

�

Abstract—In this paper, we provide a new two-layer scalable

architecture, Intelligent Distributed Architecture (IDA). The
first layer of IDA, the application layer, is responsible for the
mission specific tasks. The second layer, the network layer,
is responsible for relaying the information quickly to reduce
latency. In order to increase efficiency, we propose an intelligent
network layer that evaluates the network traffic through
application provided policies. The evaluation assesses improved
accuracy in bandwidth limited scenarios. IDA policies permit
the application to drop, merge or modify the packets in real time
from different sources. We demonstrate how this architecture
can be applied to an example application, distributed target
tracking. We also propose some new algorithms that can be used
in conjunction with IDA for target tracking. Our experiments
on this application show that IDA improves system performance
when the bandwidth is limited.

I. INTRODUCTION
 In recent years, we observed a rapid increase in mobile
wireless sensor platforms and it became increasingly
important to share the data between those platforms, however
limited bandwidth is still a challenge. In a multi-sensor
environment, some of the shortcomings of bandwidth
limitations can be addressed by increasing the processing
power on the local nodes. In this case, the sensor nodes can
identify the duplicate or irrelevant information by fusing the
data from their neighbors and send only essential information.
Sensor fusion algorithms suffer from scalability and other
challenges related to wireless networks [1].
 Typical distributed sensor fusion algorithms rely on a
single layer approach. An application running on sensor
nodes needs to identify not only the information from the
host sensor but also recognize the data other sensors are
sending so that it can fuse that data and share the sensor
readings with other nodes. Furthermore, the application also
needs to know the network status and usage so that it can
capture and forward the data efficiently.
 In this paper, we are proposing an Intelligent Distributed
Architecture, IDA, which is a two layer architecture
evaluated using a distributed sensor fusion application. The
first layer of our architecture is the “application layer” which
is executing the sensor application. Our second layer is the
”network layer” which is responsible for routing the sensor
data to its destination after receiving directions (policy) from
the application layer. This layer is also responsible for key
elements of sensor fusion based on the distributed policies
provided by application layer. While policy based approaches
have been applied to wired networks through active

We express gratitude to Boeing for the support that aiding this research.

networking hardware such as the CISCO AON [2], policies
are usually provided by a central authority and uniformly
distributed. In our approach, the applications provide the
policies which increase the flexibility.
 Our architecture has several advantages: (i) reduced
bandwidth requirements enabled by policies to select key
network packets to propagate, and (ii) reduced computation
in the application layer caused by sending higher quality
information distributed amoung selective nodes).
 We have selected the distributed sensor fusion target
tracking application to demonstrate the feasibility of our
architecture. In our scenarios, the targets in the environment
are monitored using either static or mobile sensors to collect
and send their sensor measurements to other sensors. Our
goal is to provide the most relevant spatial target track history
measurements. IDA makes the decision locally to either drop
or send the information. Upon receiving the sensor readings
(measurement reports), our application layer assigns readings
to existing target tracks based on the association metrics or
else creates a new track. Once the assignment is finished, the
application layer sends the report to the network layer for
delivery. The network layer evaluates the information based
on policies then compares the information received from
other nodes to decide the next action. IDA policies guide the
local decisions to send, drop or aggregate the sensor readings.
 While our main contribution is the IDA architecture, we
also provide new measurement algorithms, new methods to
reduce the number of measurements using a new track to
measurement method, less complex algorithms for distributed
track fusion and reduction in processing by dynamic selection
of simpler algorithms. Our experiments show that both our
architecture and the new algorithms perform well, reducing
the bandwidth required while increasing the accuracy.
 Our extensive testing demonstrates that IDA improves
the quality of the collected information and hence improves
the accuracy when bandwidth is very limited.
In the next section, we discuss the related research, then
we briefly define our problem in Section III. An overview
of our architecture is presented in Section IV. In Sections V
and VI, we discuss application and network layers for target
tracking. We evaluate our architecture in Section VII and
Section VIII concludes our paper.

II. RELATED WORK
 Distributed architectures improve performance for
applications such as distributed sensor fusion ([1], [3], [4],
[5]) using edge processing. While some of these algorithms
(such as [5]) utilize policies fixed at the deployment, IDA
provides flexible, application based policies configured at
runtime Zhao et. al. [6], [7], [1] proposed an architecture

Intelligent Distributed Architecture (IDA) For Mobile Sensor Data Fusion
John Meier and Burchan Bayazit

Department of Computer Science and Engineering
Washington University in Saint Louis

St. Louis, MO 63130 USA
{jlm4,bayazit}@cec.wustl.edu

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 103

where policy is learned through belief networks. Sensor
Information Networking Architecture (SINA)
(Srisathapornphat’s et. al. [8]) enables querying, monitoring,
and tasking of sensor networks emphasizing organizing data
but does not emphasize performance improvement. In
contrast, we introduce a unique two layer approach that
enables organizing and scheduling data using dynamic policy
management that selects the appropriate algorithms to
improve distributed fusion performance.
 A common type of track engine used for report-to-track
fusion is a 1-to-N tracker [9] recently selected for use with
low cost automobile sensors. For example, [10] utilizes it
for target-position estimation algorithm in collision
avoidance, where the target data is collected and fused
through multiple simple sensors. [3] presents an architecture
to select distributed fusion algorithms in a static configuration.
IDA differs from these approaches by providing a dynamic
and flexible two layer approach as others have only single
application layer that is responsible for both information
processing and routing.
 There are also algorithms developed for distributed mobile
fusion using mobile sensors such as [3] and [11]. There are
also fusion algorithms for wired networks. UCLA researchers
[2] use a network infrastructure-supported selective data
sharing and verification service mediator node that is able to
process data at the edge using CISCO (Application Oriented
Networking (AON) [2] products. IDA can be implemented
using AON technology to accelerate performance.

III. PROBLEM DEFINITION
 We have mobile wireless sensors and mobile targets whose
movements we would like to follow accurately. Targets can
enter or leave the sensing areas without coordination. They
are heterogeneous with different kinematic characteristics
and they may have different priorities (i.e., higher priority
targets are more important). Each target is associated with a
track that represents its historical movements. When a
wireless sensor makes a measurement, that measurement
report (MR) needs to be matched to an existing track or it will
create a new track. Our goal is to provide timely and accurate
track data to select nodes that enable local situational
awareness (SA). Each sensor creates its own set of tracks and
may share the track information with other nodes to improve
the local fusion accuracy. Instead of sending all information
to the selected nodes, we would like to send just the most
valuable data (quality information) to avoid traffic congestion
in limited bandwidth environment.
 Figure 1 shows an example scenario with three sensors
(N1,N2,N3) and three targets (T1, T2, T3). The circles
around the sensors represent their sensory range and the
sensors linked to each other with a straight line can
communicate. Since both N1 and N3 can sense T2, both would
send the same track data. In that case N2 would identify the
redundancy and send only one copy.

Fig. 1. Targets T1, T2 T3 are monitored by sensors N1 and N3. When
duplicate information about T2 arrives to N2 from two different nodes, N2
propagates the information only once.

Fig. 2. Our distributed architecture uses two layers (application and
network) to reduce the bandwidth and latency of handling the sensor
measurements. The application sets policy to efficiently process
measurements at the network layer.

IV. SYSTEM OVERVIEW
 In this paper, we provide a new architecture, Intelligent
Distributed Architecture (IDA). Our architecture consists of
application and network layers.
 In this approach, the application layer is responsible for
the mission specific tasks, such as collecting sensor data
and sending it to the correct destination. The destination
can be a node with central authority or it can be just
another network node. The application layer has very limited
information of the network operations and information
transmission occurring at the network layer. This abstraction
provides the application developer an ability to concentrate
on mission specific goals. The network layer in addition
to being responsible for transmitting the application layers’
data to its destination, also propagates data efficiently from
other sensors to their final destination. While it is possible
to send all the data to its destination, there could be several
sensor nodes already sending nearly the same information
resulting in reduced bandwidth. In order to increase
efficiency, we propose an intelligent network layer that,
based on a defined policy, evaluates the network traffic
(packets) it is transmitting either from the application layer or

104

the neighboring sensor. This policy-based intelligent
approach offers an opportunity to drop the duplicate packets
as well as merge the information from different sources.
Furthermore, if the application requires the data from other
sensors, policy may dictate that information be sent to the
application layer to provide policy. For example, the
application layer policy specifies methods for aggregation of
nearest node data to help increase the accuracy of the target
location. The policy can also specify thresholds used to
aggregate data.
 In the following section, we will discuss how this
architecture can be applied to target tracking. Briefly, our
application layer is responsible for analyzing the sensor
measurements, matching each reading to existing tracks and
sending the updated track information to the network layer
for delivery. Our network layer evaluates the new
information through the policies provided by application
layer. For example, if there is network congestion, it sends the
higher priority information first.
 The policy also enables the network layer to evaluate the
necessity to send the received target information. If there
were recent updates on a target, the network layer can drop
older information in the queue related to that target.

V. APPLICATION LAYER
 In target tracking, a common practice is to integrate many
measurements from a sensor to determine where the target is
actually located. This process is called track fusion, where
each track represents the trajectory of a target. Hence our
goal of correctly matching a sensor measurement report
(MR) to a target is in fact matching a sensor reading to
a track. The accuracy of the fusion process can be further
improved using distribute track fusion adding MRs from
other sensors [9].
 Our application layer implements distributed track fusion
using matching and sending mechanisms. First we match
each sensor reading to a track. The matching algorithms are
usually computationally expansive, so the matching is a two
step process:(i) Candidacy identifies candidate readings for
expansive evaluation, (ii) Association assigns reported target
locations (measurement reports) to tracks. After the targets
are matched, the measurement reports are prioritized and
sent. These mechanisms are shown in Figure 3. Next, we
will discuss the individual steps in detail.

A. MATCHING
 The application layer continuously monitors the
measurements to match them to existing targets based on
spacial location. Candidacy (step 1) and Association (step 2)
are all parts of the correct matching process to prioritize the
measurement reports. In some cases, the targets may
broadcast unique identification information that can be
supplied by Interrogate Friend or Foe (IFF) information.
However, in most scenarios,

Fig. 3. Our distributed architecture (IDA) on sensor nodes intelligently
matches and sends sensor measurements. Unassociated measurement reports
(UMRs) are matched to objects being tracked to create associated
measurement reports (AMR).

only limited information, such as the target location, is
available. Hence we use the previous target locations (i.e.,
target tracks) to predict the next possible target location. If
the Candidacy test is passed, we attempt to associate the new
sensor measurements to known target tracks. Our matching
mechanism includes the traditional processor intensive
matching approaches in target tracking. At any given time the
sensors maintain information on several targets, hence it is
important to eliminate impossible matches. For example, if
the sensors identify a target far away from a known track,
there is no need to consider that target as a candidate for
the current track. Once we identify the candidates, we then
associate the MRs with the existing tracks. Please note that,
it is possible that none of the candidates are good matches
in which case the sensor reading actually corresponds to a
new target.
 1) Candidacy: The first step in the target matching process
is identifying possible readings (MR) for the track association
process. Candidacy is a coarse filtering process to improve
the computational efficiency of the next step, Association, by
eliminating out of bound readings. In order to identify
candidates, we consider two tests, (i) maximum distance, a
commonly used test, and (ii) track to measurement distance, a
new test we developed.
Maximum distance tests sensor readings to determine if a
target could reach that location given the current speed and
velocity constraints, such as estimated maximum velocity.
The spherical bound is based on the last known target
location. The maximum velocity (Vmax) is computed based
on current velocity and last know position. The time since
the last measurement is �t. The maximum distance, Mmax,
is calculated using Mmax = Vmax�t. All the readings that
are closer than Mmax to the last track position are accepted
for Association.
 The track to measurement distance (Mtm) predicts a target
trajectory based on the track data and then tests if a sensor
reading is near this trajectory. We use two different
measurement methods; track to measurement distance (MtmE)
is based on Euclidian distance and track to measurement

105

distance (MtmM) is based on Manhattan distance. For target
location prediction, usually a Kalman Filter (KF) is used to
smooth the data used to create the velocity prediction.
 The KF can also be used to help predict the next target
location. The error between the predicted estimated position
and the position determined based on actual measurements
is a variance that is fed back into the system to improve
future predictions. Our KF weighting can be adjusted to
rely more on the historical measurements rather than the
current sensor measurements. Once the prediction is made,
then sensor readings near the trajectory are accepted for
further evaluation. Figure 4 depicts both approaches. In this
figure any reading outside circle is not evaluated for a target
as it would be impossible to reach. In the figure there is a
target reading M and we want to match it to our predicted
target position using two methods. Mmax calculates a vector
for the maximum distance the target could have moved then
checks to see if the vector from the last known position to
the measurement is less than the maximum distance vector
or is within the sphere. Mtm calculates a threshold from
the maximum distance to generate a sphere around the
measurement. Mtm then determines if the predicted position
of the track is inside the sphere. The Candidacy steps of
matching are shown in the algorithm as steps 3-8. Both
approaches have the ability use the distance metric of choice,
such as Euclidean or Manhattan distances.
2) Association: Once we have candidate targets for a
sensor reading, we evaluate each of the candidates to identify
which target is the best match to that reading. Association
of sensor readings to a target uses three different evaluation
methods: (i) distance of measurement to a track (Atm), (ii)
statistical distance from measurement to a track prediction
(Amt) error, and, (iii) distance between statistical
measurement and statistical tracking error (Amat). Amat is the
most complex of the three and is the common
method used.
 This method calculates the value of �2 distance between
the measurement variance and the track variance. Atm is
the least complex method and is easily computed. Amt

is in between the most and least complex methods. This
Association test is similar to Malahanobis distance in the
literature and is often used in sensor networks for data
Association [10]. Our contribution improves the performance
by modifying the Malahanobis distance formula.

B. SENDING THE TARGET INFORMATION
 Once the target is identified, the application layer correctly
assigns and updates the track information prior to sending it
to remote nodes. A frequent update rate may reduce the
bandwidth available for other nodes to send MRs, so instead
of a continuous stream, our application layer prioritizes then
sends the target information to the remote nodes in update
intervals defined by the target properties. Latency of the MRs
sent may also require re-prioritization of the measurements
due to operations with the remote fusion application.

Fig. 4. Candidacy evaluation filters unassociated measurement reports
(UMRs) using a maximum distance bound set by estimated maximum object
velocity to select the measurements for Association. Measurements within
the circle depicted are considered candidates for Association. We contrast
this with our track to measurement distance based on the projected object
location using Euclidian and Manhattan distance methods.

VI. INTELLIGENT NETWORK LAYER:
The application layer creates policy that sets up the
network layer to process the sensor measurements locally.
The majority of the data is processed and filtered by
applications to create a prioritized list of measurements to be
sent. There are frequent variations in bandwidth that require
decisions at the network layer to ensure valuable bandwidth is
not wasted. Selecting the right measurements locally at the
network layer is critical to achieving scalability and
enhancing the quality of information. Communication
between the application layer and the network layer can
assure this occurs efficiently using policies. These policies
can be scripts or binary plugins that are sent to program the
network layer. This layer is responsible for matching and
sending the data it received from the application layer or
other nodes to its destination based on the policy distributed.
As we are interested in target tracking, the policy dictates
the decisions controlled by the application layer, i.e., it

106

Fig. 5. Association of Candidate measurement reports with an object
beingtracked traditionally use a measurement and track statistical error
distance approach based on �2 distance depicted as the solid line. The
measurement to track statistical error distance uses the our new method based
on the Mahalanobis distance to reduce complexity. Measurements that are
longer than the dotted line shown are not candidates. Note that this diagram is
only a conceptual representation.

compares the current target information received from the
local application layer and other nodes with the sensor
measurements, matches the measurement to a track, evaluates
the last time the information related to the specific target was
sent, then makes a decision to transmit or drop it.
 The two key decisions are matching and sending network
data more intelligently..

��Matching targets: The task of identifying the same
targets from different nodes requires accurate time
synchronization of the measured data. Identifying targets
based on very limited stored historical data is more
difficult due to fewer available measurements. Similar
to the application layer, we evaluate the same algorithms
(Amat, Amt, and Atm) for implementation at the network
layer. We contrast commonly implemented methods that
are more complex with using less complex methods for
matching the measurements to the existing tracks at the
network layer.
��Sending the target information: once the measurement
is matched with the target, we then compare the
last time the packet was transmitted related to this
target’s priority and make a decision to either transmit
the data or drop it. Amat and other distance algorithms
measure how well the data fits the projected track. The
strength of the measurement is evaluated by distance
metrics. For example �2 distance computed for Amat relates
goodness of fit between the measurement and the projected
track. Amt designates how many sigma the projected track
is from the measurement to indicate the likelihood of
association. Atm calculates the physical distance between
the linear track projection and the measurement.

 The network layer evaluates the Candidacy and
Association based on the distance algorithm and threshold set
by the application layer. Other key factors, such as
complexity, must be carefully weighed by the application
layer because they will affect the latency and accuracy.

VII. EXPERIMENTS
 Our experiments are designed to answer the following
questions: (i) how successful is IDA at prioritizing and
sending important information, (ii) how well are the matching
algorithms working, and (iii) how do the number of sensors
and mobility effect our architecture.
 In order to answer those questions, we have designed
two scenarios using IDA. Both scenarios have 20 randomly
moving targets in the environment. The targets can have
velocities upto 40kms. In the simple scenario, targets are
allowed to move in a wider volume (100 × 100 × 100km3,
see Figure 6(a)). In contrast, the complex scenario restricts
the area to (10×10×10 km3, see Figure 6(b)) causing more
frequent track cross-overs making correct track associations
very challenging. The sensors measure the distance (range,
azimuth and elevation) to the object being tracked. The
default sensor error settings are 4M in range, and 0.1 degrees
in azimuth and elevation. In select experiments, we varied
the channel capacity (bandwidth), and update rates. Three
sets of experiments (single sensor, multiple sensors and
mobile sensors) evaluate the performance of IDA. In all of
our experiments we evaluate the inaccuracy, i.e., error in
predicting a target’s location at a single node. This error
happens when a destination node does not have enough
measurements (packets) arriving for a given target. In a
preferred architecture, the prediction error should be affected
less as the bandwidth is reduced when intelligent algorithms
select the information to be transmitted. Traditional solutions
increase the update rate as priority increases. The update
rate represents the number of messages each sensor has to
send per second for each target it senses. We evaluate the
effectiveness of this approach by varying the update rate for
twenty targets.

a. Evaluation of IDA on A Single Sensor
In this experiment, our goal is to evaluate the performance
of our system without exchanging information from other
sensors. There is only one sensor that is collecting and
sending the target data to a destination. We vary the
bandwidth in the system by changing the number of messages
that can go through a link. We used network simulator tool,
NS-2, to evaluate bandwidth usage. Our preliminary
observation indicated that less bandwidth (below 7
reports/sec) prevents sending adequate meaningful
information since most packets will be dropped. More
bandwidth (more than 13) allows a majority of the packets to
be sent and all algorithms are shown to perform similarly,
thus we have selected the values between 7 to 13 to describe
the performance enhancements of IDA. In order to evaluate
IDA, we compared different combinations of Candidacy and
Association algorithms using the used by the Boeing
Distributed Mobile Fusion Toolkit (BDMFT). As we are
interested in implementing our architecture on a
FPGA, we are interested in simpler computations, such as
using Manhattan distance as opposed to Euclidean or �2).
So, in our experiments, we also compare the performance
of Manhattan and Euclidean distance metrics when they
are used in Candidacy and Association algorithms.

107

Fig. 6. Simulation scenarios with 20 randomly moving targets. The closer
the targets, the harder it is to correctly identify them. (a) Simple Scenario
with 100×100KM3 area. (b) Complex Scenario with 10×10×10KM3
area..
The
prediction accuracy also depends on the frequency of the
updates (update rate). For example, more frequent updates
with large bandwidth should provide increased accuracy. Our
experiments are designed to evaluate less frequent updates
with lower bandwidth to determine the affects of IDA
selecting different algorithms to improve accuracy. Hence,
we also investigate the affects of update rates ranging from 5
to 15 messages per second. In this paper, we will show the
results for a simple environment with update rates of 10 and
15 reports/second, and complex environment with an update
rate of 10 reports/second. The rest of our results can be
obtained by contacting the authors.
Figures 7 show the results of our experiments
using the simple environment (scenario) with the update
rates 15 and 10. In these figures, x-axis represents the
channel capacity (bandwidth), where as the logarithmic y axis
represents the error in the prediction of target location.
 In Figure 7 the update rate is 15 track reports per second
for each target. The update rate of 15 is chosen to examine
the fusion algorithm performance with reduced flexibility to
choose the best measurements. In each sub-figure in the
figure show a different Candidacy algorithm: (a) “Maximum
Distance”, (b)“Distance to Track” with Manhattan, and (c)
“Distance to Track” with distance metric.
Each sub-figure contains the performance values for different
Association algorithms that are applied after the
designated Candidacy method was used. In the figures,
we show the error in the prediction if all the messages
were transmitted regardless of the bandwidth (”All sent”)
to create the lower bound. We also create an upper bound
by including a measurement indicating if the messages were
to be dropped randomly (”random”). The lower bound (“All
sent”) represent the best possible prediction, where as the
upper bound (“Random”) is always the worst case because
it does not use intelligent selection.
 Our results show that IDA performed far better than
“random” in all scenarios. All algorithm results are bounded
by the ”all sent” and ”random” bars on the graph shown in
Figure 7. Our track to measurement (Mtm) algorithm reduces
the number of measurements to associate by over 55% per
track in the complex scenario, which results in decreased
processing. Our new Association algorithm also decreases

the miss-association errors for measurements with the same
error to reduce processing.

Fig. 7. Simple Environment with update rate 15. Bandwidth vs. prediction
error for three Candidacy algorithms: (a) Maximum Distance, (b) track to
measurement (Manhattan) (c) track to measurement (Euclidian)). Each bar
group represent different Association algorithm used (from left to right:
“Random drop”,Atme,Atmm,Amat,Amt,”All messages sent”)

 We varied the bandwidth (channel capacity) with each of
the four Association methods using different distance meth
ods that include �2, Manhattan, Euclidian, and Mahalanobis.
The Association track to measurement (Atmm) algorithm
using the Manhattan distance actually outperformed, or was
more accurate, than other more complex methods as shown
in Figure 7. In these figures, the performance of random
selection was less accurate using low bandwidth.

Fig. 8 Complex Environment with update rate 10. Bandwidth vs. prediction
error for three Candidacy algorithms: (a) Maximum Distance, (b) track to
measurement (Manhattan) (c) track to measurement (Euclidian)). See Figure
7 for the legend.

 Due to space limitations, we only show the results for the
complex environment with an update rate of 10 in Figure 8.
These results are very similar to the simple scenario but
overall show the accuracy decreasing due to mismatching
of sensor readings. Frequent crossing of tracks causes
miss-association, resulting in poor track prediction.

108

b. Multiple Sensors
 Next, we investigated the affects of multiple sensors. In
this experiment, we have two sensors sending data to a
common node. In our previous experiment, we had found
that the “distance to track” with Manhattan distance metric
gave the best results. So, for our multiple sensor experiments,
IDA will select this Candidacy algorithm. We also evaluate
IDA with different association algorithms and compare them
to the tradition approach. Further more, we have selected an
update rate of 10 track reports per second. We first set both
sensors to have the same accuracy error. Figure 9 (a) shows
the results in simple environment. Next, we have increased
one of the sensor errors by a factor of 10, to 400 meters. In
this case, the track to measurement Association (Atm)
algorithm using the Mahalanobis distance performed
significantly better (see Figure 9 (b)) for sensors with
different errors. We modified our Amt algorithm to use the
position of the predicted track measurement with the
statistical variance of the track measurement and achieved
over 25 takes into account the statistical variance of the data
while the simpler methods (Atmm and Atme) do not.

c. Moving Sensors
In our last experiment, we have two sensor moving
randomly in the simple environment with a speed of 60
kmph. We set the accuracy of both sensors to 40 meters,
kept the speed constant, and varied the 20 randomly moving
targets. The results were very similar to static sensors and
therefore show one example result in Figure 9 (c), where
“Maximum Distance” Candidacy algorithm are used with
different Association algorithms.

Fig. 9 Simple Environment, update rate 10, multiple and mobile sensors:
(a) Multiple sensors with equal error using the simple scenario show no
significant changes in accuracy. (b)Multiple sensors with different sensor
errors. (c) Mobile sensors. See Figure 7 for the legend.

VIII. CONCLUSION AND FUTURE WORK
 In this paper, we have presented a two-layer architecture,
Intelligent Distributed Architecture (IDA), that is able to
improve the performance of many network enabled
distributed applications. The application layer is responsible

for collecting the application specific information while the
network layer is responsible for transmitting that information.
 A policy, provided by the application layer, dictates how
the information will be transmitted. We studied our
architecture using a target tracking scenario with traditional
and new algorithms. Our experiments show that IDA is able
to identify the quality information to exchange over low
bandwidth and help improve accuracy by reducing error. This
results in improved accuracy while reducing the required
bandwidth. We also showed that less complex algorithms for
distributed track fusion exceeded existing approaches for
select situations.
 The network hardware and software approach is able
to apply the most efficient algorithms as conditions change.
We plan to further investigate the complex scenarios using
additional moving sensors to assess the local decisions made
by IDA. Our future goal is to create dynamic policies
that will be distributed via mobile agents to the network
layer. The dynamic policies will be assessed using dynamic
inference engines or solvers to enable more intelligent local
decision making. Our future research will enhance the
intelligent layers of IDA.

REFERENCES
[1] F. Zhao, Shin, and Reich, “Information-driven dynamic sensor
collaboration
for tracking applications,” in IEEE Signal Processing Magazine,
2002, pp. 1–9.
[2] A. Parker and et. al., “Network system challenges in selective sharing
and verification for personal, social, and urban-scale sensing applications,”
ACM SIGCOMM, 5th Workshop on Hot Topics in Networks,
p. 41, 2006.
[3] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Comput. Surv., vol. 38, no. 4, p. 13, 2006.
[4] P. V. Mark Alford, “A layered architecture for multisensor data fusion
systems,” in Signals, Systems and Computers Conference, Mar. 1999,
pp. 416–419.
[5] D. Tennenhouse and D. Wetherall, “Toward an active network
architecture,”
in Computer Communication Review, Mar. 1996, pp. 1–14.
[6] F. Zhao, J. Liu, L. Guibas, and J. Reich, “Collaborative signal and
information processing: An information directed approach ,” Proceedings
of the IEEE, vol. Volume 91, no. no. 8, pp. 1–10, Aug. 2003.
[7] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven
sensor querying and routing for ad hoc heterogeneous sensor networks,”
in Xerox Palo Alto Research Center Technical Report, 2001,
pp. 1–7.
[8] C. Srisathapornphat, C. Jaikaeo, and C.-C. Shen, “Sensor information
networking architecture and applications,” IEEE Wireless Communications,
vol. Volume 8, no. Issue 4, pp. 52–59, Aug. 2001.
[9] S. S. Blackman, “Multiple-target tracking with radar applications,” in
Artech House, 1986, pp. 357–395.
[10] F. Flster and H. Rohling, “Data Association and Tracking for
Automotive
Radar Networks,” IEEE TRANSACTIONS ON INTELLIGENT
TRANSPORTATION SYSTEMS, vol. Volume 6, no. number 4, pp. 370–
378, Dec. 2005.
[11] A. Tchamova, J. Dezert, T. Semerdjiev, and P. Konstantinova, “Target
tracking with generalized data assocoation based on the general dsm
rule of combinaton,” in Proceedings of Fusion 2004, Stockholm,
Sweden.

109

