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Abstract— Much like a falling cat can reorient itself to
land on its feet, a climbing robot should also reorient itself
to minimize damage during a fall. This paper presents and
analyzes the dynamic motion of a modular robot, called CKbot
righting itself during a fall. It presents a mathematical model
of the falling system that correlates well with experimental
reorientation results about one axis. The model also explains
why the the process of flipping around is practical only
about the long axis of the robot. For more robust orientation
correction, a different configuration of CKbot and a new motion
plan is presented that corrects for all forms of posture error.

I. INTRODUCTION

The falling cat problem is the common name for analyzing

the dynamic action in which cats are able to turn in mid-air

to land on their feet. Work on this problem includes the

mathematical formulation and dynamic analysis of jointly

connected rigid bodies[6], [12], [10]. In a recent animal

study, [8] Jusufi et al. showed that a falling gecko also

executes this mid-fall correction using its tail. In those

experimental results, the gecko corrected its upside down

orientation in 100ms or roughly 5cm of falling.

As climbing robots become better at climbing, the need

for fall correction will become more important. To motivate

this assertion, the recent paper by Jusufi, et al. points out

how the gecko, nature’s most adept climber, is also nature’s

most adept faller. An experimental robotic framework to test

methods of fall correction that is modular in nature would

allow a variety of configurations to be tested. CKbot is one

such modular system. In fact, demonstrations of modular

robots have climbed stairs, poles, fences, porous materials

etc. [13].

The falling cat problem is most often formulated as a

zero angular momentum problem. As the cat falls, there are

no external forces on it, and its angular momentum cannot

change. Most of the theoretical focus on the zero angular

momentum system is in the context of orientation correction

and controllability for satellite systems [4], [10], [12], [3].

There is also significant work in the path planning analysis

on this type of system [4], [10], [9], [6], [3]. In [6], Fernandes

et al. discuss the falling cat problem, and use it to convey a

basis algorithm approach to solve for a semi-optimal control

path that flips a pair of rigid bodies, their falling cat model,

into a goal orientation. Controlled attitude while falling has

also been formulated as a high degree of freedom (DOF)

planning problem, in the context of sport diving [7] [2].

This work starts by presenting a derivation of the system

dynamics similar to [5], [12]. In addition, it also presents a

controllability derivation. One focus of this work is that it

takes into account the holonomic constraints, in the form of

joint limits that are natural in a system of jointly connected

rigid bodies. These constraints are sometimes overlooked

in the control setting. In Rui[10] and Walsh[12], reaction

wheels are considered for use in attitude tracking. Reaction

wheels simplify the control problem because they do not have

joint limit constraints, and they do not change the shape and

inertia properties of the robot when they spin. This simplifies

the control design for orientation tracking. However, in the

context of climbing vehicles, systems are mechanically de-

signed to minimize weight and equalize weight distribution.

Massive inertial discs are not usually within the weight

budget. The other thrust of this work is managing orientation

change while considering the inertial distribution of the

ensemble while maintaining motions within the actuator joint

limits.

Another contribution of this work is the expansion of

feasible tasks for a modular system. CKbot, and modular

robotics in general, offer a chance to study dynamic behavior

on an adjustable robotic sub-system, which until recently[11]

has focused on quasi-static motion in the locomotion domain.

In the context of a modular system, new joint configurations

are simple to create and evaluate. After these systems are

analyzed in depth, configuration results can be considered for

a more task specific robot; for example a more streamlined

climbing or walking robot.

II. MATHEMATICAL BACKGROUND

The system derivation requires some block matrix manip-

ulation. Here is some of the terminology that is used.

hinge
axes hx =

[
1
0
0

]

, hy =
[

0
1
0

]

, hz =
[

0
0
1

]

I =
[

1 0 0
0 1 0
0 0 1

]

Rx =
[ 1 0 0

0 cos θx − sin θx

0 sin θx cos θx

]

ω̂ = (ω×) =

[
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

]

Figure 1 shows the 3 body model of the system. R1, R2,

and R3 are the orientations of the three rigid bodies with

respect to the world frame in roll, pitch, yaw form. Between

the bodies are the single axis joint rotations, Rx(θx) and
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Ry(θy). ro
i is the distance of ith body from the system

center of mass (COM). s12 is the length from the COM of

body 1 to the hinge axis between bodies 1 and 2.

⊕

R0 world frame rc COM of the system

Ri orientation of body i ro
i distance COM to COM of body i

Rx, Ry hinge rotation sij distance body i to hinge ij

Ii inertia matrix of body i mi mass of body i

Fig. 1. Three body, two joint model

This system of rigid bodies connected by single or multiple

DOF joints can be analyzed with variational methods on the

group structure to extract the system of equations[3]. The

robot equations of motion have the nonholonomic constraint

from the nonintegrability of the angular momentum in the

falling system, (neglecting drag). The angular velocities of

the rigid bodies are dependent on each other. This leads to

the kinodynamic equations of motion. In this case an initial

angular momentum of zero is assumed.

[R1 R2 R3]

[

JM

]




ω1

ω2

ω3



 = L |t=0=
[
0
][9x1]

(1)

The elements of JM are given by the inertia matrices

of each body, I1, I2, I3, and the coupling effects of each

body to the others. This [9 × 9] inertia matrix, JM , can be

determined via the block matrix relationship between internal

shape velocities, vo
1,2,3, independent of the COM velocity, vc,

and angular velocities, ω1,2,3. The block matrix equation of

constraints is,

[
m1I m2I m3I

I −I 0
0 I −I

][
ro
1

ro
2

ro
3

]

=

[
0

−R1s12+R2s21

−R2s21+R3s32

]

(2)

The top row of the constraint matrix constrains the COM

of the system to be located at the origin. With no external

forces on the system, the COM is fixed. The lower rows are

kinematic loops around the joints. For example, to get from

the COM of the ensemble to the hinge axis between bodies

1 and 2, there are two paths, ro
1 + R1s12 = ro

2 + R2s21.

Taking the time derivative of the constraint equation 2 and

then swapping the order of the cross products, R1ω̂1s12 =
−R1ŝ12ω1) gives the relationship between internal shape

velocities, and angular velocities.

[
vo
1

vo
2

vo
3

]

=

[
m1I m2I m3I

I −I 0
0 I −I

]−1[
0 0 0

R1ŝ12 −R2ŝ21 0
0 R2ŝ21 −R3ŝ32

][
ω1

ω2

ω3

]

= Cv2ω

[
ω1

ω2

ω3

]

(3)

In Equation 3, Cv2ω is shorthand for the transformation

matrix between the internal shape velocities and the angular

velocities. To see how these terms contribute to the total

inertia, consider the kinetic energy of the system:

KE = 1
2

[
vo
1
+vc

vo
2
+vc

vo
3
+vc

]T [
m1I 0 0

0 m2I 0
0 0 m3I

][
vo
1
+vc

vo
2
+vc

vo
3
+vc

]

· · ·

· · · + 1
2

[
ω1

ω2

ω3

]T [
I1 0 0
0 I2 0
0 0 I3

][
ω1

ω2

ω3

] (4)

The velocities of each rigid body are the sum of vc and the

shape velocity vo
1 . By substituting in the relationship between

the internal shape velocities and the angular velocities in

Equation 3, The kinetic energy becomes:

KE = 1
2vT

c vc

∑

i

mi +
[

ω1

ω2

ω3

]T [

JM

][
ω1

ω2

ω3

]

(5)

and the total rotational inertia of the system, JM , is,

JM =

[
I1 0 0
0 I2 0
0 0 I3

]

+ CT
v2ω

[
m1I 0 0

0 m2I 0
0 0 m3I

]

Cv2ω (6)

With JM found, Equation 1 can be manipulated to give

the equations of motion. Each rotation is constrained by its

neighbors. For example if two bodies are separated by an x-

axis hinge their angular velocities will be related as follows:

Rx = RT
1 R2

d/dt
⇒ Rxω̂x = Rxω̂2 − ω̂1Rx

⇒ ω1 = Rx(ω2 − ωx)
(7)

Substituting this and the similar relation between ω2 and

ω3 into Equation 2 gives the following for controlling the

angular velocity of the central body’s orientation ω2 :

[R1 R2 R3]
[

JM

]





Rx(ω2 − ωx)
ω2

Ry(ω2 − ωy)



 =
[
0
][9x1]

JT ω2 =

[
Rx

I
Ry

]T[

JM

] [
Rxhx 0

0 0
0 Ryhy

] [
θ̇x

θ̇y

]

(8)

where JT is the total inertia with respect to the R2 frame and

hx and hy are the hinge axis directions. The full equations

of motion are:





θ̇x

θ̇y

ω2



 =







1 0
0 1

J−1
T

[
Rx

I
Ry

]T[

JM

] [
Rxhx 0

0 0
0 Ryhy

]







[
θ̇x

θ̇y

]

Ṙ2 = R2ω̂2

(9)
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In the case of high velocity falling, drag becomes a

significant contributing force input affecting the angular mo-

mentum. This changes the equations of motion significantly.

With the small fall durations that are explored in this work,

drag has not been accounted for. This analysis is for three

bodies, but can easily be extended to n bodies in a chain.

III. LIE BRACKET CONTROL

The falling cat problem is a non-holonomic control prob-

lem. The two joint velocities θ̇x, θ̇y are dependent on the

the body frame angular velocities, ω2|x, ω2|y, ω2|z . This is

similar to the much covered examples of the unicycle rolling

on a plane, where there is a constraint that takes the form

that the planar velocities are mathematically dependent.

The non-holonomic constraint on the unicycle constrains

the instantaneous velocity to be in the direction of rolling.

To produce an effective net velocity with a perpendicular

component, a parallel parking-like maneuver is required. Lie

Brackets capture this idea of parallel parking[9]. They show

the other directions that the system can move by either

employing a switching or an oscillating control. This idea is

important here because the Lie Brackets suggest oscillatory

controls for producing a change in the output state. An

amplitude limited sinusoidal input is a more practical control

method due joint limits constraints.

Even if the system has more than three shape space inputs

for controlling the attitude output, Lie Bracket control would

still be preferred, because the joint limits that are present in

the system. In an attempt to roll (a direction perpendicular

to the hinge axis) a naive gradient descent controller, would

cause the configuration to fold in on itself, turning hinges

until they ran into their joint limits.

The equations of motion for this two input DOF ”falling

cat” robot in Figure 1 can be expressed as.

q̇ =
[

Bx By

] [
θ̇x

θ̇y

]

(10)

Bx =





1
0

J−1

T

[
Rx

I
Ry

]T[

JM

][
Rxhx

0
0

]



 (11)

By =





0
1

J−1

T

[
Rx

I
Ry

]T[

JM

][
0
0

Ryhy

]



 (12)

The Lie Bracket is expressed as,

[Bi, Bj ] =
∂Bi

∂q
Bj −

∂Bj

∂q
Bi

In this case, the bracket simplifies to the following,

[Bx, By] =
∂Bx

∂θy
−

∂By

∂θx

The control vectors, Bx, By are only dependent on the

shape variables, and the opposite control vector looks like the

identity matrix in the shape variables. To prove controllability

over this system, it is sufficient to show that the lie brackets,

{Bx, By, [Bx, By], [Bx, [Bx, By]], [By, [Bx, By]]} span

the space to form a five element basis set over the hinge

angles and the orientation at all hinge angle values.

The second order bracket is also relatively simple.

[Bx, [Bx, By]] =
∂

∂θx

(
∂Bx

∂θy
−

∂By

∂θx

)

The controllability result is not novel and has been dis-

cussed in the literature before. Rui [10] presents a complete

discussion of these results. Though controllability is verified

and implies that any orientation is achievable, the hidden

caveat is that the magnitude of the corresponding second

order lie brackets is very small. For a long chain robot,

the ability to rotate in pitch and yaw is greatly diminished

with the length of the spine. This can be seen as the inertia

multiplier J−1
T in Equation 9 greatly reduces the magnitude

of movement about the x and y axes.

x

y

z

JT |chain =

[
Big 0 0
0 Big 0
0 0 small

]

Fig. 2. Inertia of an chain robot

The magnitude of the second order brackets,

[Bx, [Bx, By]], [By, [Bx, By]] are very low for the long

chain configuration. Though this effectively limits practical

controllability, there is an interesting consequence of this

result. Due to the low sensitivity in getting the two hinged

model cat to pitch or yaw, rotational paths in the joint

space, (θx, θy) produce an ensemble roll motion with very

little noise in pitch and yaw. This is interesting because the

orientation change for the actual falling cat is simple to

execute. Out of sync motions of an animal’s head and tail,

modeled here as θx and θy , will roll the animal over.

A. Maximizing Roll Velocity

Fernandes, in [6], includes a 2-axis joint numerical ex-

ample that is qualitatively equivalent to a roll-only gradient

descent control on the same system. For the modular system

in the following sections, a fast roll input simplifies to:
[
θ̇x

θ̇y

]

=

{

[
Bx By

]T

[
0
0
0
0
u

] ∣
∣
∣
∣
∣

∥
∥
∥
∥

θ̇x

θ̇y

∥
∥
∥
∥
∞

= ωSERVOmax

}

(13)
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]
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 = [0,28
o
]

Fig. 3. Maximumal Roll Velocity Curves using the control in (13) for
different intial conditions
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By using the transpose of the [Bx, By] matrix, this maxi-

mizes the ω2|z response. That is, at every point in the space,

the controller chooses a shape velocity to maximize ω2|z . The

paths, in Figure 4 generated by the control input in Equation

13, are circular around the origin. This causes the system to

roll around the z-axis. Note how the lie bracket [Bx, By]
suggests this control method for rolling. Figure 4 shows

the level sets of the [Bx, By] bracket in the ω2|z direction.

The level sets are the same shape as the gradient descent

path above. Travelling on the level sets of the Lie Bracket

directions is equivalent to the fast roll control.

−100

0

100

−100

0

100

θx degrees

θy degrees

: [Bx, By]6

Fig. 4. Level sets of the Lie Bracket [Bx, By ] in the ω2z direction. The
vectors are the Lie Bracket direction in the ω direction. Each bracket vector
is calculated at the corresponding location in the joint space.

IV. MODULAR ROBOTIC SYSTEM - CKBOT

L7 ModuleUbar Module

Fig. 5. Two CKbot Modules with slightly different kinematics. The L7
can have a inline twist the Ubar cannot.

The modular system used in these experiments is CKbot.

CKbot modules have a 6cm cube form factor. Figure 5 shows

two of the building block modules, the Ubar and the L7. Each

has four connecting faces that can be mated with another

module via a 20pin header. Each has one 94359 Airtronics

servo that gives a maximum 1.0 Nm of torque and has a max

speed of 60◦/0.1 second. The module’s electronics include

a PIC microcontroller that uses CANbus communication to

talk with other modules.

The configuration in the experiment is shown schemati-

cally in Figure IV. It is a slight modification of an earlier

CKbot configuration in which a scalable dynamic centipede

hops[11] shown in Figure 6. In the falling experiments, the

six module centipede is modified so that its internal joints

are orthogonal from each other.

V. EXPERIMENT - DROPPING THE ROBOT

The output response of the system depends on the angular

velocity of the joints. Servo motors are geared down and

have a proprietary control loop affecting their response.

Before any drop tests, the dynamic servo response versus

command has to be characterized. This is done by a machine

vision system which extracts a model by observing visual

fiducials placed on the modules as they oscillated back

and forth with an inertial load. This data is compiled to

create a one pole Simulink model with feedback and velocity

saturation. This model is experimentally verified over a range

of inertial relatively small loads, with the servos reaching

their maximum velocity within 20ms.

TABLE I

GAIT CONTROL TABLE

t(ms) θy
◦ θx

◦

0 0◦ 0◦

20 0◦ 46◦

40 −69◦ 46◦

100 −69◦ −57◦

200 69◦ −57◦

340 69◦ 69◦

480 −35◦ 69◦

600 −35◦ 0◦

700 0◦ 0◦

A gait table is used to control the modules. A gait table

is a sequence of position commands for each module in

the system. Modules process the gait tables by interpolating

position commands sent to the servos at the maximum

command rate of 60Hz. Fast motions on the gait tables

require fewer interpolants. The falling experiment requires

the servos to operate at top speed. Therefore the gait table has

no interpolants. The gait table in Table I and corresponding

path in joint space is plotted in Figure 8. Each dot on the

path occurs at 10ms intervals.

-

Fig. 6. Dynamic centipede with springy legs for jumping[11]
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I1 =
[

12246 16 399
16 13007 693
399 693 3548

]

gcm2

I2 =
[

1575 −3 −2
−2 2296 −124
−2 −124 378

]

gcm2

I3 =
[

12483 −11 −46
−11 12581 −378
−46 −378 3500

]

gcm2

Ry(θy)
hinge

Rx(θx)
hinge

locked hinges

︸ ︷︷ ︸

locked hinges

︸ ︷︷ ︸

Fig. 7. CAD model of experimental CKbot configuration with inertia matrices

−50 0 50

−50

0

50

θ
x
 (degrees)

θ
y
 (

d
e

g
re

e
s
) ∆T•−•= 10ms

Fig. 8. Path in shape space of two hinge joints θx, θy

A. Experimental Procedure

The modular system is programmed to hold itself static for

two seconds while an experimenter prepares to drop it from

a fixed height. Lightweight fishing line attaches a handle to a

small hole in the central leg structure above the COM. LED’s

signal the experimenter supporting the system to release.

A high speed (240FPS) camera captures the motion of the

system as it falls. The drop height is roughly 290cm and falls

into 15cm of padding on the floor. This gives a 275cm drop

height which corresponds to ∼0.75 seconds of drop time and

final speed of 7.3m/s

B. Results

As can be seen in in Figure 9, composited stills paired with

simulation from one run. It is apparent from the data that

flipping over (rolling in our case) as a cat can be achieved

and that the mathematical and simulated models match well

for this case. A slow motion video of this result is included

in the conference proceedings as well as at [1]. Stills of the

experiments are shown in Figure 9. Close inspection shows

that the device was dropped about 60ms too early.

tsim = 10ms
θx = 6o

θy = 0o

tsim = 222ms
θx = −23o

θy = −46o

tsim = 362ms
θx = −34o

θy = 34o

tsim = 463ms
θx = 23o

θy = 69o

tsim = 564ms
θx = 69o

θy = 11o

tsim = 665ms
θx = 20o

θy = −34o

Fig. 9. Experiment snapshots including video (left), simulation right) and
simulated measurements.

VI. FALLING ROBOTIC DESIGN

While we have shown reorienting about roll, it would be

interesting to reorient about other axis as well. One goal of

this work has been to propose a robotic configuration that

could most effectively reorient during free fall. In particular,

a configuration similar to the CKbot dynamic centipede

(Figure 6) which is exploring jumping by using springy legs.

These legs would also be able to absorb the energy from a

fall.

The Lie Bracket analysis shows that the

system is controllable because the set of
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Fig. 10. Preliminary 3 Joint RxRzRy study

{Bx, By, [Bx, By], [Bx, [Bx, By]], [By, [Bx, By]]} spans

the space. However, inspection via theory and simulation

of the system shows that the achievable angular velocities

using the double bracket type controls are insufficient for

directions other than roll.

Under these mathematical constraints, a falling configura-

tion should be constructed with enough DOFs to generate

single order lie brackets that span the workspace. As ex-

plained in the Section III, first order brackets give the system

the freedom to move relatively quickly without running into

joint limit constraints.

With this in mind, the simulator is set-up with an aug-

mented modular configuration of an additional Rz hinge.

This modular configuration is similar to the experiment

configuration with a 3rd active Rz module in the place of the

middle body. Intuitively, this creates a ball and socket joint

between two off set inertias. This construction shows better

maneuverability around the pitch and yaw rotational axes.

With the third hinge, the inertial loads of the head and tail

can be used to change the components of JT so that J−1
T does

not nullify the response. Figure 10 shows some preliminary

results from control paths for the RxRzRy centipede. The

roll loop is similar to the loop shown in the experimental

results above and rotates the device 180◦ The two other loops

create small rotations about the other axes.

VII. CONCLUSION & FUTURE WORK

We have shown that a modular robot system with hinge

axis that bend about yaw and pitch in elongated config-

urations can reorient about roll during a fall. However, a

major contribution of this work is the analysis of these

elongated systems which shows that while these structures

can efficiently spin about the axis parallel with their spine,

other rotations are much more difficult. This is due to large

inertia about the pitch and yaw axes coupled with a lack of

access to the high gain actuation in the shape space due to

holonomic constraints. By including more orthogonal degree

of freedom joints, the system has greater access to oscillatory

controls that adjust the orientation of the robot.

It is important that these joints be centrally located on the

robot. The inertia models of the offset bodies are important,

but the more significant inertia contribution comes from the

mass distance2 product. If the joints are at the far ends of the

system, they won’t be able to move the large inertial load

they are attached to. This implies that ”tail” type inertias

are not potentially useful, however tail type inertia loads do

have a significant advantage in that their final orientation is

usually unimportant to the system.

Unlike in simulation or experiment, the falling state is

not well defined. The assumption that the system begins

with zero angular momentum is convenient mathematically,

but unlikely. Falling off a wall or a tree limb often implies

an initial angular momentum and random orientation. This,

along with falling from different heights, articulated legs, and

dealing with drag are left to future work.
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