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Abstract— This paper presents a method to utilize a port-
based multibody contact model for simulating dynamic interac-
tion between irregular surfaces. The existing compliant contact
model requires an analytic parametrization of the surfaces
involved in the interaction, the definition of a Gauss frame
in each of the contact points and initialization of the candidate
contact points. The authors intend to apply this contact model
for cases in which the surfaces of the 3D interacting bodies can
not be described (easily) by a geometrically defined surface.
Such surfaces are often represented by 3D point meshes. This
implies that the surfaces of the bodies have to be reconstructed
from 3D point meshes where initialization of the candidate
contact points is not arbitrary.

This paper proposes the reconstruction of such surfaces by
means of polynomial interpolation. With the aim of having a
computationally efficient simulator, the surface interpolation is
restricted to small patches around the candidate contact points.
To select these candidates, the proposed simulation approach
is completed by using a fast (existing) collision detection
algorithm. Simulation results are validating the effectiveness
of the proposed modeling and simulation approach.

I. INTRODUCTION

Modeling contact is a core issue encountered in the

simulation of multibody dynamics. Significant work has been

carried out by the scientific community for the formulation

of models that capture the compliance and the shape of the

contact in several simulation scenarios and especially for leg-

terrain or wheel-soil interaction in walking or vehicle motion

respectively, as well as in haptics and robotic manipulation

and grasping.

In both regular and generalized contact kinematic ap-

proaches appearing in the literature, two aspects of major

importance for the applicability and the consistency of the

contact model have been identified. Firstly, the type of

surfaces that can be handled. The way to represent an

arbitrary surface in a computer aided design (CAD) tool is

via 3D polygonal meshes or 3D point meshes, for which

it is almost impossible to have the surfaces fully analyti-

cally defined. Thus contact algorithms needing a complete

analytical representation of a surface, e.g. [5], [6], [9], [1]

among others, are restricted to handling trivial and easily

parameterizable surfaces, like spheres, cones, cylinders or
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ellipsoids. Secondly, the approach taken on the application

of contact dynamics. Following the discussions in [9], [1],

the authors believe that the most physically consistent way

to apply dynamics on a simulated contact is to track the

evolution of the contact points on a geometrically defined

surface. In this approach the contact points are derived

based on the kinematics and the relative motion of the

bodies. In fact, the use of only collision detection algorithms

on polygonal surfaces may induce discontinuities in the

proper calculation of the contact and, moreover, it requires

the a priori graphical definition of certain parameters, e.g.

penetration depth.

This paper intends to start from the theory in [9], [1] for

the modeling of the kinematics and the dynamics of com-

pliant contacts between relatively convex objects described

by geometrically defined surfaces and to extend it to handle

geometrically undefined surfaces, described by digital eleva-

tion maps (DEMs). Motivation of this choice is that DEMs

are widely used as a graphic primitive for the description

of really wide scenes, like in the case of ground surface

topography and terrains in locomotion and of non-regular

object surfaces in grasping. The use of points as a graphic

primitive reduces the object to the essentials so that the

representation is greatly optimized [4]. However, it provides

a mere discretization of geometry without an explicit storage

of topology information. Therefore, geometry processing and

feature detection methods encourage the use of 3D point

meshes that meet the right balance between descriptive power

and computational costs.

Following this discussion, the authors aim to extend the

compliant contact model presented in [1] and to implement

it in simulation so that it is able to deal with 3D scenes of

great dimension described through DEMs. Since smooth and

geometrically defined surfaces are needed for the aforemen-

tioned contact model, and at the same time, the advantages

of having an essential description of irregular surfaces is

highly desirable, this paper proposes to reconstruct smooth

and geometrically defined portions of the surface, named

patches [7], [3], [13], [11], [12]. Patches are created by

interpolating only a subset of the points of the DEM in

the vicinity of the contact points. In this way, the patches

preserve the properties of the real scene or of some specific

features. They are built with low computational cost while

the evolution of contact is dynamically tracked over patches

by the port-based contact model. Furthermore, the usage of

patches allows to simultaneously instantiate multiple contact

point pairs between two objects on different parts of their

surfaces.
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Fig. 1. Schematic of the proposed algorithm for the case of two objects.
The 3D mesh representation of the objects is fed to the collision detection
block. After the contact points are detected, patch areas are defined around
them. Then, locally, on each of the defined patch areas, analytic smooth
surfaces are reconstructed. As the contact evolves, the patches are created
and destroyed following the motion.

This paper is organized as follows. Section II discusses

the implementation of the contact model together with the

proposed DEM reconstruction method in a general simula-

tion scheme. Thereafter, Section III presents a simple but

efficient patch interpolation method. Section IV describes the

validation of the proposed DEM reconstruction algorithm.

The resulting proof of concept is discussed in Section V,

which includes a reference to the attached video. Conclusions

and future work directions finalize this paper.

II. SIMULATION SCHEME

This section presents an overview of the implementation of

the proposed simulation scheme. Fig. 1 highlights its general

structure.

A. Contact Kinematics and Dynamics: a port-based model

The Contact Kinematics and Dynamics block of Fig. 1 rep-

resents the port-based contact model developed in [1], which

is briefly summarized here. The contact model kinematics do

not only consider the velocities of the two coincident points

on the two bodies that have zero distance, but also look at the

kinematics of the points on the two surfaces which have the

shortest Euclidean distance. In this way, candidate contact

points are tracked before they actually get into contact. The

contact model requires the definition of a local C2 continuous

parametrization f (u,v) of the surfaces that are going to get in

contact, together with its derivative mapping f∗ =
(

∂ f

∂u
,

∂ f

∂v

)

.

If the two bodies are relatively convex, then the velocities of

the contact points are uniquely determined as function of the

derivative mapping g∗ of the Gauss map g of the surfaces.

Note that g = ∂ f
∂u

×
∂ f
∂v

and g∗ =
(

∂g
∂u

,

∂g
∂v

)

.

As depicted in the right part of Fig. 1, via the 0-junction,

the Contact Kinematics and Dynamics block obtains the

relative twist expressed in the world reference frame for each

pair of contact points. Inside the Contact Kinematics and

Dynamics block, a coordinate transformation is performed

to express the twist in the Gauss frame of one of the

objects. The contact dynamics are calculated from this twist.

Hence, the interaction forces are injected directly between

the contact points. For more details on the contact model

itself, the reader is referred to [1], [8], [9], [10].

B. Local Surface Patch Definition and Reconstruction

The Contact Kinematics and Dynamics block requires

smooth, well defined surfaces to track the evolution of the

contact consistently. However, reconstructing large surfaces

is computationally inefficient. This problem is tackled by

introducing a Local Surface Patch Definition module, which

is responsible for restricting the surface reconstruction to a

small area (i.e. a patch) of the DEM around the detected

contact point. As the contact evolves, new patch areas are

defined in order to follow the motion. The parameters of the

patch area definition algorithm are tuned to the needs of the

application.

Once the patch area has been defined, the Local Patch

Reconstruction block is in charge of interpolating each in-

stantiated patch in run-time, deriving a well defined, smooth

(C2 continuous), repeatable, local parametrization f (u,v) of

the surface.

These two blocks are the focus of the paper. In fact,

the main contribution of this work is the determination of

a smooth and fast interpolation method for surface recon-

struction for the application of dynamic port-based contact

modeling. The contact model can be used as long as the

combination of the patch surface and the object surface

results in relatively convex contacts locally on the patch [1].

Hence, the patch itself is not necessarily absolute convex.

C. Contact Detection

For the detection and initialization of the candidate contact

points, a computational geometry algorithm is incorporated,

specifically designed for collision detection in computer

graphics applications. The original DEM description of the

surfaces as 3D meshes is utilized to let the algorithm find the

candidate contact points, enhancing the generic applicability

of the algorithm and providing maximum computational

efficiency. Once the patches are defined and reconstructed, it

is possible to compute the exact contact points on the smooth

surfaces.

In this work, the SWIFT++ computational geometry li-

brary [2] was chosen for the first tests. SWIFT++ efficiently

implements proximity queries between polyhedral objects

using convex surface decomposition. The SWIFT++ algo-

rithms have been encapsulated in the Contact Detection

block. The 3D meshes are used to load a 3D triangulated

surface description of the objects during the simulation pre-

processing phase. During run-time, the algorithm selects

candidate contact points, based on selected thresholds. Their

coordinates are propagated to the Local Surface Patch Defi-

nition module.
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Fig. 2. Digital Elevation Map (DEM). On top of a uniform xy-grid with
grid size ∆, the DEM gives an altitude value zi j for each discrete xi,y j-pair.

III. PATCH INTERPOLATION METHOD

This section describes a method for the construction of a

patch which realizes the interpolating surface on a portion

of a DEM. This scenario is depicted in. Fig. 2.

The DEM is assumed to be based on a uniform n×k-grid

of (xi,y j) pairs with i ∈ [0,1, . . . ,n], j ∈ [0,1, . . . ,k] with grid

size ∆ and to have an unique altitude per grid point. Note

that the grid size determines the maximum curvature that is

taken into account for the interacting 3D bodies.

The goal is to find a smooth interpolating function de-

scribing the surface altitude (z) as a function of x and y,

i.e. z = F(x,y). To do so, the surface above the whole grid is

split into patches fi j(x,y) such that F(x,y) =
⋃

fi j(x,y), ∀i, j,

where fi j(x,y) describes the surface for the particular patch

as function of x ∈ [xi,xi+1] and y ∈ [yi,yi+1].
To make sure that F(x,y) is smooth over the whole

surface, the patches need to be constructed such that their

interconnection is C2 continuous. For reasons of readability,

the remainder will show the construction of C1 continuous

patches. It will be shown how to easily extend to C2

continuity.

A. Polynomial Interpolated Line Segment

First, a line interpolation algorithm is introduced as the

basis for the rest of the construction of fi j(x,y). A third order

polynomial is used to create a line segment f j(x) through the

points z(i, j) and z(i+1, j), with

f j(x) = a j +b jx+ c jx
2 +d jx

3
∀x ∈ [xi,xi+1]. (1)

The parameter vector ā j = (a j,b j,c j,d j)
T is found by setting

four constraints and solving the system. Two constraints

are of course the two points to interpolate through, i.e.

(xi,z(i, j)) and (xi+1,z(i+1, j)). The other two constraints are

the derivatives in these points, which are chosen to be equal

to the average linear slopes around the points (xi and xi+1),

such that
∂ f j

∂x
(xi) =

1

2∆
(z(i+1, j)− z(i−1, j))

∂ f j

∂x
(xi+1) =

1

2∆
(z(i+2, j)− z(i, j)).

xi−1

xi

xi+1

xi+2

y j−1

y j

y j+1

y j+2

z

f j−1

f j f j+1

f j+2

fx(y)

x

Fig. 3. Patch construction: four constructed line segments f j(x) ∀x ∈

[xi,xi+1] are used to construct a fifth parametrized line segment fx(y) at
some position x ∈ [xi,xi+1], for which the parameter vector is actually a
function of x, s.t. fx(y) = fi j(x,y), which represents the patch surface.

These explicit constraints assure smooth interconnection of

neighboring line segments. The parameter vector ā j is found

to be

ā j = X−1
· z̄ j, (2)

where

X =









1 xi x2
i x3

i

1 xi+1 x2
i+1 x3

i+1

0 1 2xi 3x2
i

0 1 2xi+1 3x2
i+1









z̄ j =











z(i, j)

z(i+1, j)
∂ f j

∂x
(xi)

∂ f j

∂x
(xi+1)











=









z(i, j)

z(i+1, j)
1

2∆ (z(i+1, j)− z(i−1, j))
1

2∆ (z(i+2, j)− z(i, j))









.

Hence, to create a line segment between two DEM points,

two extra surrounding DEM points are needed.

For the construction of a full patch, Eq. 2 is used to

construct four line segments, i.e. f j−1(x), f j(x), f j+1(x)
and f j+2(x) with x ∈ [xi,xi+1] (see Fig. 3). This gives four

parameter vectors: ā j−1, ā j, ā j+1, ā j+2.

B. Polynomial Patch

For the complete patch, another line segment is con-

structed at some position x ∈ [xi,xi+1] as function of y ∈

[y j,y j+1], i.e. fx(y) as depicted in Fig. 3. The four constraints

are found to be

fx(y j) = f j(x) = x̄ · ā j

fx(y j+1) = f j+1(x) = x̄ · ā j+1

∂ fx

∂y
(y j) =

1

2∆
( f j+1(x)− f j−1(x))

=
1

2∆
· x̄(ā j+1 − ā j−1)

∂ fx

∂y
(y j+1) =

1

2∆
( f j+2(x)− f j(x))

=
1

2∆
· x̄(ā j+2 − ā j),

where x̄ is a row vector based on some chosen position x,

i.e. x̄ = (1 x x2 x3).
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Following Eq. 1, fx(y) is written as

fx(y) = α(x)+β (x)y+ γ(x)y2 +δ (x)y3

= ȳ · ᾱ(x), (3)

where ȳ = (1 y y2 y3) and the parameter vector ᾱ(x) =
(α(x),β (x),γ(x),δ (x))T . Hence, ᾱ follows from











fx(y j)
fx(y j+1)
∂ fx
∂y

(y j)
∂ fx
∂y

(y j+1)











= Y · ᾱ(x), (4)

with

Y =









1 y j y2
j y3

j

1 y j+1 y2
j+1 y3

j+1

0 1 2y j 3y2
j

0 1 2y j+1 3y2
j+1









.

Substituting the constraints gives the following equality









āT
j

āT
j+1

1
2∆ (ā j+1 − ā j−1)

T

1
2∆ (ā j+2 − ā j)

T









· x̄T = Y · ᾱ(x)

and replacing the parameter vector ā by Eq. 2 results in









α(x)
β (x)
γ(x)
δ (x)









= Y−1
·Z · (X−1)T

·









1

x

x2

x3









, (5)

where

Z =









z̄T
j

z̄T
j+1

1
2∆ (z̄ j+1 − z̄ j−1)

T

1
2∆ (z̄ j+2 − z̄ j)

T









.

With Ci j := Y−1 ·Z · (X−1)T , it follows that

ᾱ(x) = Ci j · x̄
T
,

such that Eq. 3 becomes

fx(y) = ȳ · ᾱ(x) = ȳ ·Ci j · x̄
T

∀y ∈ [y j,y j+1].

Note that instead of choosing some x ∈ [x1,xi+1], x can be a

running variable on the domain of the patch. It follows that

the full patch function fi j is given by

fi j(x,y) = ȳ ·Ci j · x̄
T

∀x× y ∈ [xi,xi+1]× [y j,y j+1], (6)

where the matrix Ci j is a constant, fully determined by the

i j-part of the DEM that is under consideration for the patch

fi j. Fig. 4 shows some patches on an arbitrary DEM.

012345
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0.8

1

1.2

y x

Fig. 4. Constructed example patches fi j on an arbitrary DEM. Patches
f12, f22, f21, f32 and f33 are shown.

C. Extend to C2 Continuous Patches

The proposed method produces C1 continuous patches by

construction. By following the same procedure for a 5th order

polynomial and introducing two extra constraints, one can

easily find C2 continuous patches that can be applied for

the port-based contact model described in [1]. The two extra

constraints must represent the second order derivatives in the

end-points of the DEM. A good choice would be to constrain

these to

∂ 2 f j

∂x2
(xi) =

1

2∆
(z(i+1, j)− z(i−1, j))−

1

∆
(z(i, j)− z(i−1, j))

=
1

2∆
(z(i+1, j)−2z(i, j) + z(i−1, j)),

which represents an approximation of the curvature through

the DEM point xi.

D. Gauss Contact Frames

The parametrized analytic surface f (u,v) for the contact

model is found to be

f (u,v) =





u

v

fi j(u,v)



 ∀u× v ∈ [xi,xi+1]× [y j,y j+1].

Also the derivative mapping f∗, from which the Gauss map

g follows, can be easily computed as analytic expression:

f∗(u,v) =





1 0

0 1
∂ f

∂u
(u,v) ∂ f

∂v
(u,v)





,

where

∂ f

∂u
(u,v) = (1 v v2 v3) ·Ci j ·









0

1

2u

3u2









∂ f

∂v
(u,v) = (0 1 2v 3v2) ·Ci j ·









1

u

u2

u3









.
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(a) Simulation result of the benchmark simulation: a spherical ball
bouncing on an analytically defined surface ( f (u,v) = (u,v,0.2u2 +
0.2v2)T ). Implemented as described in [1], using a compliant contact
model with fairly stiff contact dynamics. The plotted variables verify
the expected bouncing behavior.
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(b) Difference between benchmark simulation and simulation with
contact patches as given in Eq. 6. The small numerical errors validate
the use of the proposed contact patches in combination with the port-
based contact modeling approach in [1] when simulating non-analytic
surfaces such as DEMs.

Fig. 5. Comparison results of validation tests based on a ball that bounces on a surface. The benchmark simulation uses an analytic function to describe
the surface, while the patches are tested on a DEM which is a sampled version (∆ = 1) of the same analytic function. The plots present the characteristic
variables: d describes the minimal distance between sphere and surface, us,vs are the coordinates of the candidate collision point on the surface and (x,y,z)b

represent the 3D world coordinates of the ball position.

IV. VALIDATION METHOD

The proposed simulation scheme has been implemented

in the simulation package 20-sim [14], as discussed in

Section II.

An ad hoc test scenario was implemented to realize a proof

of the concept presented in this paper. The test compares the

simulation results of two different model implementations

of the same test scenario. The test scenario represents a

spherical ball that compliantly bounces in a bowl as depicted

in Fig. 6(a). The bowl surface map is given by f (u,v) =
(u,v,0.2u2 + 0.2v2)T . To have the ball bounce around the

whole bowl, the ball starts with some initial rotation and

gets disturbed by a force impulse after 2.2 seconds.

The benchmark simulation implements the model by using

a geometrical description for both the sphere and the bowl

surface. This is an exact implementation of the contact model

as described in [1].

To validate the results of the proposed simulation method

in this paper, the same test scenario is implemented by

using the same geometrically defined sphere, while the bowl

surface is now described by a DEM. This DEM is created by

sampling the known surface map of the bowl with large grid

size (∆ = 1). During dynamic simulation, candidate collision

points are selected through the SWIFT++ library and patches

are constructed. The visco-elastic bond-graph contact model

accepts the patches by receiving the candidate contact point

and the geometrical equations of the map of the patch ( f , f∗,g

and g∗).

The same visco-elastic contact dynamics are implemented

in both simulations. Hence, both simulations have the same

contact kinematics and dynamics as in [1]. However, the

benchmark simulation can do global tracking of the candidate

contact points, while the validation simulation continuously

reads the DEM and renders local patches on which only local

contact point tracking is possible. For the contact model,

it does not matter whether the geometrical surface maps

are only valid locally or globally, as long as the Local

Surface Patch Definition module initializes the contact model

correctly each time a new patch is instantiated.

V. RESULTS

Fig. 5 shows the simulation results of the validation test.

Some variables of the benchmark simulation are plotted in

Fig. 5(a). From this plot it was verified that indeed the ex-

pected bouncing ball behavior was implemented, which can

also be seen in the attached video. The difference between

the benchmark simulation and the validation simulation,

which uses the proposed method, is shown in Fig. 5(b). This

comparison plot shows only minor numerical differences.

From this comparison plot (together with more simulation

results), it is concluded that the proposed simulation model

with patches for surface reconstruction of DEMs, gives use-

ful and consistent results. Moreover, the computational costs

(even if the dimension of the DEM is high) are considered

low thanks to the simplicity of the method. To give an

indication; in this validation test (using 20-Sim package on

an ordinary modern pc), the benchmark simulation of 25

seconds simulation time uses 1.4 seconds to do 102,000

model calculations. The validation simulation adds 10 µs

per model calculation for defining the patch area, reading

the DEM and constructing the patch, while the SWIFT++

library adds another 100 µs per model calculation to select

candidate contact points.

A simple DEM generated from an analytic map was used

for validation reasons. However, in general, the simulation

model has shown promising results in simulating contacts
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(a) Validation scenario: a sphere bouncing on a digitized geometrically
defined surface, represented by a DEM.

(b) Irregular surface simulation: a sphere bouncing on an irregular
surface, represented by a DEM.

Fig. 6. Snapshots of the simulation scenarios. Although visualized by a wire frame, the DEM only consists of discrete altitudes stored in a separate file.
The small grid beneath the sphere shows the currently instantiated patch.

with any surface generated from a DEM. An example is

presented in the attached video, showing the simulation of

a bouncing ball on a fully irregular DEM surface. Fig. 6(b)

gives an impression of this simulation scenario.

It may be clear that each sub-model block, represented by

Contact Kinematics & Dynamics in Fig. 1 together with its

bond-graph structure, can track only one contact between two

objects. However, multiple contacts can be modeled easily by

repeating the bond-graph structure between the two objects,

such that each structure generates its own set of contact

forces.

VI. CONCLUSIONS

Starting from previous work on contact modeling [1], this

work has extended the study of 3D multibody interaction

simulation to interaction of objects with non-geometrically

defined surfaces. A port-based simulation scheme has been

proposed and implemented through bond-graph theory which

cooperates with an external collision detection library.

Furthermore, an interpolation method for 3D point meshes,

a DEM, was introduced that locally reconstructs the DEM

surface by instantiating small patches around the candidate

contact points. The usage of patches instead of whole surface

reconstruction reduces computational costs and easily allows

for multiple contact pair instantiation.

The combination of the port-based contact model, the

collision detection library and the proposed surface recon-

struction method proved to be useful for physically consistent

modeling of contact dynamics in a computationally efficient

way. In the video attached to this work, simulation results

provide proof of concepts of the proposed reconstruction

method in combination with the existing contact model.

VII. FUTURE WORK

Thanks to its modularity, the simulation scheme developed

in this work can be extended with new features. Future work

will be in two directions. One direction involves further

exploration of new concepts for contact models for non-

convex 3D bodies and different concepts for surface models

(e.g. soil, building floors, etc) for humanoid locomotion

research and wheel-terrain research in space. The other di-

rection focuses on investigating interpolation methods for the

reconstruction of 3D surfaces of (closed) objects generated

with e.g. CAD software. These methods will be used for

studying and modeling robotic grasping.
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