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Abstract— In this paper we present our work on enabling
smart cameras to act as autonomous vision systems for mobile
service robots. The smart cameras will adapt their functionality
to the current task of the robot system. Instead of transferring
raw image data, higher level image information or regions-
of-interest are transmitted. This way, the amount of data is
reduced and computationally intensive image interpretation will
not affect other tasks of the robot system. We are developing
a flexible software solution to integrate smart camera systems
to the architecture of our robot system. Each image processing
task is constructed by a composition of modular functions that
can be distributed over different systems. Timing aspects of the
flow of data can be analyzed with different tools to evaluate
the performance.

For this work we are using a commercially available smart
camera, but due to the use of a modular architecture the porting
to other camera models is easy. We show the advantages of our
approach in a setup where image regions containing a face are
detected and extracted for further processing steps. This task
is accomplished using different setups, where more or fewer
subtasks are assigned to the camera system. The performance
of the overall system is evaluated with respect to processor load,
network load and latency of image data.

I. INTRODUCTION

Mobile robot systems will become more and more im-
portant in the coming years. Autonomous robots could
be used in many applications like assembly, delivery and
cleaning tasks or security services. While stationary robot
systems are well established at industrial production sites,
most of the mobile robot systems are still not suitable for
practical everyday use, but are mostly limited to research or
demonstration. One main challenge of mobile robot systems
is the perception of the dynamically changing environment.

Vision is one of the most sophisticated perceptional ca-
pabilities of humans and animals. We are able to localize
ourselves in the environment, recognize objects and other
persons, control our movements and avoid collisions based
on our sense of sight.

Artificial vision systems are quite hard to handle, as there
are many drawbacks to deal with. These are mainly:

• implementation effort
• computational effort at runtime
• quality/robustness of image data
• the lack of (artificial) intelligence for scene interpreta-
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Our research focuses on the first three aspects mentioned
above. We are investigating a software framework for smart
cameras that features distributed processing of image data
and intelligent control of capturing parameters. It is highly
extensible and portable to make the integration of this
framework as easy as possible. Although the architecture is
purposed for smart cameras, it can be used for systems with
a conventional digital camera as well, yielding the advantage
of a unified camera access. In this paper, we will focus
on the task-oriented choice of regions-of-interest that are
transmitted via Ethernet for further analysis. The robotic task
by which we are exemplifying the capabilities of the system
is face detection. This task has been chosen because one main
challenge of service robots is human interaction. Having the
image region containing the face is a prerequisite for further
steps like gesture detection or face recognition. We show that
our approach can reduce network load, latency and system
load compared to conventional Ethernet cameras.

The remainder of this paper is organized as follows: In
section II we present our research background and discuss the
technical challenges that occurred with the camera systems.
We introduce approaches of similar research projects and
refer to our prior work in this research field. Section III
introduces the developed framework for a wide range of
freely programmable camera systems with its underlying
part, the open source project GStreamer. We will describe
the implementation of a face detection system with three al-
ternative implementations in section IV. Experimental results
are discussed in section V. A conclusion and an outlook to
future research is given in section VI.

II. RESEARCH BACKGROUND

The TAMS group is doing research on mobile robotic
systems with different sensor and actuator systems. The main
research platform is the service robot TASER. Descriptions
of the whole architecture of TASER can be found in [1]. The
purpose of this robot system is to effect delivery tasks in
an office environment with subtasks like human interaction,
localization, object detection and grasping.

In the following we will only focus on the camera systems
of TASER. We will discuss the effect of the drawbacks of
the camera systems in terms of connectivity issues, software
development and system load. Multiple camera systems are
installed (Firewire, USB-Framegrabber), serving different
subsystems of the platform.

These different devices are currently controlled by a single
industrial PC. This raises the problem that all types of inter-
faces need to be provided by a single PC. In addition to that,
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the operating system must support all the camera devices
as well as the other sensors and actuators. Bottlenecks in
the Firewire bus systems prevent all cameras from operating
at the same time at full capturing speed. These issues are
discussed in [2].

For the development of new standalone applications, it
is necessary to integrate low-level libraries of the specific
camera system. This leads to a high implementation effort,
as standard program parts and algorithms need to be imple-
mented again and again with each application. If changes
are applied to the camera system, the applications need to
be ported (i.e. a Matrox Meteor PCI board for grabbing was
replaced by the above-mentioned USB solution).

The camera systems of TASER cause a high system load
on the control PC. As this PC is also used for time-critical
control tasks on the robot actuators, they cannot be used
while image analysis is being done. Most current image
processing algorithms have an execution time greater than
the reciprocal of the frame rate of digital cameras. If those
image processing functions are run continuously, the system
load will always be approximately 100 %.

A. Desired Solution

We are investigating a solution where different kinds
of sensors are replaced by intelligent sensor systems that
communicate over ethernet. This principle has also been
successfully applied to laser range finders, as described in
[3]. Communication via standard network technology yields
the advantage that this technology is supported by a wide
range of devices, so there is no need for specialized hardware
inside the control PC. Preprocessing of sensor data will
reduce the load on the control PC of the robot and therefore
ensure that time-critical tasks are carried out properly. Thus
the principle of intelligent sensors has also been applied to
camera systems. In [4] we proposed a distributed software
architecture to integrate smart cameras into a robotic system,
taking advantage of the computing power of the devices. The
camera can act as an autonomous system. Whenever the main
task of the robot system implicates image processing tasks,
these can be sourced out to the camera hardware. The main
principles of the software will be presented in section III
with respect to the scenario we use for evaluation.

B. Related Research

We will look at some research work from different re-
search groups with the focus on intelligent camera systems
and active vision. Intelligent image sensors combine photo
detectors and processing elements on one image sensor.
An application of these kinds of sensors is shown in [5].
At the moment, the resolution is very low and due to the
fixed processing strategy the flexibility is strongly limited.
Three-dimensional image analysis carried out on dedicated
hardware is shown in [6]. In [7] the authors propose an
active vision system that can apply various preprocessing
functions implemented as dedicated hardware. They intro-
duce an algorithm to track an object based on a template
and color segmentation based region-of-interest selection. In

[8] a smart camera system intended for tracking applications
is shown that can be configured to read out only a partial
area of the image sensor and reaches up to 1000 frames
per second. An application of face recognition running on a
smart camera system is shown in [9]. Due to a DSP-based
hardware and an efficient implementation the process of face
recognition runs in realtime. Compared to these projects, the
innovative feature of our system is that the image processing
algorithms are not fixed and can be exchanged at runtime.

III. CONTROL ARCHITECTURE

In order to integrate smart camera systems into a robot
system, we are developing a flexible software architecture
that is capable of controlling the camera hardware and
carrying out software-based preprocessing.

The basic principles of the developed software layer are
summarized below:

• Processing Chain: The operations are arranged in a
pipeline of processing functions. This pipeline can be
modified at runtime.

• Platform-Independence: The code should be transfer-
able to other common platforms.

• Re-usability of code: We want to build on a huge set
of proved library functions and be able to reuse code in
different contexts.

• Timing analysis: The execution time of each operation
should be measurable to carry out performance tests and
to achieve flow control.

• Extensibility: New image processing functions and
support for a new type of cameras should be easy to
integrate.

Our distributed software system can control the processing
function of many cameras from a single instance. The
software is written for Linux, but could be transferred to
other operating systems, too. Transfer and processing of
image data is done within the GStreamer [10] framework.
This open-source multimedia framework is supposed to be
an equivalent of DirectShow [11] that is running under most
common operating systems including Linux. Many functions
needed for this application are already implemented in
GStreamer, like format conversion, image resizing, encoding,
decoding, timing issues and network data transmission. The
GStreamer framework is plug-in-based, so the functionality
can be expanded by new plugins that also can define their
own data types. The elements are connected to a processing
pipeline, so that many operations can manipulate image data
consecutively. Each Elements can act as a data source (i.e.
camera driver, network-receive, read file), as a filter that runs
processing functions on image data or as an output plugin
(i.e. network-send, show video data, write files). There is
also the possibility to set up non-scalar pipelines where data
of one image is processed by many elements in parallel. In
this case, copies of image data are only made if any element
wants to manipulate image data.

Image processing functions can also be run on dedicated
systems without camera hardware, so the tasks can run on
many systems in parallel. This can be useful when the
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Fig. 1. Connection between TASER and the smart camera

computational effort is large compared to the additional
overhead of transferring image data over a network.

Timing issues can be analyzed by the so-called times-
tamps that every unit of data (i.e. one image of a video-
stream) provides. Normally, this field of data is used for the
streamtime of a video or audio file, starting with zero. In
our case, we exchange this value with the current NTP [12]
timestamp directly after the frame was captured. Therefore,
we synchronize all systems including the smart camera by an
NTP timeserver. The achievable accuracy is better than 1 ms
in a local area network. Considering the usual processing
times of image processing functions and jitter caused by the
scheduler of the operating system, this accuracy is sufficient.

Our software-framework is tested with the commercially
available smart-camera Basler “eXcite exA1390-19c” [13].
The device features an MIPS 1 GHz processor and has a
resolution of 1388 x 1038 pixels. In the following setups
the camera will be configured to output grayscale images
with 8-bit resolution. The maximum framerate depends on
the shutter time and is between 18 and 19 fps. A plug-
in integrating the camera in the GStreamer framework has
already been developed, tests concerning the performance of
the camera are in progress. The setup of the connection is
shown in figure 1.

IV. APPLICATION OF THE SMART CAMERA SYSTEM

In this section, we compare three possible setups of the
camera system in the use case of face detection. This task
has been chosen both because of its relevance for mobile
service robots and because it shows the capability of our
framework to adapt to the performance of current smart
camera systems. The camera system is intended to transmit
only those image regions at native resolution where faces
occur. Thus network bandwidth will be saved because only
the data needed for further steps like face recognition will be
transmitted. A face detection element has been set up using
Haar classifiers [14] that are implemented in the OpenCV
framework [15]. Prior tests have shown that running the face
detection algorithms with a reduced image of 320x240 pixels

is sufficient for a robust detection. Therefore, image data is
scaled down before face detection, yielding the advantage
of lower computing time and implicit noise reduction by
subsampling. Nevertheless having the high resolution data
is sufficient for further steps. In [16] it is shown that
the accuracy of face recognition depends on a sufficient
resolution of image data.

The three different setups differ in the allocation of tasks.
For each configuration, we set up two processing pipelines,
one on the smart camera system, and one on the control PC
of the service robot. For these tests an Intel Pentium D with
3 GHz was used. The flow of data is established via TCP
connections. In the first setup the smart camera system is
configured to act as a conventional Ethernet camera. Image
data is transferred to the control PC at full resolution. The
control PC performs face detection and extraction of the
image regions. Within the second setup, the camera system
transmits a scaled-down video stream (320x240) to the
control PC which performs the face detection and transmits
coordinate information back to the smart camera system,
where these regions are extracted and sent to the control PC.
In the third setup the smart camera system accomplishes all
tasks mentioned above and transmits only regions-of-interest
and coordinate information. Detailed information about the
setup is shown in figure 2.

Since face detection cannot be accomplished for every
image at full frame rate, measures have to be taken to deal
with the problem that the queue of images waiting to be
processed will permanently grow. Therefore, we set up a
caching element preliminary to the face detection element
that is configured to keep only the latest image and drop all
older ones. This way, no processing time is wasted for old
data, the average latency is reduced and the system will not
run out of memory. The same dropping strategy is applied
to all network connections.

The region-of-interest extraction can work in two different
modes. It can either force synchronization between the posi-
tion information and the full resolution image or not. If this
element works unsynchronized, it will use the latest available
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position information for every image, yielding the advantage
of a higher frame rate with a good chance of gathering
useful information. Image information will generally be
available earlier on the host PC. The disadvantage of the
unsynchronized strategy is that especially for moving persons
and setups with a slow refresh rate of coordinate data, the
extracted region will not match the actual position of the
face anymore. In the synchronized mode only regions-of-
interest are transmitted if coordinate information is available
for exactly this frame. Otherwise, image data is dropped.

To simulate conditions like they are while the service
robot is carrying out additional tasks, system load is caused
by simple dummy tasks that run in parallel with image
processing. These are three “busy-waiting” tasks and one
task that receives data over Ethernet connection from a third
system at a data rate of 20 MB/s.

Within each test period of approximately 30 seconds a
person is walking along a path in front of the robot system.
The latency of image and position data as well as system
and network load is permanently measured and logged to a
file. The three different pipeline-setups, the choice whether
to force synchronization or not, and the possibility to add
additional load lead to twelve possible combinations. For
each of them the test is run once. Several aspects are analyzed
to evaluate the performance of the overall system. Their
impact will be discussed in the following:

• System load on the control PC of the robot: The
system load has been evaluated by reading out the
virtual file “/proc/stat”. All tasks running on the control
PC of the robot will influence this value. If no additional
load is generated, it nearly represents the computational
effort of the assigned tasks. Taking into account that
many sensor and actuator systems have to be controlled
by this PC and that several higher-level tasks need to
be carried out, the load generated by image processing
must not be too high. Within testing procedures with
additional load this value is meaningless.

• System load on the smart camera: The evaluation
method is the same as for the system load on the PC.
This variable has been analyzed to determine how the
different setups use the capacity of the CPU of the
smart camera. It can also be derived whether the camera
provides additional computing capabilities for further
processing functions.

• Network Load: The network load has been measured
in each of the TCP elements used in the setup. Only the
payload has influence on this value. As more and more
sensors are replaced by intelligent sensor systems with
ethernet connection, it should be kept in mind that the
maximum bandwidth of the network infrastructure must
not be exceeded. A high network load causes higher
latencies for the different devices that communicate via
Ethernet.

• Position updates per second: Each time the face recog-
nition of one image finishes, a dataset of coordinates is
generated. The number of these packets per second is
analyzed by the timing element. If the system is working

Fig. 2. These figure shows the three different setups of the processing
pipelines. The smart camera system (left side) communicates with the
control PC of the service robot (right side) via TCP connections. At the end
of the pipeline the timestamp of the extracted regions and the coordinate
data is compared to the current time.
Within the first setup (top) the smart camera acts like a conventional
Ethernet camera. All relevant tasks are accomplished by the PC. The second
configuration (middle) divides the tasks in a way that the smart camera
system generate a low resolution video stream, that is analyzed for faces
on the control PC. Coordinate data is sent back to the smart camera, where
these regions are extracted and transmitted. In the third setup (bottom) all
processing functions run on the smart camera and only the image regions
and coordinate information are transmitted.
Elements that are used in this setup:
SRC: access to the camera driver libraries, generating raw image data
CPY: duplicates data (mostly pointer based)
SCA: scale element, modifies the resolution of images
FD : face detection using Haar classifiers, generates list of coordinates
ROI: extracts the regions-of-interest and sends them sequentially, sends
current position information via the second stream
TCP: transmits data through a TCP connection
TIM: compares the timestamp of data to current NTP time

in the synchronized mode, this number also represents
the update frequency of the image regions (presuming
that all could be transmitted in time).

• Age of position data: This value is also measured in
the timing element within the processing pipeline. Due
to latencies caused by data transfer and caching, this
value can be greater than the reciprocal of the number
of position updates. This value is important as the robot
system should react to events in the environment in
time.

• Age of image data: This value is also checked inside
the pipeline. In the unsynchronized operation mode, it
mainly represents the time needed for extracting the re-
gions and data transmission. In the synchronized mode,
it is nearly the same as the age of the position data,
but due to the implementation of the region extraction
element and the bigger data size, image data is available
a short time later.
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Fig. 3. Visualization of the extracted region, superimposed above the low
resolution video stream (grayed out)

V. EXPERIMENTAL RESULTS

The detection of faces worked reliably with every con-
figuration. For visualization purposes, the extracted regions
are superimposed above the grayed out low resolution video
stream. Figure 3 shows two arbitrary images of the testing
procedure.

The most significant results are visualized in figure 4.
A complete overview of all evaluated values is shown in
table 5. Using smart camera systems yields a major ad-
vantage compared to the use of traditional camera systems.
Especially the second configuration clearly offers the best
overall performance. The amount of data is reduced to about
10 % of the initial value, the latency of image data is reduced
noticeably. The continuous stream (18.5 fps) of 320x240
pixel generates only 1.4 MB/s compared to the 27 MB/s
needed to transfer all native resolution images. Due to the
fact that this amount of data does not need to be handled
by the control PC, the reduction of the system load is also
noticeable. The actual data rate strongly depends on the
number of faces in the scene and the distance of each face
towards the camera.

The third configuration shows that the complexity of face
recognition exceeds the capabilities of current smart camera
systems. If the occurring latencies of over 500 ms are
acceptable, it can still be useful, because it barely generates
load on the control PC and on the network. Especially if
image processing is considered as a background task and
the main task is something different, it is still possible to
detect faces and trigger events. Due to the technical progress
future types of smart camera systems will be able to carry
out the task at higher speed. The basic setup of the image
processing pipelines can be retained for different criteria
for the region-of-interest detection, like motion detection or
color histogram matching. Using these less computationally
intensive functions, setups where these functions run directly
on the camera system will perform even better than a
distributed processing like in the second setup.

All measurement values are influenced by many fac-
tors, mainly the scheduling order of the operating system,
additional tasks and dependency on the actual content of
the scene. Therefore, these values can only give a rough
estimation of the behavior. Nevertheless some unexpected
measurement values occur in the table of the test results.
One of theses issues is the high processor load on the smart
camera systems in the first setup. This is caused by an

inefficient implementation of the network interface and low
memory bandwidth. In the tests with additional load the
amount of data transmitted decreases. The generated network
load leads to delays at the transfer of image data, thus images
get dropped directly on the camera and do not need to be
transferred. A slight decrease of the load in the smart camera
is an effect of this circumstance. Also quite unexpected was
the fact that the number of position updates decreased in the
second setup compared to the first setup (both with additional
load). A reason could be that sometimes two or more scaled
down image buffers have already been received in the receive
buffer when the corresponding thread gets called and as a
result they get dropped. The native resolution image buffers
could be less likely to cause drops. Thread scheduling and
frame dropping can also explain why the number of position
updates per second (setup 1 and 2, no additional load) is
beneath the framerate of the camera, although the CPU
is not fully loaded. A short test where the threshold for
dropping was increased confirmed this: The update rate and
the processor load increased, but so did the average latency
due to the fact that image data is queued for a longer time.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented our work on a framework for
intelligent camera systems. The image processing functions
on the camera systems can be adapted according to the
current task of the robot. We showed different configurations
where the camera is configured to detect regions of faces
and transmits only these regions to reduce the network load
and thus the amount of data that needs to be processed by
further systems. Performace analysis has shown that current
smart camera systems can reduce the system- and network
load of the robot system and reduce the latency of image
data. The innovative streaming concept makes it possible to
take advantage of high-resolution cameras and handles the
high amount of image data efficiently. These results form a
basis for the integration of multiple intelligent cameras on
one system and also make it possible to use cameras with
even higher resolutions.

Future types of smart camera systems will feature more
powerful hardware and will be able to carry out complex
image processing algorithms in realtime. Due to the porta-
bility of our framework we could easily take advantage
of additional computing power by a simple reconfiguration
of processing elements. Having regions-of-interest detected
opens up new possibilities in the control of the capturing
parameters, that can be optimized for these regions. This
way, the camera system will aim to generate robust and high-
quality image data.
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