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Abstract— This paper presents a standing balance controller
that explicitly handles pushes. We employ a library of optimal
trajectories and the neighboring optimal control method to
generate local approximations to the optimal control. We take
advantage of a parametric nonlinear optimization method,
SNOPT, to generate initial trajectories and then use Differential
Dynamic Programming (DDP) to further refine them and get
their neighboring optimal control. A library generation method
is proposed, which keeps the trajectory library to a reasonable
size. We compare the proposed controller with an optimal
controller and an LQR based gain scheduling controller using
the same optimization criterion. Simulation results demonstrate
the performance of the proposed method.

I. INTRODUCTION

Humanoid robots are expected to interact with humans

and complex unstructured environments, so unexpected per-

turbations, such as collisions with people or moving objects,

are inevitable. This paper focuses on balance control during

upright stance with unexpected pushes.

Studies of human standing balance have identified two

discrete strategies [1]. One is the ankle strategy, in which

all joints except for the ankle are fixed and torque about the

ankle joint is used to compensate for the perturbation. The

other is the hip strategy, in which torque about the hip joint

is used to accelerate the torso and move the Center of Mass

(CoM). If the perturbation is very large, a step has to be

taken [2], [3]. In this paper, only balance without stepping

is addressed.

Bio-mechanically motivated controllers, such as [4], and

intuitive controller designs, such [5], [6] have been studied.

In [7], [8], optimal control and state estimation is used to

explain selection of control strategies used by humans. The

system is linearized and Linear Quadratic Regulators are

designed for each perturbation. A form of gain scheduling

is employed to account for nonlinearities caused by control

and bio-mechanical constraints.

We use a trajectory library [9] to represent an optimal con-

troller. In [10], it was shown that multiple balance recovery

strategies can be generated by a single optimization criterion.

For nonlinear systems, Dynamic Programming (DP) provides

a way to find globally optimal control laws. But for high

dimensional systems, such as a humanoid robot, the com-

putation and even the storage of nonlinear feedback laws

becomes difficult [11]. Parametric nonlinear programming

methods, such as SQP (Sequential Quadratic Programming),

have been used to solve trajectory optimization for finite
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Fig. 1. Two-link robot model.

dimensional problems [12]. Differential Dynamic Program-

ming (DDP), which is a second order gradient technique

for trajectory optimization [13], applies the principle of

optimality in the neighborhood of a nominal trajectory. This

allows the coefficients of a linear or quadratic expansion

of the value function to be computed along the trajectory.

These coefficients may then be used to compute an improved

trajectory and a local approximation to the optimal control

law in its neighborhood, which can be used to compute

an optimal feedback control law [14]. We take advantage

of parametric nonlinear programming methods to generate

initial trajectories, which are then refined by DDP to produce

local control laws and more optimal trajectories.

Most previous work assumes that pushes are instantaneous

and change the joint velocities instantaneously. In practice,

the pushes may last for a while. The proposed controller can

handle instantaneous and continuous pushes.

The rest of the paper is organized as follows. In section II,

the robot model and the optimization criterion are proposed.

Section III describes the neighboring optimal control method.

Section IV proposes the balance controller and the optimal

trajectory library generation method. Simulation results are

provided in section V to demonstrate the validity and the

performance of the proposed method. Conclusions and future

work are discussed in Section VI.

II. ROBOT MODEL

A two-link inverted pendulum model in the sagittal plane

is modeled, as shown in Fig. 1. The parameters are listed in
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TABLE I

PARAMETERS OF THE ROBOT MODEL

l1 (m) 0.661 l2 (m) 0.653

l1cm (m) 0.430 l2cm (m) 0.141

m1 (Kg) 19.474 m2 (Kg) 29.492

MoI1 (Kg.m2) 0.696 MoI2 (Kg.m2) 1.03356

Table I, where l1cm and l2cm are the distances from the center

of mass (CoM) of each link to the joint below, and MoI1
and MoI2 are the momentum of inertia of each link about

its CoM. The ankle angle is bounded by −0.52 < θa < 0.79
radians. The hip angle is bounded by −2.18 < θh < 0.52
radians. θa = 0 and θh = 0 is upright. The ankle velocity

is bounded by −4.6 < θ̇a < 4.6 radians/second. The hip

velocity is bounded by −7.7 < θ̇h < 7.7 radians/second.

The maximum hip torque is ±157 Newton-meters. Ankle

torque is limited to prevent the foot from tilting. We use a

symmetric foot 0.2 meters long in our model. Assuming that

in standing the center of pressure is at the center of the foot,

then the maximum ankle torque is ±50 Newton-meters. A

horizontal push is applied on some point of a link, where p

is the size of push and r is the distance from the point of

action to the joint below.

The one step optimization criterion is the weighted sum of

the squared deviations of the current state from the desired

state and the squared joint torques:

L(x,u) = T (x − xd)
T Q(x − xd) + TuT Ru, (1)

where T is the time step of the simulation (0.01s), xT =
(θa, θh, θ̇a, θ̇h) is the current state, uT = (τa, τh) is the

control vector, xd is the desired state, which is the static

equilibrium state for a specified push, and Q and R are both

currently identity matrices with appropriate dimensions.

III. NEIGHBORING OPTIMAL CONTROL

Given the discrete time dynamics of the robot:

x(k + 1) = f(x(k),u(k), p, r), (2)

where p is the push size, r is the push location; and the

optimal value function

V (x) = L(x,u∗) + V (f(x,u∗)), (3)

where u∗ is the optimal control for the state, x. The

neighboring optimal control is given by [15]:

u(k) = u∗(k) − K∗(k)(x(k) − x∗(k)) (4)

and

K∗(k) = −
∂u∗(x(k))

∂x(k)

∣

∣

∣

x∗(k)
. (5)

In order to compute K∗, the partial derivatives Vx = ∂V
∂x

and Vxx = ∂2V
∂x2 have to be computed along the trajectory.

Given an optimal trajectory, one can integrate V (k), Vx(k),
and Vxx(k) backward in time starting from the end of the

trajectory [13].

The neighboring optimal control law is a local linear

model for the optimal policy in the neighborhood of the
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Fig. 2. Standing balance controller architecture.

optimal trajectory. Therefore, a closed-loop feedback control

solution can be given by:

u(x) = ū − K̄(x − x̄), (6)

where x̄ is the closest state on the optimal trajectory to the

current state, x. ū and K̄ are the optimal control and the

feedback gain matrix corresponding to x̄.

IV. BALANCE CONTROLLER USING A TRAJECTORY

LIBRARY

A. Controller Architecture

The standing balance controller is shown in Fig. 2. In each

time step, the state estimate, x̂, the push size estimate, p̂, and

the push location estimate, r̂ are calculated. During balance

control, a trajectory is chosen according to the distance,

(p, r)W(p, r)T , where W a diagonal weighting matrix. The

range of p is about −80 to +80 and the range of r is

between 0 and 0.653, so W is diag(1, 100) currently. Given

the optimal trajectory and its neighboring optimal control

feedback gains, we get a local linear approximation to the

optimal control law in its neighborhood. According to the

current state estimate, x̂, the closest state on the optimal

trajectory, x̄, along with the corresponding control, ū, and

the feedback gain matrix, K̄ are used. The state distance is

given by xT Dx, where D is diag(1,1,0.1,0.1) currently. The

output of the controller is thus given by:

u = ū − K̄(x − x̄). (7)

B. Trajectory Library on a Uniform Grid of Initial Condi-

tions

Differential Dynamic Programming is a second order

gradient method and it can converge to a better solution if

the starting trajectory is good, otherwise the convergence is

slow or it may even fail. Parametric nonlinear programming

methods have been used to solve trajectory optimization

problems [12]. We find they are generally more robust in

terms of finding a solution than DDP.

SNOPT is a general-purpose system for constrained op-

timization using a sparse sequential quadratic programming

(SQP) method [16]. We use it to generate starting trajectories

for different conditions. For standing balance control, a

selection of initial conditions is considered. For constant

pushes, the initial joint angles and velocities are all zero.
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Fig. 3. The lookup table for constant pushes on the torso.

The push size, p, and the push location, r, are not zero.

For instantaneous pushes, the initial joint velocities are

not zero. The initial joint angles, the push size, and the

push location are all zero. For constant pushes, the robot

eventually leans into the pushes and attains zero joint torque.

In order to balance after the constant pushes are removed,

initial conditions with nonzero joint angles should also be

considered. For each type of push, initial conditions are

generated on a uniform grid. Trajectories are optimized by

SNOPT for each initial condition. For example, we use 10

Newtons as the push magnitude step size, 0.3 meters as the

push location step size, and generate starting trajectories on

a uniform grid for constant pushes on the torso.

We use DDP to refine the trajectories produced by SNOPT

and store the trajectories and their feedback gain matrices in

the library. Given a good starting trajectory, DDP can find a

better solution rapidly.

C. Trajectory Library on an Adaptive Grid of Initial Condi-

tions

It is difficult to determine step sizes during the trajectory

library generation on a uniform grid of initial conditions. If

step sizes are too large, the final controller’s performance is

bad. But if they are too small, the size of trajectory library

becomes too big. We propose a trajectory library on an

adaptive grid of initial conditions.

In order to store trajectories on an adaptive grid of initial

conditions, optimal trajectories are generated and then stored

into a library incrementally based on performance. We have

developed an adaptive grid formulation which adjusts the

cell boundaries so that the deviation from the optimal value

is less than a performance bound. For example, we use 1000

as the performance bound and generate trajectories to handle

constant pushes on the torso. The final library has only 30

trajectories. The result is shown as Fig. 3, in which each

block defines a control region of one optimal trajectory.

During balance control, a trajectory is chosen according to

the lookup table shown in Fig. 3. The middle large region

uses the optimal trajectory for a zero push, which is an

LQR controller since the trajectory remains at the standing

equilibrium.

D. Online State and Push Estimation

We have no sensor for the joint velocities, push size,

and push location, which have to be estimated. We employ

a new state variable, yT = (θa, θh, θ̇a, θ̇h, p, r) and an

observation, zT = (θ̄a, θ̄h, f̄x, f̄z), where θ̄a and θ̄h are noisy

measurements of the ankle angle and the hip angle, f̄x and

f̄z are noisy measurements of the ankle forces, as shown

in Fig. 1. Therefore, the state transition and the observation

model are given by:

y(k + 1) = g(y(k),u(k)) + w (8)

z(k) = h(y(k),u(k)) + v (9)

w ∼ N(0,S) v ∼ N(0,T) (10)

g(y,u) =





f(x(k),u(k), p(k), r(k))
p(k)
r(k)



 (11)

h(y,u) =









θa

θh

fx(y(k),u(k))
fz(y(k),u(k))









, (12)

where f(.) is the dynamics of the robot, the noise terms w

and v are uncorrelated, S and T are covariance matrices.

Diag(0.012, 0.012, 0.012, 0.012, 1, 0.012) and diag(0.012,

0.012, 0.012, 0.012) are used for S and T, respectively. The

state transition model and the observation model are both

nonlinear, so the Extended Kalman Filter is employed [17].

The Extended Kalman Filter linearizes the nonlinear state

transition model and the observation model as

F(k) =
∂g

∂y

∣

∣

∣

∣

ŷ(k−1|k−1),u(k−1)

(13)

H(k) =
∂h

∂y

∣

∣

∣

∣

ŷ(k|k−1),u(k−1)

. (14)

To predict the next state before measurements are taken:

ŷ(k|k − 1) = g(ŷ(k − 1|k − 1),u(k − 1)) (15)

P(k|k − 1) = F(k)P(k − 1|k − 1)FT (k) + S (16)

To update the state after measurements are taken:

zerr = z(k) − h(ŷ(k|k − 1),u(k − 1)) (17)

K(k) = P(k|k − 1)HT (HP(k|k − 1)HT + T)−1 (18)

ŷ(k|k) = ŷ(k|k − 1) + K(k)zerr (19)

P(k|k) = (I − K(k)H)P(k|k − 1), (20)

where K is the Kalman gain matrix and P is the covariance

matrix for the state estimation.

V. SIMULATION RESULTS

In the following simulations, θa, θh, θ̇a, and θ̇h denote the

true values of ankle angle, hip angle, ankle velocity, and hip

velocity. Their estimates are denoted by θ̂a, θ̂h,
ˆ̇
θa, and

ˆ̇
θh.

θ̄a, θ̄h,
¯̇
θa, and

¯̇
θh, τ̄a, τ̄h are elements of the closest state

and its corresponding controls found in the trajectory library.

τa and τh are applied torques at the ankle joint and the hip

joint.
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Fig. 4. The robot under the constant forward push at the head of 42 Newtons. The frames are taken in intervals of 0.3 seconds.

In the first simulation, a constant push of 42 Newtons at

the head in the forward direction is applied. There is no

trajectory for exactly the same push in the library and the

optimal trajectory for a constant push of 39.5 Newtons at

the head is selected. As shown in Figs. 4 and 5, the robot

employs the hip torque to accelerate the torso, bends forward

quickly, and then it leans backward into the push in order

to use gravity to balance the push. Finally, all joint torques

tend to zero. As shown in Figs. 6, 7, and 8, the state and

push estimates quickly approach the true values.

In the second simulation, a large short push at the head of

50 Newtons in the forward direction lasting 0.5 seconds is

tested. As shown in Figs. 9, 10, 11, and 12, the robot uses

the hip torque to accelerate the torso, bends forward, and

finally recovers its posture to be upright. It is also shown

that the state and push estimates quickly approach the true

values. In Fig. 12, the push location estimate is meaningless

when the push size is zero.

The robustness of the proposed controller is tested with

a sequence of random pushes. The test push size sequence

is 15, 45, and 25 Newtons. Trajectories for constant pushes

of 20, 39.5, and 26 Newtons are used. As shown in Figs.

13, 14, 15, and 16, for pushes of sizes and locations not in

the library and changing with time, the robot can still keep

balance.

For different push sizes and push locations on the torso,

the performance of the proposed controller is compared with

that of the optimal controller using the same optimization

criterion. As shown in Fig. 17, the performance of the

proposed controller is close to that of the optimal controller

when there are trajectories in the library for the pushes that
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Fig. 5. The joint torques for 42 Newtons forward push at the head.
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Fig. 6. The joint angles for 42 Newtons forward push at the head.
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Fig. 7. The joint velocities for 42 Newtons forward push at the head.

0 1 2 3 4 5
−50

0

50

100

Time (s)

P
u

s
h

 s
iz

e
 (

N
)

 

 

True value
Estimated value

0 1 2 3 4 5
0

0.2

0.4

0.6

Time (s)P
u

s
h

 l
o

c
a

ti
o

n
 o

n
 t

o
rs

o
 (

m
)

 

 

True value
Estimated value

Fig. 8. Push size and location estimates for 42 Newtons forward push at
the head.
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Fig. 9. Joint torques for the short forward push at head of 50 Newtons,
lasting 0.5 seconds.
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Fig. 10. Joint angles for the short forward push at head of 50 Newtons,
lasting 0.5 seconds.

are close to the pushes applied. It becomes worse when the

applied pushes are far from what is in the library. Because

the trajectory library is generated based on performance, the

performance degradation is bounded.

We have also designed a gain scheduling controller based

on Linear Quadratic Regulators (LQR). It linearizes the

system about the equilibrium state for each push size and

push location. LQR controllers are then designed according

to the same optimization criterion. According to the push

size and the push location, an appropriate LQR controller is

used. This gain scheduling controller falls down for constant

forward pushes at the head of 36 Newtons. In contrast, the

controller proposed here is able to handle constant forward

pushes up to 55 Newtons.

VI. CONCLUSION AND FUTURE WORK

In this paper, a balance controller based on a trajectory

library is proposed. We demonstrate that a trajectory library

can be used for constrained nonlinear system control, such as

a humanoid robot standing balance control. Taking balance

control as an optimal control problem, the trajectory library

and the neighboring optimal control method are used to

generate local linear approximations to the optimal control.

Differential Dynamic Programming (DDP) is used to gen-

erate the optimal trajectories and the neighboring optimal

control. A nonlinear programming method, SNOPT, is used
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Fig. 11. Joint velocities for the short forward push at head of 50 Newtons,
lasting 0.5 seconds.
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Fig. 12. Push size and location estimates for the short forward push at
head of 50 Newtons, lasting 0.5 seconds.

to generate starting trajectories for DDP refinement, which

makes the convergence rapid.

The proposed trajectory library generation method saves

computation. It makes the final library compact but also

satisfy the performance requirements. The trajectories and

thus the linear approximation to the optimal control law can

be accessed effectively using a lookup table, which make the

proposed controller applicable for real-time control.

In our future work, robots with more links will be studied.

For example, the ’squat strategy’ can be generated if the robot

has knee joints. Actually implementing this algorithm on a

robot is also expected. This will require dealing with floor

compliance and coordinating both legs and feet. Finally, we

would like to extend our model to include a full 3D robot.
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