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Abstract— An accurate motion model is an important
component in modern-day robotic systems, but building
such a model for a complex system often requires an
appreciable amount of manual effort. In this paper we
present a motion model representation, the Dynamic Gaussian
Mixture Model (DGMM), that alleviates the need to manually
design the form of a motion model, and provides a direct means
of incorporating auxiliary sensory data into the model. This
representation and its accompanying algorithms are validated
experimentally using an 8-legged kinematically complex robot,
as well as a standard benchmark dataset. The presented method
not only learns the robot’s motion model, but also improves
the model’s accuracy by incorporating information about the
terrain surrounding the robot.

I. INTRODUCTION

A robot motion model, broadly speaking, represents the
relationship between commands issued to a robot and the
robot movement that results from these commands. In many
modern robotic systems, an accurate and reliable motion
model serves a crucial role. Most Simultaneous Localization
and Mapping (SLAM) approaches, for example, use a motion
model in the prediction step of a recursive Bayesian estima-
tion algorithm [1]. An accurate motion model can also be
used to perform dead-reckoning, aiding trajectory-following
tasks when other forms of odometric information is limited.

In robotics it is a common assumption that a robot’s
motion model is Markovian. In this case, the motion model
is often defined in terms of a probability density function
p(st|st−1, u), where u is a command issued to the robot
when it is in state st−1. Traditionally, u has been defined
(for wheeled robots moving in a 2D plane) as either a set of
translational and rotational velocities to be used to directly
control the robot’s wheels (in which the state s represents the
robot pose as a function of time), or as a relative odometry
(e. g. a vector 〈δ1, r, δ2〉) where the robot is commanded
to turn by an angle, move forward a certain distance, and
turn again by another angle (in this case, the robot pose
represented by s does not depend on time) [2].

Typically these probabilistic models depend on the exis-
tence of a closed-form parameterized deterministic model,
consisting of one or more equations that define a future
state in terms of the present state and the command issued.
By adding uncertainties to this deterministic model, it is
transformed into a probabilistic model. For example, a simple
deterministic model relating distance to velocity, d = v∆t,
can be made probabilistic by treating d and v as Gaussian-

distributed random variables: due to mechanical tolerances in
the robot, v has an associated uncertainty that can be modeled
using the random variable’s σ parameter. The dependence
on closed-form models is found in nearly all works on this
topic up to now. While such models are useful when working
with wheeled robots in a plane, they are not adequate for
modelling the complex motions of legged robots, for which
it is often difficult and time-consuming to find a deterministic
mapping from the command-space to the configuration-
space.

The motion model representation presented in this paper
not only overcomes this limitation, but is also flexible in its
ability to incorporate arbitrary sensory information directly
into the motion model. Specifically, we present a novel
representation and method for online learning of both the
parameters and form of a robot’s motion-model. By allowing
terrain information, for example, to be easily incorporated
into the model, a more accurate motion-model can be cap-
tured, because the movement of a robot is closely tied to the
properties of the terrain on which it moves.

This paper is structured as follows: several relevant works
are discussed in the next section, after which we formally
present our motion-model representation. Following this,
an algorithm suitable for dynamically capturing a motion
model using this representation is presented. Furthermore,
to demonstrate the flexibility of the representation, we show
how sensed terrain information can be incorporated into a
motion model. Experimental results are then reported which
validate the usefulness of the methods and representation.
Lastly, conclusions and possible future directions to explore
are presented.

II. REVIEW OF WORKS

Before the appearance of probabilistic SLAM methods,
getting an accurate estimate of a robot’s position often relied
on a parameterized model relating data reported by odometry
sensors to the estimated motion of the robot. The problem
of robot calibration, which involves properly selecting the
parameters of this model, has been the topic of various
works. For example, the work of Borenstein and Feng [3]
presents methods for manually choosing these parameters
for wheeled robots.

After SLAM methods started to become more prevalent,
it became possible to use probability distributions reported
from the SLAM algorithm to estimate a robot’s ground-truth
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pose. This estimate could then be used in conjunction with
calibration methods to automatically learn the parameters of
a motion model by simply moving the robot.

Roy and Thrun [4], for example, use a maximum like-
lihood method for estimating model parameters. The pa-
rameters ~θ are updated with an exponential estimator that
integrates the parameter values ~θ∗ that maximize the like-
lihood function p(~st+1 | ~st, ~o, ~θ

∗), where ~st are laser-scan
measurements and ~o are odometry measurements. By using
an exponential estimator, incremental updates to the param-
eters are possible which do not depend on keeping a history
of sensor-measurement data.

In work done by Eliazar and Parr [5], the model param-
eters are learned using an Expectation-Maximization (EM)
method, in which the expectation step involves using the
SLAM algorithm (in this case, DP-SLAM 2.0 [6]) to generate
a set of possible trajectories for a given set of motion model
parameters and associated likelihoods, and the maximization
step uses a least-squares approach for determining the set of
model parameters that maximizes the likelihood values.

While the least-squares method presented in [5] assumes
that a history of the training data is available, Visate-
mongkolchai and Zhang [7] apply two incremental least-
squares methods in order to learn model parameters. Because
of their incremental nature, these methods can be used in an
on-line fashion, updating the model parameters after each
new set of measurements.

Stronger and Stone [8] introduce a technique for calibrat-
ing sensor and motion models simultaneously. These models
are represented in a deterministic manner using polynomials.
The polynomial coefficients are learned with a two-step
cyclic algorithm in which the first step estimates the sensor-
model parameters given the current motion-model, and the
second step estimates the motion-model parameters given the
current sensor-model.

The method presented by Kaboli et al. [9] also calibrates
sensor and motion models simultaneously, but in contrast to
[8], uses a Markov chain Monte Carlo (MCMC) technique in
which samples are drawn from a posterior distribution over
model parameters. To estimate the true model parameters,
these samples are either averaged, or the maximum a posteri-
ori sample is selected. Additionally, the samples can be used
to approximate model posteriors. Each of these methods were
tested in a Monte Carlo Localization scenario on a simulated
wheeled robot and on a Sony AIBO robot.

Martinelli et al. [10] present a method of estimating the
parameters of an odometry error model by using a modified
Extended Kalman Filter (EKF) to simultaneously estimate
the robot pose and error parameters. The odometry model
relates odometry measurements (i. e. wheel encoder mea-
surements) of a wheeled robot to the robot’s estimated true
odometry. The error model is split into systematic and non-
systematic components, and each component is separately
estimated based on the other component’s estimate.

Sjoberg et al. [11] present a method that uses a slightly
simplified deterministic model from that presented in [5], but
in which the model’s random variables are represented using

a bimodal Gaussian Mixture Model. The method depends
on the use of a SLAM method (DP-SLAM 2.0 is used), and
the model parameters are estimated by observing the motion
of the particles in a particle-filter. As in [4], an exponential
estimator was used to make the method work in an online
fashion, in which the decay factor is adjusted according to
the average quality of the particles in a particle-set.

The work done by Hoffmann [12] does not deal with the
problem of parameter estimation, but instead presents a way
of incorporating proprioceptive information into the motion
model. To do this, the motion model’s error is decomposed
into two components: the error εcoll due to collisions and
slippage, and the error εodo intrinsic to the robot morphology
and odometry sensors. Collisions and slippage conditions
are modeled as the states of a state-machine, and the value
of εcoll depends on which state the robot finds itself in.
Transitions between states occur due to the observation of
specific proprioceptive data patterns.

Suitability for Legged Robots

Nearly all of the methods in the previously mentioned
works define the motion model as a set of fixed form
“ideal model”1 equations to which uncertainty is added by
treating some of the variables as random. Furthermore, every
one of these methods requires that the motion model be
parameterized with a fixed number of parameters.

For kinematically complex legged robots, developing the
equations of an ideal model can be very difficult and time
consuming.2 Because of this, these methods generally do
not lend themselves well to modelling the motion of legged
robots.

To properly capture the motion model of such a legged
robot, as few as possible assumptions should be made about
the form of the motion model. For this reason, we have
adopted the representation presented in the next section,
which provides a flexible form that can be dynamically
changed over time.

III. MOTION MODEL REPRESENTATION

A. Introduction

Motion models are frequently defined in the form of
a conditional state-transition probability density, where the
state is defined as the robot’s pose, and the probability
is conditioned on the commands issued to the robot. In
unobstructed areas, the change in a robot’s pose from the
current state to the next state depends much more on the
command issued to the robot than it does on the robot’s
current pose. Because of this, the motion model can be
simplified by representing it as a probability of the change
in pose3 conditioned upon the command issued.

1by “ideal model”, we mean a model which assumes an ideal, non-
stochastic world.

2There are some legged robots (e. g. the Sony AIBO) whose kinematics
are simple enough to develop equations approximating an ideal model.

3This change in pose is measured relative to the robot’s pose prior to the
execution of a command.

4689



We have chosen to represent the motion model using a
dynamic mixture-of-Gaussians model, in which the number
of Gaussian components can vary in order to best fit the
characteristics of the underlying system. This weighted set of
Gaussian components represents, for each unique command,
a probability distribution over the change in pose of the robot.

B. Formal Description

Formally, we can represent the motion model as
M : C × E → P where C is the set of all commands, E
is the set of environmental states4, and P is the set of
probability density functions p(~x), where ~x is a change
in pose measurement. In simple cases where the robot’s
environment is not expected to change much, E may be
treated as containing only a single static state. In this case,
the model can be written as MS : C → P . In practice, a
robot’s command space (i. e. the range of possible commands
that can be issued to the robot) can be discretized into n
commands {c1, c2, ..., cn}, where each command is a vector
representing various dimensions that can be controlled for
a robot (e. g. for a wheeled robot, these dimensions might
be the angular velocity of each wheel)5. If the commands
are discretized in this way, then according to the mapping
defined by MS , a corresponding probability density in P
(that is a likelihood function for ~x) exists for each of these
commands. We represent each command cj’s corresponding
density function p(~x | cj) ∈ P , as a variable-sized set of
“weighted Gaussian” pairs,

Gj ≡ {(gj1(~x), wj1), (gj2(~x), wj2), . . . , (gjm(~x), wjm)},

such that

p(~x | cj) =
m∑

i=1

ŵjigji(~x), (1)

where gji(~x) is a conditional multivariate Gaussian distribu-
tion:

gji(~x) = pji(~x | cj) ∼ N (µji,Σji), (2)

and

ŵji = wji /

m∑
k=1

wjk. (3)

A schematic depiction of this representation for the case
of discrete command spaces can be seen in Figure 1. The
wji values are unnormalized weights, and are equivalent
to the number of ~x samples that have contributed to the
corresponding Gaussian (more on this in the next section).

It is of course possible to fix the quantity m of the com-
ponents representing p(~x | cj) in (1), which would result in
a standard Gaussian Mixture Model (GMM) representation.
By allowing m to vary, it is possible for the motion model to
capture more precisely the nature of p(~x | cj) (similar to the

4An environmental state simply represents some information about the
environment immediately surrounding the robot. For example, it could
include information about the terrain’s roughness, slope, or moisture content.

5Although the remainder of this paper assumes that the command space is
discrete, the representation presented here can also be used with continuous
command spaces.

Fig. 1. Motion model representation: for each command in the discretized
command space, a conditional probability distribution is maintained as a
weighted sum of Gaussians.

behavior of a particle filter whose number of particles is al-
lowed to vary), but then we cannot depend on the same meth-
ods traditionally used with GMMs. We call this flexible rep-
resentation a Dynamic Gaussian Mixture Model (DGMM),
and present a method in the following section that can handle
this relaxed constraint.

IV. UPDATE METHOD

In this section we describe the method we use for
updating the parameters and structure of a DGMM based
motion-model. The method can easily incorporate multi-
modal sensory data into the motion-model, but in this
discussion, we restrict the measurements to include only
the robot’s pose for the sake of simplicity. The primary
algorithm of this method is depicted in Algorithm 1.

Algorithm 1: Incremental Motion Model Update
Data: Sequence of 〈command, pose measurement〉

pairs.
Result: Dynamically updated motion-model for each

command.
Select and perform command cj ∈ C on robot;
ζ ← new pose measurement;
repeat

ζprevious ← ζ;
Select and perform command cj ∈ C on robot;
ζ ← new pose measurement;
~x← ζ − ζprevious; // change in pose
ADDSAMPLE(cj , ~x) ; // update p(~x | cj)

end

Initially, the robot’s pose ζ0 is recorded, and a command
cj is chosen from the set of possible commands C. This
command is issued to the robot, and the final pose ζ1 is
recorded after the command has completed its execution.
The measurement vector ~x is calculated as ζ1 − ζ0 (i. e. the
robot’s change in pose), and incorporated into the motion
model via the ADDSAMPLE algorithm (described below).
Again, a command is selected, and this procedure is repeated
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ad infinitum, calculating the measurement vector in the same
manner (subtracting the previous pose measurement from the
current).

Algorithm 2: ADDSAMPLE: Incorporate a differential
sample measurement into the model.

Data: One 〈command, ~x〉 pair.
Result: Updated density function for command.
r ← U(0, 1); // sample from uniform pdf
// normalized N-dimensional density from current
// model with normalization factor W
d←W p(~x | command);
n← size of sample-set used to form p(~x | command);
k ← merge likelihood constant;
// calculate merge threshold value
t← 1− (1− d) exp{−kn};
if r < t then

Merge ~x into an existing Gaussian;
else

Add ~x as a new Gaussian;
end

The ADDSAMPLE algorithm starts out with a command
cj in C, and an associated pose difference vector ~x. A
decision is probabilistically made to either merge ~x into an
existing Gaussian in the model, or to add a new Gaussian to
the model whose mean is ~x. Which option is chosen depends
on two main factors:

1) d = W p(~x | cj), a normalized6 likelihood of the N-
dimensional vector ~x given cj , and

2) n, the number of samples already incorporated into
p(~x | cj).

These values are used to calculate a merge threshold value

t = 1− (1− d)e−kn (4)

which takes on a value between 0 and 1. As d→ 1 and
n→∞, t approaches 1, which means that it is more likely
that ~x will be used to update the parameters of an existing
Gaussian. As t approaches 0 (i. e. d→ 0 and n→ 0), it
becomes more likely that a new weighted Gaussian will be
added to Gj . The k factor in (4) is used to adjust the rate at
which the merge threshold transitions towards 1 (i. e. towards
the state in which samples will always be merged). This
factor can be automatically chosen by using, for example,
techniques based on cross-validation.

If a new weighted Gaussian based on ~x is added to Gj , it
is assigned a mean of ~x and an identity covariance matrix,
and its mixture parameter (i. e. weight) is initialized to 1.
On the other hand, if ~x is to be incorporated into an existing
Gaussian, the Gaussian is chosen probabilistically such that
the probability of choosing gji from Gj is proportional to
gji’s normalized density multiplied by wji, and evaluated
at ~x. After gji has been selected, we can determine a set

6The density function is normalized such that its maximum value is 1.

of update equations to incorporate ~x as follows. Given the
mean vector and covariance matrix of an unbiased estimator
of n samples,

ȳn =
1
n

n∑
i=1

yi, (5)

Σn =
1

n− 1
(

n∑
i=1

yiy
T
i )− n

n− 1
ȳnȳ

T
n , (6)

where y1, y2, · · · , yn are the samples that have contributed
to gji prior to incorporating the new sample yn+1, our goal
is to determine the updated mean and covariance,

ȳn+1 =
1

n+ 1

n+1∑
i=1

yi, (7)

Σn+1 =
1
n

{
(
n+1∑
i=1

yiy
T
i )− ȳn+1ȳ

T
n+1

}
. (8)

After some algebraic manipulation of the above equations,
the new mean and covariance matrix can be written as

ȳn+1 =
n

n+ 1
ȳn +

1
n+ 1

yn+1, (9)

Σn+1 =
n− 1
n

Σn + ȳnȳ
T
n +

1
n
yn+1y

T
n+1

− n+ 1
n

ȳn+1ȳ
T
n+1.

(10)

Finally, because the unnormalized weight w of a Gaussian
equals the number of samples which have contributed to
it, these update equations can be written in terms of the
previously used notation as:

wnew = wold + 1 (11)

~µnew =
wold

wnew
~µold +

1
wnew

~x (12)

Σnew =
wold − 1
wold

Σold + ~µold~µ
T
old

+
1

wold
~x~xT − wnew

wold
~µnew~µ

T
new

(13)

Note that these equations only apply when adding a
measurement to an already-existing Gaussian (i. e. when
wold > 0). Because these update equations are incremental in
nature, the model can be updated without the need to store a
history of samples. This incremental nature reduces both the
memory and computational requirements of this algorithm
considerably, in contrast to methods in which some or all
samples are required to re-estimate the density.

V. INCORPORATING TERRAIN DATA

The discussion thus far has assumed that the model
represents only a simple mapping between commands and
pose differences. The DGMM based model can, however, be
extended to include exteroceptive and proprioceptive data7.

7Data is most effectively incorporated when it can in some way be
represented as a vector in a Euclidean space. Fortunately there is often
a means of representing data in this way.
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A. Method of Incorporating Additional Data

Specifically, if we have some data (e. g. information about
the terrain) we would like to incorporate into the model,
represented as ~z, the change in pose vector ~x can be
augmented by ~z to form a new data vector

~d = ~x‖~z
= 〈x1, · · · , xn, z1, · · · , zm〉.

(14)

It is then possible to use ~d in the same way that ~x was
previously used in Section IV. The only necessary change is
to modify Algorithm 1 such that the measurement ~z is taken
before the command cj is issued to the robot. The vector ~d
is then formed and passed to ADDSAMPLE in place of ~x.

The resulting motion model will now represent
p(~x‖~z | cj), where each Gaussian component gji of
this density function has a mean vector µd

ji = µx
ji‖µz

ji and

covariance matrix Σd
ji =

[
Σxx

ji Σxz
ji

Σzx
ji Σzz

ji

]
.

B. Using the Enhanced Motion Model

After building a motion model with these augmented
sample vectors, one typically wants to know just how the
model can be used. For the purposes of modelling motion, the
density p(~x‖~z | cj) is not directly useful. Rather, we would
like to have p(~x | cj , ~z). To calculate the latter density from
the former, we begin by writing the conditional probability
relationship for the latter density:

p(~x | cj , ~z) =
p(~x‖~z | cj)
p(~z | cj)

. (15)

Because p(~x‖~z | cj) is represented as a mixture of Gaussians,
the numerator in (15) can be written as

p(~x‖~z | cj) =
m∑

i=1

ŵd
jig

d
ji(~x‖~z), (16)

where

gd
ji(~x‖~z) = p(~x‖~z | cj) ∼ N (µd

ji,Σ
d
ji). (17)

Using the properties of Gaussian distributions, the denomi-
nator in (15) can be written as

p(~z | cj) =
m∑

i=1

ŵz
jig

z
ji(~z), (18)

where ŵz
ji = ŵd

ji and

gz
ji(~z) = p(~z | cj) ∼ N (µz

ji,Σ
zz
ji ). (19)

Thus, by using (16) and (18), both which can easily
be calculated from our motion model, we can determine
p(~x | cj , ~z), which represents an improved motion model that
takes advantage of additional sensory data.

VI. MODEL EVALUATION

The performance of our DGMM based motion modelling
technique was evaluated in terms of (a) its ability to rep-
resent unknown distributions, and (b) the extent to which
incorporating terrain data as described in the previous section
improved the model.

A. Representational Capability

a) Effect of merge likelihood constant: The represen-
tational capability of the DGMM, when used with the
algorithms described in Section IV, depends on the merge
likelihood constant k in (4). This constant controls the
complexity of the resulting model, influencing the number
of Gaussians in a trained model8. It is therefore important
to choose a good value for k when updating the motion
model. To see the effect that k has on the number of
Gaussians in a model, a dataset was generated from a known
distribution, and for several values of k, this dataset’s density
was estimated. The relationship between k and the final
number of Gaussians in the estimate is shown in Figure 2.

Fig. 2. Effect of varying the merge likelihood constant: as k increases, the
number of Gaussians in the learned model decreases (for a given sample
distribution).

One method of choosing k is to collect a large set of
samples, and perform a cross-validation on this dataset,
examining the effect that k has on the likelihood of a
validation set given a model trained with a training set. The
k value that maximizes this likelihood can be selected, and
used for further updates to the model. The initial corpus of
samples can be collected from either a real or a simulated
robot. Provided that the simulation is accurate enough, using
a simulation has the advantage of allowing a large number
of samples to be collected, so that a good k value can be
chosen prior to using the motion model with the real robot.

8The number of Gaussians in a model depends not only on k, but also
on the dataset the algorithm is applied to. Nonetheless, an appropriate k
generally results in a good density estimate despite variations in a dataset’s
optimal number of Gaussians.
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Fig. 3. Comparison of density estimate pEM derived using the EM
algorithm (upper left), and the density estimate pDGMM derived using
the online DGMM method (lower right), on the Old Faithful dataset. The
heat map in the background shows the difference between pDGMM and
pEM .

b) Comparison with Expectation Maximization: In or-
der to test the quality of our method, it was compared with an
Expectation-Maximization (EM) based approach in its ability
to model the “Old Faithful” benchmark dataset. The EM al-
gorithm was used to estimate the parameters of a 2-Gaussian
GMM in an offline manner (i. e. using all of the sample-
data in each iteration). Just as it was necessary to select
in advance the number of Gaussians for the EM approach,
k = 0.7 was chosen for the online update algorithm, resulting
in density estimates of this dataset that most often contain
two Gaussians. The resulting density estimates are shown
in Figure 3. The upper-left and lower-right plots show the
resulting density estimate from the EM and online DGMM
methods, respectively. Though barely perceptible from these
plots, the difference between the plots is shown in the heat
map in the background. These results demonstrate that the
DGMM online method can produce density estimates com-
parable to the EM method. It should be noted that because
the DGMM online method is stochastic, the estimates it
produces can vary depending on the random seeds used.
To get a better idea of the method’s general performance,
it was allowed to run until 100 distributions containing 2
Gaussians had been produced. The Mean Integrated Square
Error (MISE) between the each of these 100 distributions
and the EM generated distribution were calculated, resulting
in an average MISE of 0.0358 with a standard deviation of
0.0317. It is clear from these results that the density estimates
generated by these two methods are very similar, though the
computational and storage requirements are quite different,
since the online DGMM method requires only a single-pass
and does not need to store the samples.

B. Effect of Incorporating Terrain Data

The cross-validation method previously mentioned in the
context of selecting k can also be used to evaluate the
accuracy of a motion model: a set of samples (either via
simulation or from a real robot) is taken, and one portion
of these samples is used for building the model, while the
remaining samples are used for validating the model’s ability
to predict motion.

We chose to use this technique to assess the extent to
which terrain information contributes to model accuracy. In
particular, a total of 390 data samples from the SCORPION
robot [13] were collected, in which every possible com-
mand of the form 〈long, lat, turn〉 was issued 5 times with
three different initial robot orientations (i.,e. each command
is issued a total of 15 times), where long, lat, turn ∈
[−0.5, 0,+0.5]9. Not including the no-op command 〈0, 0, 0〉,
this results in a set of 26 distinct commands. With the exper-
imental setup pictured in Figure 4, the following procedure
was used for collecting the data:

1) A command cj is chosen randomly (without replace-
ment) from the above defined command set.

2) The robot is placed on an 18◦ inclined slope with a
starting orientation θ ∈ {0◦, 90◦,−90◦}10. The orien-
tation angle is cycled each time this step is performed.

3) The current robot pitch and roll angles are recorded
in the vector ~z. This serves (for the case where the
terrain is an inclined plane, as in this experiment) as
an indirect measurement of the shape of the terrain the
robot is on.

4) The robot is issued the command cj . Each command’s
execution requires a fixed time duration to carry out.

5) Before and after executing a command, the robot’s
pose is recorded using a marker based visual pose
tracking system11.

6) The sample (cj , ~z‖~x) is added to the sample set S1,
where ~z = 〈robot pitch, robot roll〉 and ~x is the
change in pose 〈∆x,∆y,∆z,∆roll,∆pitch,∆yaw〉.

7) Steps 3-6 are repeated 5 times.
8) Steps 2-7 are repeated until the robot has been placed

with each starting orientation.
9) Steps 1-8 are repeated until all commands have been

chosen.

The samples from this experiment were used for cross-
validation in which the model was learned using randomly
selected training sets, and was validated by calculating the
log-likelihood of the training data given the learned model,
L =

∑N
n=1 ln

{∑M
i=1 ŵjigji(~xn)

}
, where ŵji is the asso-

ciated normalized mixture-parameter of the ith Gaussian in
the model for a command cj .

9The 〈long, lat, turn〉 values influence the robot’s motion in the
forward-backward, lateral-left-right, and turning-left-right directions, re-
spectively.

10When θ = 90◦, the robot is turned so that it looks down the incline.
11Note that although we use an external motion tracking system, samples

can also be acquired from other sources such as SLAM or GPS.
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Fig. 4. Experimental Setup: the Scorpion robot executes several movement
commands in different orientations on a sloped plane.

The cross validation was performed using the collected
data for two different cases:

c) Case 1: The first case in which we performed cross
validation uses the “full perception” sample set S1 that
contains all the measured information about the terrain. In
this case, the conditional density in (15) is calculated from
the model.

d) Case 2: In the second case, the model is trained
and validated using a “limited perception” sample set S2, in
which the ~z‖~x component of each sample S1 is replaced with
~x. In other words, for each sample (cj , ~z‖~x) in S1, there is a
corresponding sample (cj , ~x) in S2. In this case, the model
estimates the conditional densities in (1).

For both cases, a stratified 10-fold cross validation was
performed 10 times, and the results averaged. The results for
both cases are shown in Table I. To test the validity of this
comparison when there are a larger number of samples, we
generated another data set (containing a total of 830 samples)
using a simulation. This data was analyzed in exactly the
same manner as the data collected from the real robot, and
the results are also shown in Table I. With both the real and
simulated data, the likelihood was much higher in the case
where terrain data was included in the model. This shows
that incorporating and making use of terrain data in the
model substantially improves the extent to which the model
describes the data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a method for representing
and capturing motion models which (a) alleviates the need
to hand-design the form of a deterministic motion model,
and (b) provides a straightforward means of incorporating
exteroceptive and proprioceptive data into the motion model.
Furthermore, it has been demonstrated experimentally that
incorporating terrain information into the model improves
the model’s accuracy.

In the future we plan to investigate the scalability of
DGMM based models with respect to incorporating large
amounts of environmental data. Additionally, researching an
effective means of adjusting the DGMM algorithm’s k pa-
rameter in an online manner would improve the adaptability

TABLE I
MODEL QUALITY COMPARISON: A 10-FOLD CROSS-VALIDATION IS

PERFORMED FOR DATA SETS WITH AND WITHOUT TERRAIN

INFORMATION. SHOWN ARE THE MEAN AND STANDARD-DEVIATION OF

THE LOG LIKELIHOOD VALUES, AVERAGED OVER 10 RUNS.

Log Likelihood

Data Set # Samples Without Terrain With Terrain

Real 390 −371.9± 3.9 −162.2± 4.0
Simulated 830 308.5± 7.5 402.5± 7.9

of the algorithm to nonstationary processes. Furthermore, the
basic online algorithm as presented here assumes that the
samples it receives are not temporally correlated. We are
presently investigating ways of making the algorithm per-
form well even when supplied with a temporally correlated
sequence of samples. Finally, we plan to extend preliminary
work done on smoothing algorithms that operate on learned
DGMM models.
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