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Abstract— This paper presents tracking and set point con-
trollers for parallel mechanism based on the notion of a pro-
jection operator. The controller reported here works whether
the system is overactuated or not; plus one does not need to
derive the minimal-order dynamics model of the system. Since
the dimension of projection matrix is fixed, the projection-
based controller does not need to change its structure whenever
the mechanical system changes its topology or number of
degrees of freedom. Moreover, the derivation of the projection-
based controller seems to be simpler than the inverse dynamics
controller derived using Lagrange-D’Almbert formulation. This
is because the structure of the former controller can be obtained
from the Jacobian matrix of the constraints, which, in turn,
can be deduced from the linkage geometry. The stability of the
projection-based controllers are rigourously proved, while the
condition for the controllability of parallel manipulators is also
derived in detail. Finally, experimental results are appended.

I. INTRODUCTION

The advantages of parallel manipulators such as their high

stiffness, bandwidth and accuracy capacity make them more

suitable than serial manipulators for certain industrial appli-

cations. Moreover, parallel manipulators have great payload

capacity because not only their actuators are installed at the

base (resulting in low effective inertia), but also much of the

link gravity load appears in the form of constraint forces and

hence actuation then takes less effort. However, in addition

to their relatively low range of motion, parallel manipulators

have a complex dynamics because of the existence of closed

kinematic chains and passive joints that makes control design

a challenging task.

Control algorithms reported in the literature for parallel

manipulators can be classified in two categories: Those

which are not based on the dynamics model of the system,

and the ones that are, [1]–[7]. Parallel manipulators can

be transformed into an open-chain tree-structure system

by cutting all closed links at several points [1], [4], [8].

Therefore, in essence, control of parallel manipulators is

tantamount to control of constrained multibody systems

where the conventional method such as Lagrange multipliers

[8], [9] can be applied. What makes the problem of controller

design more challenging is that, if the number of independent

constraints is larger than the number of passive joints, the

system will become overactuated. On the other hand, when

the numbers of independent constraints and passive joints

are equal, the parallel manipulator system has as many

controllable active joints as DOFs. Therefore, the controller

must be able to handle both these cases.
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A dynamic formulation of parallel manipulators with

redundant actuators using the D’Alembert’s principle is de-

scribed by Nakamura et al. [1]. Derivation of the D’Alembert

formulation was simplified in [4] for control purposes. Three

controllers that took into account the overactuation were re-

ported in [4] for redundantly actuated parallel manipulators.

Two of these controllers are model-based, and the other

is a simple PD controller. However, the stability of these

controllers was not analyzed.

In this work, we propose tracking and set point controllers

for parallel manipulator based on the notion of a projection

operator [3], [10] that are proven to be exponentially stable.

The controller reported here works whether the system is

overactuated or not; plus one does not need to derive the

minimal-order dynamics model of the system. Since the

dimension of projection matrix is fixed, the projection-based

controller does not need to change its structure whenever

the mechanical system changes its topology or number of de-

grees of freedom. Moreover, the derivation of the projection-

based controller seems to be simpler than the Lagrange-

D’Almbert formulation [1], [4] because the structure of the

former controller can be obtained from the Jacobian matrix

of the constraints, which, in turn, can be deduced from

the linkage geometry. The stability of the projection-based

controllers are rigourously proved, while the condition for

the controllability of parallel manipulators is also derived in

detail.

This paper is organized as follows: Section II presents the

optimal kinematic relation between the tangential component

of entire torque vector and the vector of actuated joints using

the notion of projection operator. The tangential component

of the torque vector is determined in sections III-A and

III-B for tracking control and set point control of parallel

manipulators, respectively. A dynamic estimator to estimate

the states of passive joints is described in Section IV. Then,

the condition for controllability is derived in Section V.

Finally, Section VI reports some experimental results.

II. MODELLING OF PARALLEL MANIPULATOR BASED ON

THE NOTION OF PROJECTION

In principle, parallel manipulators are constrained multi-

body systems. By cutting each loop of a parallel mechanism

at one of the unactuated joints, the parallel manipulator can

be transformed into a constrained mechanical system con-

sisting of an open-loop tree-structure coupled by a series of

algebraic constraint equations [1], [8]. A systematic method

to create the dynamic model of a parallel manipulator in

the form of an open-loop tree structure can be found in

[1]. In this work, we assume that the model of the parallel
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mechanism in the form of a constrained multibody system

has been already developed through a method similar to what

is described in [1], [8].

The generalized coordinates of the open-loop tree-

structure mechanism

q =

[

qa

qp

]

contain n active joints and m passive, joints denoted by

qa ∈ R
n and qp ∈ R

m, respectively. Unlike the active joints,

the passive joints are not instrumented with any sensor or

actuator. There are r constraint equations corresponding to

the cut multi-loop closed-chain. The constraint equations at

the velocity level are described by

Aqq̇a + Apq̇p = 0, (1)

where unless n = r or m = r, neither of these two matrices

in the above is square. The above equation can be written in

a more compact form as

Aq̇ = 0 ∈ R
r, (2)

where A ≡
[

Aa Ap

]

. Note that (2) may or may not

contain redundant constraint equations.

Now, let us assume the following holds:

Assumption 1: The Jacobian Ap remains full-rank.

Then, by making use of (1), one can uniquely compute the

value of q̇p from the measured value of q̇a by

q̇p = Qq̇a, where Q , −A+
p Aa, (3)

with A+
p being a right inverse of Ap, i.e., ApA

+
p = 1.

The full-order dynamics equations of a constrained me-

chanical system can then be derived as

Mq̈ + C(q, q̇)q̇ + g(q) = τ − τ c (4)

which apparently is subject to the constraint equation (2),

where vector τ ∈ R
n+m represents the generalized force

in the active and passive joints; τ c represents the general-

ized constraint force associated to the Lagrange multipliers;

M(q) is the (n + m)× (n +m) inertia matrix; C(q, q̇)q̇ is

the (n + m)-dimensional vector containing the Coriolis and

centrifugal terms; and g(q) ∈ R
n+m is the gravity torque.

Now, given the r × (n + m) constraint Jacobian ma-

trix A, we can uniquely define symmetric matrix P ∈
R

(n+m)×(n+m), the null-space orthogonal projector of A,

as [11]

P , 1n+m − A+A (5)

where 1n+m is the (n + m) × (n + m) identity matrix.

Because P is an orthogonal projection onto the null-space

of the Jacobian—also known as the tangent space of the

constraint manifold—any vector in N (A) is projected onto

itself, whereas any vector perpendicular to the tangent space

lies in the null-space of P . The vector q̇ of generalized

velocities belongs to the former group as Aq̇ = 0, and

the vector of constraint generalized forces τ c belongs to the

τ

τ⊥
τ‖

B

Fig. 1. The generalized torque is brought to subspace B by adding the
impotent torque component τ⊥.

latter because ∀ q̇ ∈ R (P ) ≡ N (A) , q̇T τ c ≡ 0. In other

words, these two relations hold:

P q̇ = P T q̇ = q̇, and Pτ c = 0. (6)

Hence, premultiplying (4) by P , one can eliminate τ c from

the set of equations:

PMq̈ = P
(

τ − C(q, q̇)q̇ − g(q)
)

. (7)

Moreover, the vector of generalized forces τ can be

decomposed into two components denoted by subscripts ‖

and ⊥, lying in the orthogonal subspaces the tangent space

N (A) and the null-space of P , respectively:

τ = τ‖ + τ⊥. (8)

Because τ⊥ ∈ N⊥(A) and the constrained motion occurs

in N (A), by definition, this component of the actuation

generalized forces does not contribute to the motion of the

system [10].

To keep the actuation torque to a minimum, the control law

must specify a control torque τ‖ that lies in the constraint

tangent plane. However, the control torque thus computed

may not actually be realizable in the system as it may need

actuation in the unactuated joints, i.e., τ‖ may have non-

zero values among its last m entries. Because the passive

joints are unactuated, the vector of the generalized forces

should contain as many zeros as the number of the passive

joints. There are n single-DOF active joints and m two-DOF

passive joints. Thus, the generalized input force will be of

this form:

τ = τ‖ + τ⊥ =

[

τa

0

]

(9)

where vector τa ∈ R
n represents the actuation torque,

applied at the active joints. This implies that any admissible

generalized force satisfies

B τ = τ , and τ ∈ B , R(B), (10)

in which orthogonal projection B onto the actuator space B
is defined as

B ,

[

1n 0n×m

0m×n 0m×m

]

. (11)

The control law (23) produces control torques that are

completely in the tangent space. However, these torques may

not necessarily be admissible, meaning that they may not
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lie in the range of B. Therefore, we need to modify the

motion control law (23) so as to fulfill the condition in (10).

If N (A) ⊆ R(B), then (10) is automatically satisfied by

choosing τ = τ‖, where τ‖ is obtained from (23). Otherwise,

we need to add an N⊥ component, say τ⊥, to τ‖ so that

τ = τ‖ + τ⊥ lie in B; see Fig. 1. Note that, since τ⊥
does not affect the system motion at all, the motion tracking

performance of the controller is preserved.

Pre-multiplying both sides of (9) by P , we arrive at

τ‖ =
[

P1 P2

]

[

τa

0m

]

= P1τa, (12)

in which the projection matrix has been partitioned into

submatrices P1 ∈ R
(n+m)×n and P2 ∈ R

(n+m)×m.

Remark 1: The two submatrices P1 and P2 can be used

to select the q̇a and q̇p parts of q̇:

q̇a = P T
1 q̇ and q̇p = P T

2 q̇ (13)

Now given τ‖, equation (12) will have at least one solution

for τa if

N (A) ⊆ R(P1). (14)

In that case, there is a τa that can produce the generalized

torque control τ‖. The minimum-norm solution can be ob-

tained using the pseudo-inverse of P1:

τa = P +
1 τ‖ ⇒ ‖τa‖ → min . (15)

One can readily verify that the generalized torque generated

by (15),

τ =

[

P +
1 τ‖
0

]

,

satisfies Pτ = τ‖ meaning that the tangential component of

the admissible torque vector has not changed.

A. Actuation Saturation

If the actuator torque limitation is taken into account,

then the problem of finding optimal actuator torque can be

formulated by

min ‖τa‖ (16a)

subject to: h = P1τa − τ‖ = 0 (16b)

c = |τa| − τmax ≤ 0 (16c)

where |τa| , col(|τa1
| , · · · , |τan

|) and τmax ,

col(τmax1
, · · · , τmaxn

). The above quadratic optimization

program with r equality constrains (16b) and n inequality

constraints (16c) can be solved by minimizing the quadratic

function over a polyhedron [12]. Clearly, in the absence

of the inequality constraints (16c), the optimal solution

coincides with the pseudo-inverse solution (15).

III. PROJECTION-BASED CONTROLLERS

The following sections present tracking control and set-

point control of parallel manipulator based on the projection

approach.

A. Tracking Control Using Inverse Dynamics

The number of independent generalized coordinates of the

system is the DOF of the system d = n + m − r′, where

r′ ≤ r is the number of independent constraints. This means

that one can control the constrained mechanical system by

only controlling an independent set x(q) ∈ R
k of the

generalized coordinates, where

k ≤ d.

Now, differentiation of the given function x(q) with respect

to time yields

ẋ = Λq̇, and ẍ = Λ̇q̇ + Λq̈ (17)

where Λ = ∂x(q)/∂q ∈ R
n×k. Since vector x(q) consti-

tutes a set of independent functions, the Jacobian matrix Λ
must be of full rank.

Now, we propose the projected inverse-dynamics control

law as follow

τ‖ = P
(

Cq̇ +g) +PMΛ+
(

− Λ̇q̇ + ẍd + KDė +KP e
)

,
(18)

where e = xd−x is the position tracking error, and KP > 0
and KD > 0 are k × k gain matrices.

Theorem 1: Tracking error of system (4) under the control

law (18) exponentially converges to zero.

PROOF Substituting (18) into (7) yields dynamics of the

closed loop system as

PMΛ+
(

ë + KDė + KP e
)

= 0 (19)

The stability proof rests on showing that matrix PMΛ+

is full rank. In a proof by contradiction, we will show that

the latter matrix is indeed full rank. If the matrix is rank

deficient, then there must exist a non-zero vector ζ such that

PMΛ+ζ = 0 where ζ 6= 0 (20)

Denote ξ , Λ+ζ. Then, since R (Λ+) ⊆ R (P ), we can

say ξ ∈ R (P ) meaning that Pξ = ξ. Moreover, ξ 6= 0
because matrix Λ+ is full rank and ζ 6= 0. Therefore, pre-

multiplying both sides of (20) by ξT yields

ξT Mξ = 0 where ξ 6= 0, (21)

which is a contradiction because M is a positive-definite

matrix. Consequently, matrix PMΛ+ can not be rank

deficient and the only possibility for (19) to happen is that

the expression inside the parenthesis of (19) is identically

zero. This completes the proof by noting that the gains are

positive definite. Thus x → xd, ẋ → ẋd and ẍ → ẍd as

t → ∞. �

Finally, a solution to the optimal actuation torque can be

obtained by substituting (18) into either (15) or (16a).

B. Regulation Using Lyapunov Control

In this section, we assume that the control objective is

to regulate the independent set x(q) ∈ R
d to their desired

values xd, i.e., ẋd = ẍd = 0. In view of the property of the

projection and (17), we can say

ẋ = ΛP q̇. (22)
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Now, let us consider the following control law:

τ‖ = −PΛT
(

KDẋ + KP (x − xd)
)

+ Pg(q) (23)

where KD and KP are d × d, positive-definite feedback

gains.

Theorem 2: The constrained mechanical system (4) under

the control law (23) asymptotically converges to the desired

position xd.

PROOF: Substituting control law (23) in the dynamics

equation (7), we obtain

PMq̈ = −PC(q, q̇)q̇ − PΛT KDẋ − PΛT KP e, (24)

where e = x − xd is the set point error. Now, consider the

following candidate Lyapunov function:

V =
1

2
q̇T Mq̇ +

1

2
eT KP e, ∀ q̇ ∈ N (A). (25)

Then, using (22) and the first of (6) and knowing that

Ṁ −2C is a skew-symmetric matrix [13], one can compute

the time-derivative of the above function along the solution

of (24):

V̇ =
1

2
q̇T Ṁq̇ + q̇T Mq̈ + ẋT KP e

=
1

2
q̇T Ṁq̇ + q̇T PMq̈ + ẋT KP e

= − ẋT KDẋ ≤ 0

which is negative-semidefinite. Clearly, we have V̇ = 0 only

if ẋ = 0, or if q̇ = 0 because there is a one-to-one

relationship between ẋ and q̇—recall that here we take x ∈
R

d. Now, substituting ẋ = 0 and q̈ = q̇ = 0 in (24), we can

find the largest invariant set with respect to system (24) as

the following

Ω = {x, ẋ : ẋ = 0, PΛT Kp(x − xd) = 0} (26)

On the other hand, from (22), one can see that ΛP —and

thus its transpose PΛT —must be a full-rank matrix as ẋ

are selected to be a complete set of independent generalized

velocities. Therefore, the vector equation inside (26) can only

hold if x − xd vanishes. Then, Ω = {x = xd, ẋ = 0} is

the largest invariant set which satisfies V = 0. Therefore,

according to LaSalle’s Global Invariant Set Theorem [14],

[15, p. 115], the solution of system (24) asymptotically

converges to the invariant set Ω. Consequently, as the time

progresses, x asymptotically approaches its desired value

xd. �

Remark 2: The control torque proposed above is of min-

imal norm in the sense that it does not contribute to the

constraint forces.

Finally, substituting τ‖ from (23) into (15), we can derive

the motor-torque control law as

τa = −P +
1 PΛT

(

KDȧ+KP (x−xd)
)

+P +
1 Pg(q). (27)

−

+
∫

Q

AT
p Kwφ(q, q̂p)

q̇a

qa

q̂p

˙̂qp

Fig. 2. Estimating the states of the passive joints

IV. DYNAMIC ESTIMATOR

Implementation of the controllers described in sections III-

A and III-B require the values of the states of both active

and passive joints. Since only active joints are instrumented

with position (and velocity) sensors, the values of the states

of passive joints should be estimated from those of the

active joints. Having computed q̇p from (3), one can then

integrate it to obtain the time-history of the passive-joint

variables. The integration, however, will inevitably lead to

a drift in the position error. In order to suppress this drift,

we use a dynamic estimator which employs the constraint

equations φ(qa, qp) = 0 ∈ R
r as a measure of the estimation

error; note that A = ∂φ/∂q. For convenience, it would be

easier to use the same number of “measurements” as the

number of variables to be estimated. Therefore, we choose

a combination φ′ ∈ R
m of the constraint equations defined

by

φ′ , Wφ,

where W is a m × r full-rank matrix; in its simplest form,

W can be chosen as a selection matrix that picks m
independent equations of the r constraints.

As shown in Fig. 2, to obtain the estimate of the value of

the passive joints q̂p, we realize the dynamic estimator by

closing the loop using an AT
p Kwφ feedback. This feedback

and the feedforward given by (3) result in

˙̂qp = Q(qa, q̂p)q̇a − AT
p (qa, q̂p)Kw φ(qa, q̂p), (28)

where estimator gain matrix Kw ∈ R
r×r is constructed

from a positive-definite matrix K ∈ R
m×m and the weight-

ing matrix W as

Kw = W T KW

Note that the inputs and outputs of the estimator loop are

{qa, q̇a} and {q̂p, ˙̂qp}, respectively.

Proposition 1: Let us assume that Ap remains a full-rank

matrix during the estimation precess, and that an estimate of

qp is obtained from system (28). Then, the constraint equa-

tion φ′(qa, qp) as a function of the estimated values of the

passive joints globally uniformly asymptotically converges

to zero. The estimator will also be globally exponentially

stable.
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PROOF: Consider the positive-definite Lyapunov function

candidate

V =
1

2
φ′T (qa, q̂p)Kφ′(qa, q̂p),

which satisfies the following bounds

λmin(K) ‖φ′‖
2
≤ V ≤ λmax(K) ‖φ′‖

2
. (29)

Differentiating V with respect to time along the trajectories

of (28) yields

V̇ = φ′T KW
(

Aaq̇a + Ap
˙̂qp

)

= φ′T KW
(

Aaq̇a + ApQq̇a − ApA
T
p W T Kφ′

)

= −φ′T K(WAp)(WAp)T Kφ′

≤ −λ2
min(WAp)λ

2
min(K) ‖φ′‖

2
. (30)

Therefore, based on the Lyapunov stability theory for non-

autonomous system [15, p. 138], it can be inferred from (29)

and (30) that φ′(qa, q̂p) = 0 must be a globally uniformly

asymptotically stable equilibrium point of the system (28).

This means that, as t becomes large, φ′(qa, q̂p) approaches

zero. Consequently, q̂p will approach the actual value qp, and

φ′(qa, q̂p) will asymptotically vanish. Furthermore, because

the bounding functions of V and V̇ are of the form a ‖φ′‖b

where a and b are strictly positive constants, the system is

also globally exponentially stable [15, p. 140]. �

Apparently, the estimator (28) is similar to the closed-

loop inverse kinematics (CLIK) scheme [16], [17], where the

inverse kinematics problem is solved by reformulating it in

terms of the convergence of an equivalent feedback control

system. It should be noted that, whereas the conventional

CLIK algorithm [16], [17] only confines the constraint error

inside a small ball, our estimator asymptotically eliminates

it.

V. KINEMATIC CONDITIONS FOR CONTROLLABILITY

Condition (14) may seem too restrictive or difficult to

satisfy, especially that one cannot easily manipulate either of

the two subspaces involved to satisfy the condition. However,

this concern is a nonissue. In fact, we can show that, if

Assumption 1 holds, (14) is automatically satisfied. In other

words, if the values of the passive joints can be uniquely

determined from those of the active joints, then they can

also be changed to their desired values.

Proposition 2: If the Jacobian matrix Ap is full-rank, then

i) there is no nonzero vector that lies in both N (A) and

N (P T
1 ):

N (P T
1 ) ∩ N (A) = ∅ (31)

ii) the range of P1 is the same as the null-space of the

constraint Jacobian:

R(P1) = N (A). (32)

PROOF: We prove the first part of the proposition by con-

tradiction. To this end, let us consider a vector ξ 6= 0 that

lies in both N (A) and N (P T
1 ). Then, by definition, ξ must

satisfy both

Aξ = 0 and P T
1 ξ = 0. (33)

TABLE I

MANIPULATOR’S LINK PARAMETERS (INCLUDED ARE MASS AND

INERTIA OF THE MOTORS).

Properties Link 1 Link 2 Link 3 Link 4

Link mass (kg) 0.773 0.407 0.327 0.15
Link length (m) 0.30 0.20 0.12 0.05

Link inertia (kgm2) 0.058 0.015 2.4 × 10−3 3 × 10−4

Center of mass (m) 0.25 0.18 0.05 0.04

The first relation is the same as (1); as such, one can divide

ξ into two sub-arrays u ∈ R
n and v ∈ R

m—corresponding

to q̇a and q̇p, respectively—such that ξT = col(u, v).
Moreover, if Ap is full-rank, one can compute v from u

using a relation similar to (3): v = Qu. Then, comparing

the second of (33) with (13), we can see that

u = P T
1 ξ = 0 ⇒ v = Qu = 0

=⇒ ξ ≡

[

u

v

]

= 0,

which is a contradiction, i.e., the only vector ξ that sat-

isfies (33) is the zero vector, the trivial solution. That

completes the proof of the first part of the proposition.

For the second part, we notice that (31) amounts to

N (A) ⊆ N⊥(P T
1 ). (34)

To relate the above relation to the range of P1, we resort to

the fundamental theorem of linear operator transformation,

which states that the range of a linear operator is the same

as the null-space orthogonal of its transpose.1 For P1, this

means

R(P1) = N⊥(P T
1 ) (35)

which combined with (34) results in N (A) ⊆ R(P1).
However, R(P1) is evidently a subset of R(P ) ≡ N (A).
Hence, we must have

N (A) ⊆ R(P1) ⊆ N (A) ⇒ R(P1) = N (A),

which completes the proof. �

The results of the above development can be briefly stated

as follows:

Corollary 1: Let Assumption 1 holds. Then,

i) the states of the passive joints can be uniquely obtained

from those of the active joints, e.g., equations (3) or

(28), and

ii) the torque-control laws (18) and (23) applied to the

active joints can achieve the tracking and set-point con-

trol, respectively, while demanding minimum actuation

force.

VI. EXPERIMENT

Fig.3 shows a four-link parallel mechanism with three

active joints and two passive joints. The active joints are

driven by geared motors RH-8-6006, RH-11-3001, and RH-

14-6002 from Hi-T Drive that are equipped with their own

1The fundamental relationship between the null-space and the range space
of a linear transformation S is R(ST ) = N⊥(S) [11], [18].
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Fig. 3. The experimental setup.

built-in optical encoders. The passive joints are comprised of

a hinge and a slider. The hinge connects the third link to the

last one, while the slider constrains the vertical motion and

orientation of the last link. The slider uses linear bearings

to minimize friction along x-axis motion. Therefore, by

virtually cutting the last link at point B, we can specify

the constraint equations as φ = col (yB(q), θB(q)) = 0,

where yB and θB represent the position and orientation.

Here, vector q = col (q1, · · · q4) includes the angles of the

active joints, q1-q3, and the angle of the hinge, q4. Therefore,

cutting the parallel mechanism at point B virtually creates

a 4-dof planar manipulator with three active joints and one

passive joint. The inertia properties of the planar manipulator

are given in Table I.

The control objective is to control the position of point

A, i.e., {xA, yA} which are expressed in the inertial

frame. Therefore, the task space variable is defined as:

x(q) = col
(

xA(q), yA(q)
)

. The desired position trajectories

are specified as

xd(t) =

[

−0.075 + 0.225 sin(πt + π
9 )

0.12

]

(m)

The parallel mechanism is redundant in most kinematics

configurations because there are three actuators to control

only two degrees-of-freedoms. However, the mechanism may

lose some of its dofs at particular configurations wherein it

becomes non-redundant. For instance, by inspection, one can

show that the parallel mechanism becomes non-redundant

when

q1 = q4 = 0. (36)

In our experiment, the controller gains are selected as

KP = 48012 and KD = 4512. Fig. 4 shows the tracking

performance of the projection-based controller (15) and (18).

Trajectories of the joint angles and joint torques are plotted

in Figs. 5 and 6, respectively. Despite of the fact that the

manipulator changed its topology from redundant to non-

redundant and vice versa around t1 = 0.4 s and t2 =
2.4 s., the projection-based controller has achieved good

0 1 2 3 4

−0.3

−0.2

−0.1

0

0.1

0.2
actual  

reference 

x
(m

)

xA

yA

Fig. 4. Trajectories of the task space variables.

0 1 2 3 4

−100

−50

0

50

100

time (s)
t1 t2

A
n

g
le

(d
eg

)

q1

q2

q3

q4

Fig. 5. Trajectories of the joint angles.

tracking performance with a smooth control action; note

that (36) occurs at the specified times; see Fig. 5. For a

comparison, trajectories of the joint torques obtained by an

inverse control law without filtering the requested torque

control by the projection operator P is depicted in the Fig. 7,

while trajectories of the Euclidean norm of the joint torques

are plotted in Fig.8. It is apparent from the latter figure that

the projection operator significantly reduces the magnitude

of the joint torques by filtering out the normal component of

the joint torque vector. It is interesting to note that the two

trajectories converge to one other at t1 = 0.4 s and t2 = 2.4
s wherein the manipulator becomes non-redundant leading

to a unique solution.

VII. CONCLUSION

Tracking and set point controllers for parallel manipulator

based on the notion of a projection operator has been pre-

sented. The main advantage of the projection-based tracking

controller is that it works whether the system is overactuated

or not; the controller does not need to change its structure

whenever the mechanical system changes its topology or

number of degrees of freedom. Moreover, the derivation of

the projection-based controller seems to be simpler than the
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inverse dynamics derived using D’Almbert principal. The

stability of the closed-loop system under the projection-

based controllers have been rigourously proved. Moreover,

the condition for the controllability of parallel manipulators

has been also derived. The analysis results showed that if

the constraint Jacobian with respect to the passive joints

remains full-rank, then not only the states of the passive

joints can be uniquely obtained from those of the active

joints, but also the projection-based control law applied

to the active joints can achieve the tracking and set-point

control, respectively, while demanding minimum actuation

force. Experiments conducted on a parallel mechanism has

demonstrated tracking performance.
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