. The iteration is terminated if the magnitude of the update

falls below a specified residual value.

3) Gradient Computation: The policy generated by the

harmonic function path planner is retraced by following the

negative gradient of the potential field. The gradient provides

the direction of motion from every point in the environment.

The gradient ~πx,y at a particular point (x, y) on the grid, is

computed as the potential difference between its neighbors in

each dimension divided by twice the square of their distance.

Given the neighboring potentials φ(xi−1, yj);φ(xi+1, yj)
and φ(xi, yj+1);φ(xi, yj−1) in the X and Y dimensions,

respectively, the gradient ~πx,y is

~πx,y = (
φ(xi−1, yj)− φ(xi+1, yj)

2∆2
,

φ(xi, yj−1)− φ(xi, yj+1)

2∆2
)

where ∆ is the internodal distance between cells

III. MODIFYING WEIGHTS TO CAPTURE TRAJECTORY

PREFERENCES

To modify the control policy to match a user’s trajectory,

the symmetry between weights needs to be relaxed. A higher

weight value here indicates a stronger connection and vice

versa. Modifying the connection weights between the left

and right neighbors over the entire local area of a hallway,

shown in Fig.2, produces a change in trajectory from the

one in Fig.2A to the one in Fig.2B. The change is produced

by allowing the left wall to exert a greater repulsive force,

causing the agent to drive along the right side.

The policy generated by the modified planner still main-

tains all the characteristics of a good path planner. However,

modeling the effects of weight modifications on the gradient

can become very complex in a dense environment. E.g.

Fig.2C shows that the control policy for the same weight

modification in a crowded hallway is significantly different

and can not be easily understood. As a consequence, mod-

ifications can not easily be applied manually but rather an

automatic weight modification mechanism is needed.

IV. LEARNING WEIGHTS

Weight modifications can be made to relatively small

regions of the grid to better predict the behavior of the agent

Fig. 2. Generic trajectory

in that region. Weight modifications in small local regions,

however, may influence other regions by a magnitude which

is hard to formalize. Weights should thus be modified such

that the global effect is taken into account.

In the preference learning phase of the approach presented

here, the weights are adjusted iteratively until the control

policy closely approximates the reference policy provided

by a set of user trajectories. To do this, the planner tries to

minimize an error function, e, which represents the sum of

the angle differences between the directions of the reference

trajectories and the corresponding gradient directions of the

potential along the user paths.

e =
∑

node∈path

(1− cos(~π, ~∇P))3 (3)

The reference policy ~∇P is extracted from user trajecto-

ries and ~π is the gradient computed over the current potential

field. The third power is considered in order to magnify large

errors. Using this error function, gradient descent is used to

learn a set of weights which lead to a navigation policy which

deviates minimally from the user trajectories. The learning

phase terminates when the value of the error function e is

reduced below a specified threshold.

A. Policy Optimization

Algorithm 1 adjusts the set of weights W , to generate a

policy ~π, that approximates a user’s trajectory. This algorithm

modifies weights to minimize the error function in Equation

(3) by computing the derivative of the error with respect to

5396

the sigmoid parameters. Weights are updated and the new

gradient is computed. This process continues until the error

lies below a specified threshold ǫ.

Input: User trajectory

Output: Gradient matching user path

Compute the direction vectors for each node along the

user’s trajectory Compute ~π = - ~∇φ, given weights W

Compute error e

while (approximation error e is above a threshold ǫ) do

Compute ∂e
∂φ

for all nodes using error propagation

Compute the gradient ~∇e = ∂e

∂~t
=

∑
∂e
∂φ

.∂φ

∂~t

Update sigmoid parameters ~t = ~t + α~∇e

Adjust weights W

Compute ~π = - ~∇φ, given weights W

Compute error e
end

Algorithm 1: Weight Modification

Weight adjustments are computed by taking the derivative

of the error with respect to each of the sigmoid parameters

(tg0, tg1, tg2) and propagating the corresponding update back

into a modified weight set.

In order to compute the derivative, the chain rule is

applied as shown in Equation (4) to break the calculation

into addressable components.

~∇e =
∂e

∂~t
=

∑ ∂e

∂~π
.

∂~π

∂φ
.

∂φ

∂w
.

∂w

∂p
.

∂p

∂~t
(4)

where,
~t = (tg0, tg1, tg2)

T

1) Locality Assumption: The amount of influence a node

weight has on the error function depends on its distance

from a path node. While all node weights of the local

environment have an influence on the node’s potential, their

effect decrease exponentially with distance. To make the gra-

dient calculation feasible, a local approximation template is

designed which defines the weights that directly influence the

potential at a given node. This template is placed over each

node to find the nodes whose weights have direct influence

on the given node’s potential and is a local approximation

of the global effect of weights on the error at a node. The

template (shown in Fig.3) is designed such that it covers all

node weights which are less than two steps away from the

selected node. The potential of nodes outside the template

are assumed to be fixed and thus its weights have no direct

influence on the selected node.

Using this template, the change in error produced by these

weights can be calculated by taking the derivative of the error

with respect to each weight covered by the template. Each

weight directly or indirectly influences the potential at more

than one node and thus the derivative of the potential φq at

cell q with respect to the weights can be expressed as

∂φq

∂W
=

∑

qi∈N(q),1≤j≤4

∂φq

∂wj(qi)
(5)

Fig. 3. Weight influence template

where,

N(q) = {qi|qi ≤ 2 steps from q}

Node q is the node on which the template is placed and N(q)
is the neighborhood defined by the template.

2) Potential Error Propagation: While it is reasonable

to assume that a weight’s influence on the potential value is

local, the influence of potential changes on the error function

along a particular trajectory does not warrant such a local

assumption. In particular, in order to minimize the error

along a trajectory it might be necessary to adjust potential

values in cells at a significant distance. An algorithm similar

to the backpropagation is used here to propagate the error

outward from the nodes whose directional error is known.

These nodes act similar to the hidden nodes of a feed forward

neural network and the error is propagated sequentially

backward one step at a time to avoid recursive dependencies.

Manhattan distance is used to label nodes to represent the

propagation structure shown in Fig.4.

Fig. 4. Network for error propagation

In the first iteration every neighbor of a path node gets

5397

labeled 1 and incrementally all other nodes are labeled.

Nodes that are marked as the goal or an obstacle have no

error and so the derivative of its potential with respect to

its weights is always zero. The potential error at a node is

calculated by finding the derivative of the error with respect

to its potential. The derivative for each node is initialized

to zero and, as seen in Algorithm 1, the derivative of the

error with respect to the potential at nodes labeled 1 is first

computed. These nodes are neighbors to at least one of the

nodes that lie along the path and thus have a directional error.

The change in potential at a node qi labeled 1 has a direct

influence on the directional error of its neighbors and the

derivative of the error function with respect to its potential

φqi
for label(qi) = 1 is calculated as follows: [1],

∂e

∂φqi

=
∑

qj∈M(φqi
)

∂(1− cos(~π, ~∇P))3

∂φqj

=
∑

qj∈M(φqi
)

3(1− cos(~π, ~∇P))2.
∂

∂φqj

[
~π.~∇P

|~π||~∇P |
]

(6)

Where M(φqi
) are the immediate successors of qi under

the propagation structure (Fig.4). ~∇P is the optimal control

policy we are trying to match, and ~π is the control policy

we modify to achieve a match. Following this,

∂

∂φqj

[
~π.~∇P

|~π||~∇P |
] =

1

|~π||~∇P |
[

∂~π

∂φqj

.~∇P −
~π.~∇P

|~π|2
(

∂~π

∂φqj

.~π)]

and given that ~π = −~∇φ, ~π at node qi can be expressed as

~πk =
φqi−k

− φqi+k

2∆2

∂ ~πk

∂φqj

=
1

2∆2
[
∂φqi−k

∂φqj

−
∂φqi+k

∂φqj

]

where ~πk is the kth dimension of the policy vector, qi−k

and qi+k are the left and right neighbors of node qi in the

kth dimension of the grid, and ∆ is the internodal distance.

The derivative of the error with respect to the potential

φqi
, for nodes qi with label(qi) ≥ 2 can subsequently be

computed by propagating the error according to

∂e

∂φqi

=
∑

qj∈M(φqi
)

ηqj
.

∂φqj

∂φqi

where,

ηqj
=

∂e

∂φqj

3) Computing Parameter Adjustments: Given the calcula-

tion of the derivative of the error with respect to the potential

described in the previous sections, it remains to determine the

parameter space gradient of the weights in order to complete

the gradient calculation step in Algorithm 1 and to allow for

the weight update. From Equation (4) the parameter space

gradient ∂φ
∂t

can be reduced to Equation (7):

∂φ

∂t
=

∂φ

∂ ~w

∂ ~w

∂~p

∂~p

∂~t
(7)

where,

~w = (w1, w2, w3, w4)
T

~p = (g0, g1, g2)T

~t = (tg0, tg1, tg2)
T

Since φq = φ(x, y) is computed as a weighted average

of its neighbors, its derivative with respect to the weights

in the local template can be computed. For this, first the

derivative for the direct weights of the node at the center of

the template (see Fig.3) is computed from Equation (1). Then

the derivative with respect to weights of nodes at distance

greater than 0 in the template can be computed indirectly.

Let wi(qj) be weight i of the node located at qj where qj

is at a distance d from q in the local template. Then the

derivative can be expressed as

∂φq

∂wi(qj)
=

∂φq

∂φqj

∂φqj

∂wi(qj)

Similarly, the influence of other weights in the local template

can be calculated. To compute ∂ ~w
∂~p

, reference is made to

Equation (2) to see how the potential can be expressed in

terms of the parameters. On solving for Equation (2), weights

can be expressed as a function of the parameters. The last

term from Equation (7) can be computed as.

∂~p

∂~t
=

1

∂~t
(

1

1 + exp−~t
) = ~p− (~p)2

4) Weight Update: After each iteration of the policy

optimization process, weights are updated to reflect changes

in the gradient of the new potential field. Since these weights

are represented in a parametric form they are updated by first

updating their representing parameters. These parameters,

modeled as sigmoid functions, are updated as follows

p = σ(t) =
1

1 + exp(−t)

where the sigmoid parameters were updated by gradient

descent on the error function using learning rate α.

t← t + α~∇e

The weights for a node, expressed as a function of the param-

eters, are now updated with the newly computed parameters.

V. EXPERIMENTS AND RESULTS

In the experiments performed here, the environment is

represented using a grid map of size 32 × 32 composed

of evenly-spaced cells . This map is a discretized C-space

representation of a local environment and is enclosed within

an artificially created boundary in order to relax the potential.

In this C-space the agent is represented as a point and all

obstacles and goals are mapped to grid cells. The harmonic

function path planner is used to generate the control policy

using Dirichlet boundary conditions. According to Dirichlet’s

condition the obstacles are set at a fixed maximum potential.

Hence every cell that represents an obstacle is given a

potential value of 1 and the goal a potential of 0. The cells

representing free space are initialized to a value of 0. Motion

5398

Fig. 5. Original and modified harmonic potentials for Experiment 1 (top left), 2 (top right), 3 (bottom left), and 4 (bottom right)

preferences of a user in a given environment are captured

by selecting a path on the grid leading to the goal. The

grid is then relaxed using symmetric weights over the entire

region to create a potential field. The negative gradient of this

potential field is the default generic path that the user would

take to reach its goal. The harmonic function path planner

then modifies these symmetric weights in order to generate a

negative gradient whose gradient direction approximates the

user’s motion direction which was selected previously.

To investigate the applicability of the approach to arbitrary

target trajectories, a series of experiments was performed

where user trajectories were hand created. These experiments

all required significant changes in the gradient direction.

For all the experiments simple user trajectories were taken

to capture motion preferences. Using the trajectories, the

weights were then modified to adjust the harmonic potential

to reflext the corresponding preferences. Fig.5 shows the

original and the customized policies for four of the exper-

iments performed where the dark blocks indicate obstacles

and the vector in each cell represents the gradient direction

of the harmonic potential. The wall experiment (Experiment

1) shows how a user preference, inidicated by the sequence

of cells representing the trajectory, forces the agent to move

around the wall positioned to its right. Fig.5(1) shows how

the original gradient computed using symmetric weights

results in a generic path which passes below the obstacle

while the modified path moves around the top of the wall.

The original generic path for an agent moving down a

hallway is shown in the left of Fig.5(2). The agent follows

the negative gradient down the center of the hallway. If so

desired, however, the weights can be trained to lead to a path

that causes the agent to move in a S-curve as seen in the right

of Fig.5(2). In this experiment it took 104136 iterations until

the error fell below 10−8. The learning curve for the weight

adjustment is shown in Fig.6.

Fig.5(3) shows a more complex example of a user trajec-

tory modification where the agent is forced in a circle about

the goal before reaching it. This is an extremely complex path

given that the goal always exhibits attractive force causing

the negative gradient to point towards the goal. It took the

policy optimizer 268224 iterations to adjust the weights and

generate a policy which closely matches the user trajectory.

The original generic path computed for this experiment can

be see in the left of Fig.5(3). The directional error between

the user trajectory and the computed gradient after 268224
iterations can be see in Table I. The learning curve for this

experiment can be seen in the middle of Fig.6.

Fig.5(4) shows an example with five potential goals where

the gradient computed using symmetric weights causes the

agent to select the goal in the center. To introduce a pref-

erence for a different goal, a user trajectory is generated

which leads to the goal at the top. The right of Fig.5(4)

shows the modified gradient computed after extracting mo-

tion preference from the user path and as a result, leading to

the execution of a different task. It took the policy optimizer

224262 iterations to generate a policy which matches the user

selected trajectory. The learning curve for this experiment

can be seen on the right in Fig.6.

5399

Fig. 6. Learning curves for Experiments 2, 3, and 4 (from left to right)

TABLE I

ANGLE ERRORS FOR EXPERIMENT 3

Grid Loc. Angle Diff.(Radians) Grid Loc. Angle Diff.(Radians)

[14][21] 0.06848875 [15][21] 0.05435131

[16][21] 0.04183170 [17][21] 0.04436677

[18][21] 0.07271755 [19][21] 0.10047857

[13][20] 0.08915985 [20][20] 0.11065160

[12][19] 0.08554078 [21][19] 0.08803131

[11][18] 0.08507000 [21][18] 0.08777382

[10][17] 0.06842601 [21][17] 0.05749669

[10][16] 0.17441738 [16][16] 0.06088347

[21][16] 0.16680097 [10][15] 0.04815570

[17][15] 0.03193391 [21][15] 0.00694400

[10][14] 0.13430074 [18][14] 0.03863792

[19][14] 0.05785567 [20][14] 0.07075152

[10][13] 0.05264248 [10][12] 0.12093754

[10][11] 0.05311862 [10][10] 0.07762738

[10][9] 0.02983270 [11][8] 0.07026553

[12][7] 0.03069032 [13][6] 0.06258808

[14][5] 0.02431623 [15][4] 0.06838232

VI. CONCLUSIONS AND FUTURE WORK

To capture user motion preferences and allow a robot or

artificial agent to generate corresponding trajectories, this pa-

per presents an approach to customized path planning where

a harmonic function path planner is modified by changing

its underlying parametric representation. Harmonic function

parameter modification here requires user trajectories as a

reference for desired paths and uses them to compute an error

function which expresses the angular difference between the

user paths and the trajectories generated by following the

gradient of the harmonic potential. Using a local assumption

about the influence of parameters on the directional error, and

employing error propagation techniques, gradient descent in

parameter space is performed on this error function in order

to allow the path planner to generate paths that approximate

the user’s reference trajectories. The policy is here iteratively

modified according to the gradient until the desired user

trajectory is approximated. Various complex user paths were

considered to evaluate the performance of the policy opti-

mization algorithm and results observed have shown closely

matching paths produced by the harmonic function path

planner. Using this, the planner can be used to achieve more

customized trajectories for the control and motion planning

of semi-autonomous wheelchairs, semi-autonomous mobile

robots, robotic arms or intelligent game characters.

A. Future Work

Some paths could be extremely complex for the harmonic

function path planner to learn through weight modification.

To alleviate this, additional methods for the safe modification

of harmonic potentials, including the use of constrained

potential field relaxation at selected locations will be studied.

Another issue is that not every motion preference can be

captured from user trajectories alone. It might thus be

necessary to also learn personalities, behaviors, conditions

and use them to infer hidden preference patterns.

REFERENCES

[1] J. A. Coelho, R. Sitaraman, and R. A. Grupen, “Parallel optimization
of motion controllers via policy iteration,” in Advances in Neural

Information Processing Systems 8, Denver, CO, 1995, pp. 996–1002.
[2] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “Opti-

mizing principles underlying the shape of trajectories in goal oriented
locomotion for humans,” in Int. Conf. Humanoid Robots, 2006.

[3] D. C. Brogan and N. L. Johnson, “Realistic human walking paths,” in
Int. Conf. Comp. Animation and Social Agents, 2003.

[4] C. I. Connolly and R. A. Grupen, “On the applications of harmonic
functions to robotics,” J. Robotic Systems, vol. 10, pp. 931–946, 1993.

[5] S. P. Singh, A. G. Barto, R. Grupen, Christopher, and C. Connolly,
“Robust reinforcement learning in motion planning,” in Advances in

Neural Information Processing Systems 6, 1994, pp. 655–662.
[6] M. Kazemi, M. Mehrandezh, and K. K. Gupta, “Sensor-based robot

path planning using harmonic function-based probabilistic roadmaps,”
in IEEE Int. Conf. Robotics Automat., Seattle, WA, Jul 2005, pp. 84–89.

[7] M. Kazemi and M. Mehrandezh, “Robotic navigation using harmonic
function-based probabilistic roadmaps,” in IEEE Int. Conf. Robotics

Automat., New Orleans, LA, Apr 2004, pp. 4765–4770.
[8] M. Trevisan, M. A. Idiart, E. Prestes, and P. M. Engel, “Exploratory

navigation based on dynamical boundary value problems,” vol. 45,
no. 2, pp. 101–114, 2006.

[9] F. Dapper, E. Pretes, M. A. Idiart, and L. P. Nedel, “Simulating
pedestrian behavior with potential fields,” in Advances in Computer

Graphics, vol. 4035, Sep 2006, pp. 324–335.

5400

