
Planning Collision-Free and Occlusion-Free Paths for Industrial

Manipulators with Eye-to-Hand Configuration

Simon Léonard, Elizabeth A. Croft and James J. Little

Abstract— This paper presents a motion planning algorithm
for industrial manipulators with the simultaneous constraints
of avoiding collisions and avoiding the occlusion of specified
pixellated regions of an eye-to-hand camera. The system uses
a probabilistic roadmap to satisfy the constraints imposed by
the command interface of typical industrial manipulators and
uses dynamic collision checking to ensure collision-free motion.
In the context of a task monitored by a camera, we enhance
a probabilistic roadmap with a dynamic occlusion checking
algorithm that is able to determine which pixels of the camera
are occluded by the robot during each motion segment. The
occlusion algorithm is formulated as collision algorithm where
the field of view of the camera is represented as a quadtree of
frustums. The proposed algorithm is demonstrated in industrial
bin picking simulations where the gripper must not occlude the
targeted object throughout the task.

I. INTRODUCTION

Recent advances in path planning are enabling robots

to perform remarkably complex tasks. Likewise, advances

in sensors and control are enabling robots to operate in

environments that were once considered hostile to robotic

systems. Most of the work done in this area, however,

is not suitable for industrial robot systems. Thus, despite

compelling progress in robotics, robots used in factories are

still confined to repeating well structured tasks. Although

planning algorithms and sensors are used to a certain extent

in industrial environments, there is still a large gap between

the tasks that an average industrial robot executes on an

assembly line and the tasks performed in research labs.

In robotics research, vision is often used to control the

motion of robots during the execution of a task [1]. An

inherent feature of visual servoing is that each joint of the

robot is controlled by its velocity. Typically, this approach

cannot be directly applied to industrial manipulators as

the manufacturers for these robots only provide position

commands and these commands must be specified ahead

of their execution. Robot speed is then commanded as a

scaled value over a point to point path. Furthermore, the

trajectories available for these systems typically do not pro-

vide the flexibility to compute complex paths. This limitation

is problematic for picking up an object with an industrial

manipulator using visual feedback since this requires the

planner to find a sequence of collision-free linear trajectories

that also preserves the visibility of the object.

S. Léonard is with the Department of Mechanical Engineering, The
University of British Columbia sleonard@mech.ubc.ca

E.A. Croft is with the Department of Mechanical Engineering, The
University of British Columbia ecroft@mech.ubc.ca

J.J. Little is with the Department of Computer Science, The University
of British Columbia little@cs.ubc.ca

To address the gap between current robotics research and

industrial applications, this paper proposes a novel algorithm

to find collision-free and occlusion-free paths that are suit-

able for industrial robot manipulators.

In this work, a camera is fixed at a given position and

orientation and views the environment. The manipulator can

occlude areas within the camera’s field of view. In the case

where the robot must perform a task that requires visual

feedback from the camera (e.g., tracking a visual target), our

solution finds a path to perform the task while avoiding the

occlusion of one or several image targets used to monitor the

execution of the task. The main contribution of this research

is a dynamic occlusion checking (DOC) algorithm that is

capable of determining which pixels are occluded by the

manipulator during a proposed motion. Our solution adapts

the dynamic collision detection algorithm presented in [2]

to a dynamic vision problem by modeling occlusions as

collisions between an object and the frustum of a pixel. The

frustums are then organized in quadtree to enable efficient

pruning of collisions. Although our algorithm is conceptually

similar to view frustum culling [3] the main difference is that

our algorithm aims to cull a moving kinematic chain.

The backbone of our solution is a probabilistic roadmap

with edges representing collision-free motions [4]. The DOC

algorithm is then used on each edge to determine the pixels

that “see” the manipulator during the motion. These pixels

are stored in a data structure and are used to adjust the

weights of the edges. Given that an image target is defined

by a subset of pixels, the edges that occlude the target are

not considered in the solution of the path.

This paper is arranged as follow. Section II briefly reviews

relevant work done in visual servoing and path planning with

visual constraints. Section III outlines the planning strategy

used in this research and introduces the DOC algorithm. Sec-

tion IV presents simulation results, including a performance

evaluation, and Section V discusses future work.

II. PREVIOUS WORK

The work presented herein is complementary to visual

servoing, namely the use of visual feedback to control the

motion of robots [1], [5]. The most common approach to

solving the visual servoing problem is to linearize the system

by using a first order time derivative. This operation results

in an interaction matrix that relates the velocities of image

pixels to the velocity of the camera. Visual servoing has been

extended to add constraints on the path followed by a robot

such as joint limits and field of view [6], [7].

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5083

Much of the research in motion planning focuses on

finding paths to avoid collisions with obstacles. The motion

planning literature proposes several algorithms that are an-

chored around sampling the configuration space [8]. Among

the sampling-based methods, probabilistic roadmaps (PRM)

[4] have a natural appeal for industrial applications since they

enable multiple queries and the samples can be connected

by collision-free motion segments that are compatible with

industrial systems. With the increasing importance of sensors

in robotics it is also crucial to consider the constraints

imposed by sensors such as cameras when searching a

solution for a path. For example, if a camera is used to

sense the environment or monitor a task it is important that

the motion of the robot does not interfere with the sensor.

Recent research has demonstrated the importance of planning

the path of a camera mounted on the end-effector to avoid

occlusions of an image target by obstacles [9]. To find an

occlusion-free path the visible region of a target is computed

and any motion crossing the region’s boundary is penalized

as it occludes the image target. This research, however, does

not address the problem of using a fixed camera where the

sources of occlusions are the links of a manipulator. Thus,

if a fixed camera is used to monitor a task, such as picking

an object with a gripper, a key constraint to any solution

is to avoid a visual occlusions of the target by one of the

manipulator’s link.

This paper presents an algorithm to address the afore-

mentioned problem of finding collision-free and occlusion-

free paths for a standalone camera. Specifically, this paper

introduces the dynamic occlusion checking (DOC) algorithm

to determine which pixels will become occluded if a manip-

ulator moves between two configurations. Then the DOC

algorithm is used to test each motion segment of a solution

to avoid paths that result in the occlusion of an image target.

The resulting solutions are conservative in that DOC does

not require the a priori 3D coordinates of the image target.

As such, the solution avoids motions for which the robot

occludes an image target irrespective of its depth.

III. PROBABILISTIC ROADMAP

Probabilistic roadmaps define a sparse representation of

a robot’s configuration space. As for other sampling-based

algorithms, N configurations q1, . . . ,qN are sampled and used

to construct an undirected graph.An edge ei, j is added to the

graph if the motion between the configurations qi and q j is

collision-free. A weight wi, j is associated with an edge ei, j to

represent the inherent cost of using the motion represented

by the edge. Typically, a weight will represent the length of

a motion between two configurations but they are often used

to represent more complex tasks.

A key element of the research presented in this paper is

the role played by the collision checker. Collision checkers

are used to test if an edge ei, j represents a collision-free

motion. Many solutions have been proposed for this problem

including using Minkowski sum [10] and detecting collisions

at fixed time intervals [11]. The Minkowski sum approach

represents an elegant solution but it is mostly used for mobile

Fig. 1. Frustum of a camera and and a manipulator in its initial and final
configurations.

robots or for robots with a simple volumetric shapes. At the

other end of the spectrum, sampling the motion at regular

intervals and testing for collisions at each sample represents

a brute force approach. This method is especially efficient for

slow moving objects and thick obstacles otherwise collisions

might not be detected. Schwartzer et. al. presented a very

efficient dynamic collision checker for manipulators that

guarantees to return collision-free motions. This algorithm

has been modified to address computer vision problems

such as preserving targets within the field of view [12] and

avoiding occlusions [9]. The following section presents a

novel adaptation of a dynamic collision checking (DCC)

algorithm presented in [2] to detect occlusion caused by

a robot moving in front of a fixed camera. The dynamic

occlusion checking will then be used to test the edges of the

PRM to ensure that the pixels associated with an image target

are not occluded by the manipulator during the motion.

A. Dynamic Occlusion Checking

As with view frustum culling [3], the DOC algorithm

models the field of view of a pinhole camera as a frustum

that acts as an obstacle in the workspace of a robot (Figure

1).

From the intrinsic and extrinsic parameters of the camera

[13], the frustum of the camera is represented by 4 triangles.

Using the frustum as an obstacle, the DCC algorithm is used

to test if the robot moves within the field of view of the

camera by testing for a collision between the links of the

arm and the frustum.

The adaptive DCC algorithm is based on the idea that two

bodies cannot collide if they are far away from each other

and if their relative motion is sufficiently small. In the case

of a manipulator with an immobile obstacle, let qi and q f be

the initial and the final configurations of the robot and define

the linear motion between qi and q f by q(t) = qi +(q f −qi)t
for the parameter 0≤ t ≤ 1. Furthermore, let ℓ(q(t)) be the

longest distance traveled by any point on the manipulator

during the motion q(t). Finally, let di be the initial distance

between the robot and the obstacle and let d f be the final

5084

distance. It can be shown that if

ℓ(q(t)) < di +d f , (1)

then the manipulator cannot collide with the obstacle [2].

If Equation 1 is not satisfied, then the inequality is applied

recursively by splitting the motion q(t) in two intervals q(t1)
and q(t2) with 0≤ t1 ≤ 0.5 and 0.5 < t2 ≤ 1. The algorithm

terminates when Equation 1 is satisfied for all the intervals

or when a collision is detected.

In some applications using the entire camera field of view

as an obstacle can prevent the execution of a task. For exam-

ple, when monitoring a picking task with a camera, the hand

must enter the field of view to pick up the object. What must

be prevented, however, is the hand obstructing the object that

must be picked. For such applications we can use the DCC

on a subset of pixels. Since each pixel defines a frustum

in space, the DCC can test each frustum for a collision.

Since modern cameras provide a large number of pixels, a

more efficient approach is proposed. The DOC algorithm

organizes the pixels, or more precisely their frustums, in a

quadtree [10]. The main advantage of using a quadtree is

that it enables to use the DCC to prune out areas within

the field of view. For example, in the best scenario, the

DCC algorithm can prune out the entire field of view if it

determines that a motion does not collide with the frustum of

the field of view. The worst case scenario is when the robot

blocks the entire field of view in which case the frustum of

each pixel must be tested with DCC. The quadtree structure

is organized as follow. The leaves of the tree consists of

individual pixels along with their frustum. The leaves are

grouped 2×2 and the bounding frustum is created for each

group. This procedure is repeated until the root of the tree is

reached. The root of the quadtree corresponds to the entire

frustum of the camera.

The pseudo-code of the DOC algorithm is presented in

Algorithm 1. The main modification between DOC and DCC

is the call to dorecursion. Since the purpose of DOC is

to identify all pixels that are occluded during the motion

between qi and q f , the algorithms does not return as soon

as a collision is detected between a frustum and the robot.

The purpose of Algorithm 1 is to traverse the quadtree by

recursive calls to dorecursion (Algorithm 2). At each node

in the tree, Algorithm 2 is used to mark the rooted subtree

if any of the pixels in the subtree is occluded by the motion

of the manipulator. The result of running Algorithm 1 for a

given motion is a data structure that contains all the pixels

that are occluded by the motion. Algorithm 1 only involves

marking which pixel, or group of pixels, are occluded by

a motion. This process does not depends on the shape of

a specific object and, thus, is only executed once for each

motion. Once all the motions are processed, the PRM planner

can exclude any motion that occludes a given set of pixels.

At this point the pixels occupied by an object are used at the

query time to hide the occluding motions from the planer.

The call to dorecursion is outlined in the Algorithm 2.

Line 1 of Algorithm 2 extracts the frustum obstacle from

the node data structure. Lines 2 and 3 compute the distances

Algorithm 1 DOC(qi,q f ,root,robot)

Require: An initial configuration qi

Require: A final configuration q f

Require: The root of a quadtree root

Require: A robot robot

1: if dorecursion(qi,q f ,root,robot) then

2: qm← (qi +q f)/2

3: DOC(qi,qm,root,robot)
4: DOC(qm,q f ,root,robot)
5: end if

between the robot for both configurations and the frustum.

The distance can be efficiently computed by using the swept

sphere volumes presented in [14]. A distance less than zero

indicates a collision. Line 4 evaluates the longest trajectory

described by any point on the surface of the arm during the

motion. This length can be bounded by an algorithm such

as the one presented in [2]. If the robot does not collide

with the frustum at either qi or q f (Line 5), then Line 6

determines if the frustum can be pruned for the motion. If

the frustum can be pruned, then the algorithm returns false.

Otherwise, the algorithm returns true if the node is a leaf.

This indicates that a pixel of the quadtree cannot be pruned

and the DOC algorithm must divide the motion segment.

If the node represents a pixel that collides at either qi or

q f , then the pixel is marked as being occluded by the robot

during the motion (Lines 12 to 14). If the node is not a leaf,

then the result from Equation 1 is inconclusive and Lines 15

to 18 call dorecursion on the node’s children to determine

if any of them can be pruned.

Algorithm 2 dorecursion(qi,q f ,node,robot)

Require: An initial configuration qi

Require: A final configuration q f

Require: The node of a quadtree root

Require: A robot robot

Ensure: The interval [qi,q f] must be divided in two

1: obstacle← f rustum(node)
2: di← distance(robot,qi,obstacle)
3: d f ← distance(robot,q f ,obstacle)
4: l← longesttra jectory(robot,qi,q f)
5: if 0 < di and 0 < d f then

6: if l < di +d f then

7: return false

8: else if islea f (node) then

9: return true

10: end if

11: end if

12: if di ≤ 0 or d f ≤ 0 and islea f (node) then

13: Mark the pixel

14: end if

15: for i = 1 to 4 do

16: val[i]← dorecursion(qi,q f ,child(node, i),robot)
17: end for

18: return val[1] or val[2] or val[3] or val[4]

5085

Fig. 2. The frustums of all occluded pixels for a motion between two
configurations.

Within a PRM, Algorithm 1 is applied to each edge. Then

for each edge, a list of pixels that are occluded by the motion

can be stored. At query time, these lists are used by the

planner to ensure that the edges that occlude the specified

pixels will not be included in the motion of the robot.

IV. EXPERIMENTS

To test the DOC algorithms and their use with a PRM

motion planner, three experiments were conducted in simu-

lations. The robot used in experiment is a CRS A460 and

the camera intrinsic parameters were those estimated from a

Point Grey Research Dragonfly with an 8mm lens. The first

experiment tests the performance of the DOC algorithm for

motions that enter the field of view of the camera. These

experiments were used to evaluate the running time perfor-

mance of the algorithm. The second experiment demonstrates

the use of DOC for preventing the occlusion of a target

by the manipulator during a picking task. Finally, the DOC

algorithm was used interactively to create virtual obstacles

from the images of the camera. The later experiment could

be used to approximate real obstacles that are present in the

environment without having to resort to computer assisted

drawing tools to create them manually.

A. Experiment 1: DOC Performance

The DOC algorithm was tested outside the context of

motion planning for the purpose of evaluating its perfor-

mance in terms of running time. The worst case scenario

where, a motion occludes every pixel, was investigated. For

illustration purposes, the camera was placed on the floor in

front of the robot and looking upwards. An example of a

motion and the occluded pixels is shown in Fig. 2.

The bottleneck in Algorithm 2 comes from the repeated

proximity queries between the robot and the frustums, with

each query using approximately 0.5 millisecond. For the

experiment the CCD array was cropped to 256×256 pixels.

Since, the number of proximity queries is related to the

number of pixels occluded and the computation time of

proximity queries varies between implementations, Fig. 3

presents the results as a graph relating the numbers of pixels

occluded versus the number proximity queries (distance

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

5

Number of occluded pixels

N
u

m
b

e
r

o
f

p
ro

x
im

it
y
 q

u
e

rr
ie

s

Fig. 3. Performance of the DOC algorithm for 100 random motions.

calls). Although proximity queries between two objects can

consume up to 1ms per call, the proximity queries involved

with the DOC algorithm are more efficient due to the

geometric simplicity of the frustums.

Fig. 3 shows that the performance of the DOC algorithm

scales up linearly with the number of pixels occluded. In the

worst case scenario, 65,536 pixels are occluded such that

the number of proximity queries to traverse the full quadtree

is 87,381. But because of the adaptive nature of the DOC

algorithm this number increases when the motion is divided

in smaller intervals (Algorithm 1 Lines 3 and 4).

Fig. 3 indicates that the performance of the DOC algorithm

for motions that occlude a large number of pixels is not

particularly good. Where the DOC algorithm is very efficient

is for motions that occlude a small number of pixels. For

example, for motions that occlude less than 20,000 pixels

(roughly 1/3 of the image), the algorithm is efficient. Since

the purpose of DOC is to detect occlusions in order to avoid

them, it makes little sense to keep the edges that occlude a

large portion of the image. Edges related to these motions

occlude a large portion of the image and they are unlikely to

be used by the motion planners. Hence, within the context

of PRM, the DOC algorithm can be used to discard an

edge whenever its motion occludes a number of pixels that

is beyond a given threshold. The advantage of discarding

edges is two fold. First, it preserves “useful” edges in the

graph, that is, edges that are likely to be used by the planner.

Second, it keeps the running time of DOC within reasonable

bounds. Such methods are often used in search algorithms

to avoid finding useless solutions or solutions that are buried

too deep in a search tree [15]. In the following experiments,

a threshold of 20,000 occluded pixels was used to discard

edges from the PRM.

B. Experiment 2: Occlusion-Free Motion Planning

The DOC algorithm was used in conjunction with a PRM

to find collision-free and occlusion-free motions. Our task

consisted of picking up an automotive part (conrod) that

was placed on the ground in front of the robot. The camera

was place above the part looking down on the part and the

5086

Fig. 4. Picking task with the initial configuration and the desire config-
uration. The camera is fixed above the workspace and looks down on the
conrod.

min. angle qi max. angle

−
π

4
q1

π

4
−

π

2
q2 0

−
π

2
q3 0

−π q4 π

−
π

2
q5

π

2
−π q6 π

TABLE I

JOINT INTERVALS USED TO GENERATE THE PRM OF EXPERIMENT 2.

workspace (Fig. 4).

The floor was defined as the sole physical obstacle and

the conrod was placed 1cm above it to make room for the

fingers of the gripper. All the pixels from the projection of

the conrod in the camera were defined as obstacles and thus

the gripper was not allowed to move in between the conrod

and the camera. The PRM contained 100 vertices that were

randomly samples within the intervals reported in Table I.

These intervals correspond to configurations that position the

gripper within the vicinity of the conrod.

The query for the planner consisted of the desired joint

configuration to pick up the object. Obviously, this configu-

ration must not occlude any of the specified target pixels

or the goal will not be reachable. The desired and start

configurations are illustrated in Fig. 4. The fingers of the

gripper are 10cm apart and the stem of the conrod is about

2cm wide, which leaves a 4cm gap on both sides of the

conrods. First, all the edges that occlude the conrod are

rejected from any path. Second, DOC and DCC are used to

connect the desired configuration to the nearest vertex using

the L2 norm. If the test fails, then the desired configuration

cannot be reached from that vertex and an attempt to reach

the goal is made from the 2nd nearest vertex and so on until

all the vertices are exhausted. In the experiment reported in

this paper, 6 attempts were necessary to connect the desired

configuration to a vertex in the PRM. Finally, the path from

the start configuration to the vertex is found from the PRM.

Fig. 5 and 6 illustrate the views of the workspace and

a view from camera. Although only 2 waypoints were

Fig. 5. Side view of the picking task with using two waypoints.

Fig. 6. Top view of the picking task with using two waypoints. This is
the actual view from the camera.

necessary, the path found by the planner is fairly complex as

it swings the arm back and forth. Like many sampling-based

methods, this is arguably a weakness for systems aimed at

industrial applications. Nevertheless, the path returned by the

planner did not occlude the conrod.

C. Experiment 3: Interactive Virtual Obstacle Generation

Setting up an industrial workcell for a manipulator requires

configuring the robot and rehearsing the task. For a path

planning task in an engineered environment the geometry

of each obstacle and its position in the workspace are

given to the planner. In the vast majority of the cases, this

requires trained personnel with CAD models of the work

cell and obstacles and positioning the obstacles at their exact

coordinates.

For an non-engineered environment, however, this infor-

mation is often difficult to determine. For this purpose, it is

convenient for an operator to “paint” the workspace objects

by using images obtained of a camera. This enables to

approximate the position and geometry of an arbitrary object

in the workspace by painting the obstacle using an image

editing application. Alternatively, the identification of object

pixels could be done by a scene analysis algorithm separate

from the planning system. However this would not preclude

the need of the planning algorithm to avoid occluding regions

in the camera field of view.

5087

Fig. 7. Obstacles define by marking the pixels in the image provided by
the camera. The covering frustums are used as obstacles.

To set up this approach, several important points must

be clarified. First, the obstacles that are defined from this

interaction will be interpreted as a set of frustums emerging

from the camera. It is also important to mention that the

shape of each frustum depends on the coordinates of the pixel

and that the orientation and position of the camera determines

on how the obstacles will be covered by the frustums. Thus,

not every obstacle can be defined precisely with this method

although it is possible to bound an obstacle for practical

purposes. Second, selecting entire frustums (e.g., as those

illustrated in Fig. 2) is somewhat constraining because the

obstacle is defined from the camera to infinity and thus, the

robot cannot move between the camera and the obstacle as

it would with normal obstacles.

In this experiment, two obstacles were added to the work

cell (see Fig. 7). In Fig. 7, a panel was added on the right

and a cube was added on the left. The camera was placed

above the workcell and pointed down. From the image of

that camera, the user “painted” the pixels that belong to both

obstacles. This generated a set of frustums as illustrated in

Fig. 7. Then a PRM was generated with 100 nodes. Then, the

edges were analysed by the DOC algorithm to detect which

pixels were occluded during each motion. Finally, the planner

was asked to plan the motion from a start point behind the

wall to a position next to the cube. The result of this query

is illustrated by the animation of Fig. 7.

It is important to note that the frustums can only cover the

visible part of the obstacles and if an obstacle is not entirely

visible it cannot be covered adequately. Thus, as illustrated

in the Fig. 7, the frustums are not able to fully cover both

obstacles since part of the obstacles are outside the field

of view of the camera. Although the path illustrated in this

paper did not collide with either uncovered part, this leaves

the uncovered portions vulnerable to collisions.

V. CONCLUSION

This paper presented the DOC algorithm to detect occlu-

sions caused by a moving manipulator and how to use the

algorithm to plan collision-free and occlusion-free paths. The

algorithm is based on modeling the camera as a 3D frustum

that can collide with a manipulator and the collisions are

interpreted as occlusions. Base on this concept, the DOC

algorithm is derived from an efficient adaptive dynamic

collision checking algorithm. Results show that DOC is

particularly efficient when few occlusions are involved in

a motion. This is used to screen the edges of probabilistic

roadmaps to ensure that a minimum number of pixels are not

occluded by each edge. At query time, the planner finds a

path that avoids occluding specific subsets of pixels. The

system was also demonstrated in an interactive mode by

using the images from the camera to paint obstacles that must

be avoided by the robot. This avoids the need for drawing and

configuring the obstacles with computer software package for

testing, training and setup purposes.

VI. ACKNOWLEDGMENTS

This research was funded by the Natural Sciences and

Engineering Research Council of Canada and Precarn. The

authors would like to acknowledge our industrial collabora-

tors at Braintech Inc.

REFERENCES

[1] F. Chaumette and S. Hutchinson, “Visual servo control part i: Basic
approaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4,
pp. 82–90, December 2006.

[2] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive dynamic col-
lision checking for single and multiple articulated robots in complex
environments,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.
338–353, June 2005.

[3] U. Assarsson and T. Möller, “Optimized view frustum culling algo-
rithms for bounding boxes,” Journal of Graphics Tools, vol. 5, no. 1,
pp. 9–22, September 2000.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
space,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, August 1996.

[5] F. Chaumette and S. Hutchinson, “Visual servo control part ii: Ad-
vanced approaches,” IEEE Robotics & Automation Magazine, vol. 14,
no. 1, pp. 109–118, March 2007.

[6] A. Chan, E. A. Croft, and J. J. Little, “Trajectory specification via
sparse waypoints for eye-in-hand robots requiring continuous target
visibility,” in Proceedings of the 2008 IEEE International Conference

on Robotics and Automation, Nice, September 2008, pp. 2151–2156.
[7] Y. Mezouar and F. Chaumette, “Path planning for robust image-based

control,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 4, pp. 534–549, August 2002.

[8] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. The MIT Press, 2005.
[9] M. A. Baumann, D. C. Dupuis, S. Léonard, E. A. Croft, and J. J.

Little, “Occlusion-free path planning with a probabilistic roadmap,”
in Proceedings of the 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Nice, September 2008, pp. 2151–2156.
[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,

Computational Geometry Algorithms and Applications. Springer,
1997.

[11] G. Sanchez and J.-C. Latombe, “On delaying collision checking in prm
planning: Application to multi-robot coordination,” The International

Journal of Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.
[12] S. Leonard, E. A. Croft, and J. J. Little, “Dynamic visibility checking

for vision-based motion planning,” in Proceedings of the 2008 IEEE

International Conference on Robotics and Automation, Los Angeles,
California, May 2008, pp. 2283–2288.

[13] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer

Vision. Prentice Hall, 1998.
[14] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast distance

queries with rectangular swept sphere volumes,” in Proceedings of the

2000 IEEE International Conference on Robotics and Automation, San
Francisco, CA, April 2000, pp. 3719–3726.

[15] C. Gomes, B. Selman, and H. Kautz, “Boosting combinatorial search
through randomization,” in Proceedings of the Fifteenth National

Conference on Artificial Intelligence (AAAI-98).

5088

