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Abstract— Since humanoid robots have similar body struc-
tures to humans, a humanoid robot is expected to perform
various dynamic tasks including object manipulation. This
research focuses on issues related to learning and performing
object manipulation. Basic motion primitives for tasks are
learned from observation of human’s behaviors. An object
manipulation task is divided into two types of motion primitives,
which are represented as hidden Markov models (HMMs):
one for a body motion primitive and the other for the re-
lation between the object and body parts, which manipulate
the object. When performing a task, a natural whole body
motion is associated from an object motion by using learned
motion primitives. Furthermore, the associated body motion is
reshaped in both spatial and temporal space, in a more precise
way. The reshaping in spatial space is realized in two stages by
a feedback control policy learned with reinforcement learning
and by constrained inverse kinematics. Key features like end-
effectors for manipulation and timing for a task are extracted
and used for the feedback control policy learning. The reshaping
in temporal space is realized by comparing a predicted and
observed object motion speed.

I. INTRODUCTION

In order to coexist with humans in human society, robots

need to understand human motions. In particular, for hu-

manoid robots which have similar body structures to humans,

the ability to learn motion patterns by imitating humans

and to perform tasks instead of humans is highly desirable.

Because tasks in daily life often involve tool-usage or inter-

action with objects, this paper studies on humanoid robot’s

intelligence for manipulation of objects including tools.

As robots move from industrial to human environments,

robot learning will become an increasingly important skill for

robots to master. Several researchers provide reviews in this

area [1] [2] [3]. The imitation learning mechanism provides

a means of automatic programming of complex systems

without extensive trials or complex programming. Since

the neuroscience evidence of motor primitives and mirror

neurons in humans and other primates have been discovered

[4], a number of researchers have developed models for robot

imitation learning, inspired by the neuroscience evidences.

Inamura et al. [5] proposed the mimesis model which is

inspired by the bidirectional structure of mirror neurons for

motion recognition and generation.
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Fig. 1. Overall architecture for object manipulation tasks, consisting
learning and online motion recognition-association-reshaping.

Most previous works on humanoid’s imitation learning

focus on robot’s free body motion only [5] [6]. Relatively

small amount of research has been carried out for humanoid

tool-usages [7][8] or object manipulation [9]. Ogura et al. [7]

presented geometric models of tools for humanoid motion

generation. The information for grasping and for attention

are embedded in the tool models. Nabeshima and Kuniyoshi

[8] constructed a tool-use model for a blind retrieving

manipulation task.

Recent neuroscience research [10] [11] revealed that, when

primates use a tool to reach for a distant object, the extended

motor capability is followed by changes in specific neural

networks that hold an updated map of body shape and

posture. This changes are compatible with the notion of the

inclusion of tools in the ‘body schema’, as if our own effector

(e.g. the hand) were elongated to the tip of the tool. Based

on the above evidence that the tool is considered as a part

of the body, the authors assume that during tool-use motion

a tool motion triggers the appropriate motion for the rest of

body.

The authors proposed a mechanism to associate a natural-

looking whole body motion from a given tool motion [12].

When the tool trajectory is known, the tool trajectory be-

comes a trigger to generate an appropriate hand motion. The

hand motion becomes the other trigger to associate a whole-

body motion. By adopting the mimesis method from partial

observations [13], an appropriate whole body motion (high

dimensional movement) is generated from partial informa-

tion, such as a tool trajectory (small dimensional movement).

Tasks which require interaction with objects including

tools can be divided into two categories. One is the reaction

to an object self motion and the other is object manipulation.

In the former case, the object already has its own motion

and a human reacts to the object motion. In the latter, the

human manipulates the object in order to achieve a desired
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object motion. For instance, the case when a human catches

a flying paper-plane is an example of the former. The case

that the human places the caught paper-plane on a table is

an example of the latter. Our previous work which associates

a whole body motion from an object motion corresponds to

the latter. This paper extends the association mechanism [12]

in order to solve the both cases.

• In [12], we assumed a fixed relation between a tool

and a tool-driving end-effector: the right hand manipu-

lates the tool and holds the tool firmly. However, end-

effectors which manipulate objects are changing for

different tool-tasks. A method to find important body

parts and timing for a manipulation task is proposed.

• In [12], an associated whole body motion is synchro-

nized to the tool motion. In this paper, the chosen

motion primitive can be adapted in the spatial domain.

• In [12], a whole body motion is computed for a desired

tool motion sequence. When considering “humanoid

motion reaction to the object self motion”, real-time

motion adaptation should be realized by prediction

based on current sensory data.

Therefore, this paper aims at solving two main issues:

• learning key features (e.g. important body parts and

timing) of the tasks (Sec. III), and

• adaptation of motion trajectory and speed (Sec. IV).

The overview of this paper is shown in Fig. 1, consisting

of offline learning and online motion recognition-association-

reshaping. By observing human’s demonstrations, an object

manipulation task is learned (Sec. II-A). Key features for the

manipulation task are extracted (Sec. III). Then, a control

policy, how to achieve the task successfully, is learned by

reinforcement learning (Sec. IV-B). Once object manipula-

tion tasks are learned, the humanoid robot can perform the

object manipulation tasks in a new situation. From a given

object motion, the tool-manipulation motion is recognized

and the appropriate end-effector motion is associated (Sec.

IV-B.1). Then, the learned control policy is used to adapt

the associated end-effector trajectory (Sec. IV-B.2). Also,

motion speed is adapted (Sec. IV-C). From the reshaped

end-effector motion, an appropriate whole-body motion is

associated (Sec. II-B). In order to satisfy the reshaped end-

effector motion, the associated body motion is reshaped by

the constrained inverse kinematics method (Sec. IV-D).

II. BODY MOTION ASSOCIATION FROM TOOL

MOTION [12]

A. Knowledge of Tool-Use Motion

Basic tool-use motion primitives are learned from real

human data of tool-use motions. The time sequence of ob-

served human motion patterns are abstracted through hidden

Markov models (HMMs) by the EM algorithm [14].

Tool-use motion knowledge consists of two models; tool

manipulation knowledge and body motion knowledge. Tool

manipulation knowledge contains information of a tool and

a corresponding end-effector (e.g. a grasping hand). The tool

manipulation knowledge is embodied into “Tool-Effector

HMMs” (TE-HMMs). Body motion knowledge contains

motion information of full body including the grasping hand

without tool information. The body motion knowledge is

embodied into “Body HMMs” (B-HMMs). One can interpret

that TE-HMMs and B-HMMs consider task space and joint

space in imitation respectively, similar to [15].

By separating tool-use motion into two models1, changes

of the body schema with and without a tool can be imple-

mented easily by including and excluding the tool manip-

ulation model. Another advantage to having two models is

richness of motion representability by combination. Since

body motion knowledge, in which tool specific information

is excluded, is general, same body motion knowledge can be

used for different types of tools. Therefore, with the limited

number of demonstrations, possible motion representation

can be increased.

B. Whole Body Motion Estimation From Tool Motion

The authors developed an inference mechanism to asso-

ciate a whole body motion from tool knowledge during the

tool-usage task [12]. This mechanism can generate a natural

high dimensional movement from the low dimensional infor-

mation like a tool trajectory. The main concept of the method

is illustrated in Fig. 2. To achieve a successful task during a

tool-use motion, the trajectory of the tool is estimated. Then,

the tool trajectory becomes a trigger in associating a whole-

body motion. The best matching TE-HMM for the desired

tool trajectory is found among a dataset of TE-HMMs by the

algorithm of motion recognition from partial observation,

which is proposed in [13]. An appropriate end-effector (a

grasping hand) motion for the desired tool trajectory is

estimated by the algorithm of proto-symbol based duplication

of an observed motion [13].

The same inference method is applied for association of a

whole-body motion from the end-effector motion. The best

matching B-HMM for the estimated hand motion is found

among a dataset of B-HMMs by the algorithm of motion

recognition from partial observation. An appropriate full

body motion is generated from the best B-HMM by the

algorithm of proto-symbol based duplication of an observed

motion.

If computing a whole body motion which satisfies the con-

strained trajectory only by inverse kinematics, there might

be many possible solutions because human/humanoid model

is highly redundant. Some solutions might not be natural-

looking. Yamane et al. [16] addressed a similar problem in

animation of manipulation tasks of human figures. In order

to satisfy geometric constraints during manipulation tasks

and to generate natural-looking motions, they proposed to

combine an iterative inverse kinematics method and a data-

driven method. In a similar sense, our proposed algorithm

provides a natural whole body motion, because TE-HMMs

and B-HMMs are trained via both a model-driven (based on

kinematics) and a data-driven way (based on captured human

1Representing a tool-use motion with one HMM by combining a TE-
HMM and a B-HMM is also technically possible. In such a case, the
proposed method is still usable.
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Fig. 2. Overview of the association model [12]. This model contains two
kinds of HMMs. One is TE-HMM that represents tool-handling knowledge.
The other is B-HMM that represents whole body motion. By the association
model, a natural-looking whole body motion is associated from a tool
motion.

motion patterns). Moreover, this is an efficient method for

learning and reproducing tool-use tasks.

III. EXTRACTION OF KEY FEATURES

Depending on the task, the end-effector with which the

robot manipulates objects varies. For instance, both hands

are important for a golf full swing motion, and feet are

important for kicking a soccer ball. This section proposes a

method to find important body parts and timing for a certain

manipulation task. The key insight is that important features

are invariant for the multiple patterns of the same task. In

other words, the important features have small variance at a

certain moment. The detailed procedure is as follows.

Step1 Let Mi be the human motion sequence and Oi be

the object motion sequence in the i-th observation

of a certain manipulation task. From Mi and Oi, a

time-sequence of the relative object position Xi,m

with respect to each body part is calculated. Here,

m is the index of a body part.

Step2 For each body part, the parameters of an HMM λm

are optimized by the EM algorithm from multiple

observations Xi,m of the same manipulation task.

Step3 Check the variance of each state of each HMM

λm. If the variance is smaller than the predefined

threshold, the corresponding body part to the HMM

is an important body part and the state is an

important timing for the task.

By the above procedure, the key features, in particular body

parts and timing, for the given task can be extracted.

The proposed method was implemented to extract the

important manipulating end-effector and timing for a ball

catching task. Ball catching motions of a right-handed person

are captured with a sampling time of 5 [ms]. Pre-segmented

eleven motion patterns, whose average duration is 341 [ms],

are used. Six body parts like head, hip, right hand, left

hand, right foot, and left foot are considered as candidates

of manipulating end-effectors. The relative ball position and

orientation with respect to each body part is used for training
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Fig. 3. Variance in [m] at each state of each HMM, which is learned from
relative object positions to each body part. The body parts are head (top
left), hip (top right), right hand (middle left), left hand (middle right), the
right foot (bottom left), and the left foot (bottom right).

each HMM. A left-to-right type HMM with 10 states is used.

The threshold is set to 0.02 [m].

Figure 3 illustrates the variance of output probability at

each state of each HMM. The horizontal axis is the state

index and the vertical axis is the variance value for the

relative ball position in x, y, and z axis. This shows that

variances for the relative ball position (x,y,z) with respect to

the right hand are almost zero at the 10th state. This implies

that the right hand is the important body part, and the 10th

state, which corresponds to the ball catching moment, is the

important timing for the ball catching task. If applying this

strategy for a right-foot-kicking task, the right foot will be

detected as the important body part.

IV. REACTIVE ASSOCIATION MODEL FOR

DYNAMIC TASKS

A. Reactive Association Model

For general manipulation tasks, a humanoid robot requires

to interact with objects in an environment. For instance, in

order to catch a flying paper-plane, the trajectory and speed

of the whole body motion should be adapted to the paper-

plane in real-time.

This paper proposes a new method how to associate and

modify a whole body motion for an object manipulation

task (Fig. 4). In order to apply the proposed association

and reshaping method, the robot should learn the object

manipulation task a prior. By learning from observations,
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Fig. 4. Overview of the proposed model of association and reshaping.
This contains two inference steps based on TE-HMMs and B-HMMs.
Both HMMs calculate the error between predictive and actual trajectories
and generate time series data based on the error. TE-HMM’s feedback is
realized by the natural actor-critic algorithm and B-HMM’s is realized by
the constrained inverse kinematics.

the robot learns basic motion primitives (TE-HMM and

B-HMM) (Sec. II-A) and key features (Sec. III) of the

task. Also, a control policy, how to adapt an end-effector

motion primitive to achieve the task successfully, is learned

by reinforcement learning (Sec. IV-B). This control policy

learning is implemented, aiming at embodying “transferred

skill improvement by practice” and dealing with object

motions which are hard to predict (e.g. a paper-plane motion

and a swimming fish motion).

After learning the motion primitives, the key features, and

the control policy, the humanoid robot can perform the object

manipulation task in a new situation. From a given object

motion, the correct TE-HMM is found by the algorithm

of motion recognition from partial observation [13] and

the appropriate end-effector motion is associated (Sec. IV-

B.1). Then, the learned control policy is used to adapt

the associated end-effector motion in the current dynamic

situation (Sec. IV-B.2). Also, motion speed is adapted by

modifying the state transition probabilities of the HMM

based on difference of the predicted and observed speed (Sec.

IV-C).

From the reshaped end-effector motion, an appropriate

whole-body motion is associated by the inference mechanism

to associate whole body motion (Sec. II-B). In order to

satisfy the reshaped end-effector motion, the associated body

motion is reshaped by the constrained inverse kinematics

method [17] (Sec. IV-D).

B. End-Effector Trajectory Adjustment by Reinforcement

Learning

This section introduces how to learn a policy to modify an

end-effector trajectory and how to use the learned policy to

adjust an end-effector trajectory in action. The control policy

is improved by the natural actor-critic (NAC) algorithm [18],
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Fig. 5. Flowchart of policy improvement by a natural actor-critic algorithm,
which is a fast reinforcement learning method. First, the actor generates a
whole body motion pattern according to the policy. Second, the actor gets
immediate rewards. Third, the critic evaluates actor’s behavior and improves
actor’s policy.

which is a fast reinforcement learning method. As shown in

Sec. II-A, an object manipulation motion is represented as

a TE-HMM, which is corresponding to the key end-effector

(Sec. III), and a B-HMM. Based on the TE-HMM, the key

features, and observations, the policy is learned by the NAC.

In this paper, the TE-HMM is the actor to generate an end-

effector motion trajectory based on the control policy. Simply

saying, from a current object trajectory (sensory input), the

parameters of the TE-HMM (output) are modified. From

the modified HMM parameters, the end-effector motion is

reshaped.

1) Motion Generation from an HMM: A motion pattern is

decoded from a selected TE-HMM either in a deterministic

[6] or stochastic way [13]. The motion generation has two

processes: generation of the state sequence and generation

of the output motion. The state sequence, which is temporal

information of the motion primitive, is decoded from the state

transition probability matrix and the initial state probability

vector. Once the state sequence has been generated, the

spatial information at each state is decoded from the output

probability distribution, which is represented as a Gaussian

distribution.

2) Reshaping the output probability function of a TE-

HMM: An end-effector motion primitive, which is generated

from a TE-HMM, should be reshaped in accordance to an

object motion in a current situation. The expected motion

pattern from the TE-HMM is compared to the observed

sensory data. From the difference, the motion primitive is

reshaped. The concept is described in Fig. 6 and its detailed

procedure is described as follows.

Step1 Calculate the expected mean vectors for the j-th

state in the TE-HMM, by simply averaging the
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Fig. 6. The mean vector of the i th state (extracted key timing) is modulated
by the difference between the observed and expected data of the j th state
(states for prediction) of the HMM.

generated motion sequence from the state.

xexp,j =
1

D∗
j

∑

∀qt=j

xt ,

where D∗
j is the duration that the generated mo-

tion pattern corresponds to the j-th state. Term qt

denotes the state at time t for the data sequence.

Here, the j-th state implies the state for prediction.

Step2 Estimate the state-sequence for the observed motion

pattern. Then, calculate the observed mean vectors

for the j-th state, by simply averaging the observed

motion sequence corresponding to the j-th state.

xreal,j =
1

Dj

∑

∀qt=j

ot ,

where Dj is the duration that the observed motion

pattern corresponds to the j-th state.

Step3 Calculate the error between the expected and ob-

served motion pattern for the j-th state by

xerr,j = xreal,j − xexp,j .

Step4 Let i be the state corresponding to extracted key

timing, which is explained in Sec. III. Based on

the error xerr,j of the j-th state, the mean vector

of the output probability at the i-th state is modified

by

µ∗

i = µi +
∑

Θ
T
j xerr,j , (1)

where Θj is a feedback gain matrix. The parameter

Θj is the trained control policy by the NAC.

3) Reward Calculation: The reward is an essential part

of reinforcement learning. From the modified TE-HMM by

(1), a motion pattern Xmod = {xmod,t} is generated. Then,

the actor TE-HMM gets immediate rewards rt at time t.
The reward is calculated based on the extracted key features

(body parts and timing) of the task, which is explained in Sec.

III. If the key timing is the i-th state of the TE-HMM, the

generated motion sequence xmod,t,i from the i-th state of the

modified TE-HMM and the mean vector µi of the originally

trained TE-HMM are compared. The reward is designed as

a penalty function like

rt =
∑

∀qt=i

|xmod,t,i − µi| . (2)

Since the key motion elements have small variance at the

key moment, simply the mean vector µi can be compared

instead of considering the exact output probability function

of the i-th state. By this reward function, the NAC reshapes

the motion primitive to follow the key features of the task.

From the immediate reward rt at time t, the average reward

re for each episode is calculated by

re =
1

D∗
i

∑

∀qt=i

rt , (3)

where D∗
i is the time duration corresponding to the i-th state.

One can see that the reward is not provided manually

by a supervisor, but automatically based on the extracted

key features. Thus, the same mechanism can be applied

for complicated tasks without the need of re-designing a

different optimizing function for a different task.

4) Updating parameters: The control policy is updated

by the NAC algorithm [18]. The NAC is chosen because it

is expected to handle high dimensional movements and to

provide faster convergence to the nearest local minima. The

outline of policy improvement mechanism is illustrated in

Fig. 5. The natural gradient w and the fisher information

matrix F are designed as

w = F−1J (4)

F =
∑

e

φ̂eφ̂
T
e (5)

J =
∑

e

φ̂ere (6)

φ̂e =

Ti+1∑

t=Ti

γt[∇Θj
log π(xmod,t,i|qt)

T ]T (7)

where γ is a forgetting factor.

∇Θj
log π(xmod,t,i|qt) =

(xmod,t,i − µ∗
i )xerr,j

σi

When the natural gradient w is converged over a window,

the policy parameter Θj is updated by

Θj ← Θj + αw (8)

with a learning factor α. Some of sufficient statistics are

forgotten with a forgetting factor β.

F ← β F (9)

J ← β J (10)

If simply using the natural gradient, sometimes the

changes of the policy parameter are very big and the updated

policy moves beyond the local minima. Therefore, we added

the upper limit on the natural gradient w. Another issue

for learning the control policy is selection of training data

set. If the observations in the training set are very close to
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Fig. 7. An HMM starts to generate a motion pattern when recognizing a
state transition from the 1st state to the 2nd state.

each other, the updated parameters via NAC are prone to

overfitting. Thereafter, when a new object motion (sensory

input) is very different from the training data, the motion

primitive (output) might not be reshaped well.

C. End-Effect Motion Speed Adjustment

In order to achieve a successful task, the robot needs

to adapt its motion with respect to temporal and spatial

variability. This section explains how to adjust for temporal

changes. In particular, two main issues should be considered:

when to start the motion and how to change motion speed.

Since left-to-right type HMMs are used for representation

of motion primitives, the motion patterns always start from

the most left state and finish at the most right state. When

recognizing the state transition from the jth state to the j +
1th state, the moment is taken as a trigger for generating a

motion, as shown in Fig. 7.

In the left-to-right type HMMs, the expected state duration

at the ith state is 1/(1 − ai,i), where ai,i+1 is the proba-

bility to transit from the ith state to the i + 1th state [6].

By estimating the state-sequence for the observed motion

pattern, the real state duration Di for the ith state is known.

By comparing the expected and real state duration, the

motion speed can be adjusted. The motion speed scale s∗

is calculated by

s∗ = (Di−1 + Di)/(
1

1 − ai−1,i−1

+
1

1 − ai,i

) . (11)

With the calculated scale factor s∗, the state transition matrix

is modified to a∗
j,j . Since the modified state duration is

required to be the same as the real state duration, which

implies that
1

1 − a∗
j,j

=
1

1 − aj,j

s∗ ,

the state transition matrix is modified by

a∗

j,j = 1 −
1 − aj,j

s∗
, (12)

where j is the state index. Equation (12) is calculated for all

states and

a∗

j,j+1 = 1 − a∗

j,j

is calculated for all states except the last state.

D. Whole Body Motion Adjustment by IK

So far, we explained how to adjust the trajectory and speed

of the key body part (end-effector) motion to achieve the

successful task in accordance to the dynamic object. This

section describes how to generate a whole body motion

which is consistent with the adjusted end-effector trajectory.

If using the conventional association model shown in

Fig. 2, the best matching B-HMM for the adjusted end-

effector trajectory is found and an appropriate full body

motion is generated. However, the associated whole body

motion cannot guarantee to follow exactly the same adjusted

end-effector trajectory. Therefore, the associated whole body

motion is modified with two constraints.

• Keep the adjusted trajectory of the end-effector exactly

as long as robot kinematics allows.

• Two feet are contacted on the ground. If considering

only the previous constraint, the generated motion might

be a floating motion in the air.

The associated whole body motion is reshaped to satisfy

the above constraints by applying the constrained inverse

kinematics method [17].

V. EXPERIMENTAL RESULTS

The proposed concepts are tested on a motion data con-

taining three different types of ball catching motions: under

catch, over catch, and side catch. Eleven motion patterns of

human’s ball catching task are obtained through a motion

capture system. The data set contains multiple observations

of under catch (4 observations whose average length is 73

frames), over catch (5 observations whose average length is

61 frames), and side catch (2 observations whose average

length is 76 frames). The sampling rate for each frame is 5

[ms].

From randomly selected observations among the data-set

of each ball catching type, a TE-HMM and a B-HMM are

learned via the EM algorithm, namely 3 TE-HMMs and 3 B-

HMMs in total. Each HMM consists of 10 states and is a left-

to-right type. Key features are extracted for the ball catching

task. Section III shows that the right hand configuration at

the 10-th state is the key feature for the ball catching task2.

A. Policy Learning

A policy how to reshape a motion primitive for end-

effector motion is learned by the NAC, which is explained

in Sec. IV-B. We tested the policy learning on the “under

catch” motion. In the experiments, the two states (the 2nd

and 3rd state) of the HMM are used for prediction. From

the difference between the expected and observed data for

these two states, the mean vector of the output probability

function of the 10th state (extracted key timing) is modified.

The policy is learned from multiple observations: three

observations of the under catch motion, which are used

for TE-HMM and B-HMM. The penalty during the policy

learning is illustrated in Fig. 8. The figure shows that penalty

becomes smaller as learning proceeds.

2The demonstrator was a right-handed person.
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Fig. 8. Policy Learning result.

B. Adaptation of Motion Trajectory

The learned policy Θj is tested on a new “under catch”

motion, which is used for training neither the “under catch”

TE-HMM nor the policy Θj . Ten trials are carried out with

and without the learned policy. For the expected motion

pattern, ten different motion patterns are generated from the

TE-HMM in a stochastic way. The penalty for each trial

and the average penalty are shown in table I. When using

the learned policy, the average penalty is about 0.40. When

not using the policy, the average penalty is about 0.71. This

results show the soundness of the policy learning. The trail

10 shows the relatively small improvement because in this

trail the stochastically generated motion pattern was not a

good expectation.

In the case of ball catching, the penalty function (3)

implies the positional and rotational distance between the

right hand and the ball. In other words, the penalty values

in table I implies that the humanoid robot moves its right

hand much closer to the ball by using the learned policy,

compared to without the policy.

TABLE I

PENALTY OF EACH EPISODE

Trial With learned policy Without learned policy

1 0.397136 0.710987

2 0.247843 0.707972

3 0.392468 0.710516

4 0.279734 0.719023

5 0.466914 0.714592

6 0.452610 0.712177

7 0.503462 0.714383

8 0.379811 0.716159

9 0.193874 0.724841

10 0.710112 0.716237

average 0.4023964 0.7146887

From the reshaped right-hand motion according to the

ball trajectory, whole body motion is also reshaped by the

the inverse kinematics method with constraints, explained

in Sec. IV-D. The snapshots of a generated motion with

reshaping strategies are shown in Fig. 9 (top). The snapshots

of a generated motion without reshaping strategies, only

by the association model (Sec. II-B), are shown in Fig.

9 (middle). The reshaped motion according to the ball

motion is commanded to a human-size humanoid robot. The

snapshots are shown in Fig. 9 (bottom). In order to ensure

the dynamic stability of the humanoid robot, a COG (center

of gravity) based balance controller [19] is adopted for the

control of lower body joints, which simultaneously realizes

the hip motion.

Generated motion by using learned parameters

Default generated motion

Generated robot motion

Fig. 9. Snapshots during catching a ball. (Top) A robot generated a
modified motion reacting to a ball in simulation. (Middle) A robot generated
a default motion from an HMM in simulation. (Bottom) The reshaped
motion according to the ball motion is commanded to a humanoid robot.

C. Adaptation of Motion Speed

This section shows the evaluation of motion speed adapta-

tion. The motion speed adaptation is tested on two over-catch

movements with different speed. Both observations are new

patterns, which are not used for training the corresponding

HMMs and policy, to the robot.

Figure 10 illustrates how body motions are modified by

the ball speed. In particular, a trajectory of the right shoulder

pitch joint angle and a ball position as it moves toward the

human are shown. The solid lines correspond to the fast

ball motion and the dashed lines correspond to the slow ball

motion. Until 0.03 [sec], the shoulder movements are almost

same in both slow and fast speed. It shows that this initial

0.03 [sec] is the period for prediction of the current situation.

After the prediction period, the motion speed is adjusted for

the ball speed. One can see that the shoulder joint moves

faster for the fast ball motion compared to the slow ball

motion.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes a new method to associate and re-

shape a whole body motion according to an object movement

in object manipulation tasks. Motion reshaping methods for
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dynamic changes are integrated with the model of body

motion association from tool motion. The motion reshaping

is carried out in both spatial and temporal variabilities. The

reshaping is realized by integrating reinforcement learning

for end-effector motions and by constrained inverse kine-

matics for whole-body motions. For temporal variabilities,

issues like when to start the motion and how to change speed

are solved. A method to extract key features for a task is

proposed. The extracted key features become an important

basis to design reward functions during the reinforcement

learning and this leads to unsupervised learning.

In future work, the proposed method will be implemented

on a complicated task (e.g. catching a flying paper-plane

and placing it on a table) with a human-size humanoid

robot in real-time. The task will be a combination of robot’s

reaction to a moving object, whose motion is hard to predict,

and manipulation of an holding object. When generating a

whole body motion pattern, the active use of the previous

knowledge (e.g. the preference of motion types and the

appropriation of motion types according to situations) will be

considered. During a tool-use task, the constraints between

an end-effector and a tool are changing time-to-time. Such

time-variant constraints will be studied.
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[6] D. Kulić, W. Takano, and Y. Nakamura, “Representability of human
motions by factorial hidden markov models,” in IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, 2007.
[7] T. Ogura, Y. Sagawa, K. Okada, and M. Inaba, “Humanoid tool

operating motion generation by model with attention points,” in Annual

Conf. of the Robotics Society of Japan, 2005, p. 1F15, in Japanese.
[8] C. Nabeshima, Y. Kuniyoshi, and M. Lungarella, “Towards a model

for tool-body assimilation and adaptive tool-use,” in The 6th IEEE Int.

Conf. on Development and Learning, 2007, pp. 288–293.
[9] K.Sugiura and N. Iwahashi, “Learning object-manipulation verbs for

human-robot communication,” 2007.
[10] A. Maravita and A. Iriki, “Tools for the body (schema),” Trends in

Cognitive Sciences, vol. 8, no. 2, pp. 79–86, 2003.
[11] A. Iriki, M. Tanaka, and Y. Iwamura, “Coding of modified body

schema during tool use by macaque postcentral neurons,” Neuroreport,
vol. 7, no. 14, pp. 2325–2330, 1996.

[12] D. Lee, H. Kunori, and Y. Nakamura, “Association of whole body
motion from tool knowledge for humanoid robots,” in IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, 2008, pp. 2867–2874.
[13] D. Lee and Y. Nakamura, “Mimesis from partial observations,” in

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005, pp.
1911–1916.

[14] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proc. IEEE, vol. 77(2), pp. 257–
286, 1989.

[15] S. Calinon and A. Billard, “A probabilistic programming by demon-
stration framework handling constraints in joint space and task space,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2008, pp.
367–372.

[16] K. Yamane, J. Kuffner, and J. Hodgins, “Synthesizing animations of
human manipulatioin tasks,” vol. 23, no. 3, pp. 532–539, 2004.

[17] K. Yamane and Y. Nakamura, “Natural motion animation through
constraining and deconstraining at will,” in IEEE Transactions on

visualization and computer graphics, Vol. 9, No. 3, pp.352-360, 2003.
[18] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement Learning for

Humanoid Robotics,” 2003.
[19] C. Ott, D. Lee, and Y. Nakamura, “Motion capture based human

motion recognition and imitation by direct marker control,” in IEEE-

RAS Int. Conf. on Humanoid Robots, 2008, pp. 399–405.

5247


