
  

�

Abstract—In this paper, we provide a new two-layer scalable 
 

architecture, Intelligent Distributed Architecture (IDA). The 
first layer of IDA, the application layer, is responsible for the 
mission specific tasks. The second layer, the network layer, 
is responsible for relaying the information quickly to reduce 
latency. In order to increase efficiency, we propose an intelligent 
network layer that evaluates the network traffic through 
application provided policies. The evaluation assesses improved 
accuracy in bandwidth limited scenarios. IDA policies permit 
the application to drop, merge or modify the packets in real time 
from different sources. We demonstrate how this architecture 
can be applied to an example application, distributed target 
tracking. We also propose some new algorithms that can be used 
in conjunction with IDA for target tracking. Our experiments 
on this application show that IDA improves system performance 
when the bandwidth is limited. 
 

I. INTRODUCTION 
    In recent years, we observed a rapid increase in mobile 
wireless sensor platforms and it became increasingly 
important to share the data between those platforms, however 
limited bandwidth is still a challenge. In a multi-sensor 
environment, some of the shortcomings of bandwidth 
limitations can be addressed by increasing the processing 
power on the local nodes. In this case, the sensor nodes can 
identify the duplicate or irrelevant information by fusing the 
data from their neighbors and send only essential information. 
Sensor fusion algorithms suffer from scalability and other 
challenges related to wireless networks [1]. 
    Typical distributed sensor fusion algorithms rely on a 
single layer approach. An application running on sensor 
nodes needs to identify not only the information from the 
host sensor but also recognize the data other sensors are 
sending so that it can fuse that data and share the sensor 
readings with other nodes. Furthermore, the application also 
needs to know the network status and usage so that it can 
capture and forward the data efficiently. 
    In this paper, we are proposing an Intelligent Distributed 
Architecture, IDA, which is a two layer architecture 
evaluated using a distributed sensor fusion application. The 
first layer of our architecture is the “application layer” which 
is executing the sensor application. Our second layer is the 
”network layer” which is responsible for routing the sensor 
data to its destination after receiving directions (policy) from 
the application layer. This layer is also responsible for key 
elements of sensor fusion based on the distributed policies 
provided by application layer. While policy based approaches  
have been applied to wired networks through active 
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networking hardware such as the CISCO AON [2], policies 
are usually provided by a central authority and uniformly 
distributed. In our approach, the applications provide the 
policies which increase the flexibility. 
    Our architecture has several advantages: (i) reduced 
bandwidth requirements enabled by policies to select key 
network packets to propagate, and (ii) reduced computation 
in the application layer caused by sending higher quality 
information distributed amoung selective nodes). 
    We have selected the distributed sensor fusion target 
tracking application to demonstrate the feasibility of our 
architecture. In our scenarios, the targets in the environment 
are monitored using either static or mobile sensors to collect 
and send their sensor measurements to other sensors. Our 
goal is to provide the most relevant spatial target track history 
measurements. IDA makes the decision locally to either drop 
or send the information. Upon receiving the sensor readings 
(measurement reports), our application layer assigns readings 
to existing target tracks based on the association metrics or 
else creates a new track. Once the assignment is finished, the 
application layer sends the report to the network layer for 
delivery. The network layer evaluates the information based 
on policies then compares the information received from 
other nodes to decide the next action. IDA policies guide the 
local decisions to send, drop or aggregate the sensor readings.  
    While our main contribution is the IDA architecture, we 
also provide new measurement algorithms, new methods to 
reduce the number of measurements using a new track to 
measurement method, less complex algorithms for distributed 
track fusion and reduction in processing by dynamic selection 
of simpler algorithms. Our experiments show that both our 
architecture and the new algorithms perform well, reducing 
the bandwidth required while increasing the accuracy. 
    Our extensive testing demonstrates that IDA improves 
the quality of the collected information and hence improves 
the accuracy when bandwidth is very limited. 
In the next section, we discuss the related research, then 
we briefly define our problem in Section III. An overview 
of our architecture is presented in Section IV. In Sections V 
and VI, we discuss application and network layers for target 
tracking. We evaluate our architecture in Section VII and 
Section VIII concludes our paper.  

II. RELATED WORK 
    Distributed architectures improve performance for 
applications such as distributed sensor fusion ([1], [3], [4], 
[5]) using edge processing. While some of these algorithms 
(such as [5]) utilize policies fixed at the deployment, IDA 
provides flexible, application based policies configured at 
runtime Zhao et. al. [6], [7], [1] proposed an architecture 
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where policy is learned through belief networks. Sensor 
Information Networking Architecture (SINA) 
(Srisathapornphat’s et. al. [8]) enables querying, monitoring, 
and tasking of sensor networks emphasizing organizing data 
but does not emphasize performance improvement. In 
contrast, we introduce a unique two layer approach that 
enables organizing and scheduling data using dynamic policy 
management that selects the appropriate algorithms to 
improve distributed fusion  performance. 
    A common type of track engine used for report-to-track 
fusion is a 1-to-N tracker [9] recently selected for use with 
low cost automobile sensors. For example, [10] utilizes it 
for target-position estimation algorithm in collision 
avoidance, where the target data is collected and fused 
through multiple simple sensors. [3] presents an architecture 
to select distributed fusion algorithms in a static configuration. 
IDA differs from these approaches by providing a dynamic 
and flexible two layer approach as others have only single 
application layer that is responsible for both information 
processing and routing. 
    There are also algorithms developed for distributed mobile 
fusion using mobile sensors such as [3] and [11]. There are 
also fusion algorithms for wired networks. UCLA researchers 
[2] use a network infrastructure-supported selective data 
sharing and verification service mediator node that is able to 
process data at the edge using CISCO (Application Oriented 
Networking (AON) [2] products. IDA can be implemented 
using AON technology to accelerate performance. 

III. PROBLEM DEFINITION 
    We have mobile wireless sensors and mobile targets whose 
movements we would like to follow accurately. Targets can 
enter or leave the sensing areas without coordination. They 
are heterogeneous with different kinematic characteristics 
and they may have different priorities (i.e., higher priority 
targets are more important). Each target is associated with a 
track that represents its historical movements. When a 
wireless sensor makes a measurement, that measurement 
report (MR) needs to be matched to an existing track or it will 
create a new track. Our goal is to provide timely and accurate 
track data to select nodes that enable local situational 
awareness (SA). Each sensor creates its own set of tracks and 
may share the track information with other nodes to improve 
the local fusion accuracy. Instead of sending all information 
to the selected nodes, we would like to send just the most 
valuable data (quality information) to avoid traffic congestion 
in limited bandwidth environment. 
    Figure 1 shows an example scenario with three sensors 
(N1,N2,N3) and three targets (T1, T2, T3). The circles 
around the sensors represent their sensory range and the 
sensors linked to each other with a straight line can 
communicate. Since both N1 and N3 can sense T2, both would 
send the same track data. In that case N2 would identify the 
redundancy and send only one copy.  
 

 
Fig. 1.  Targets T1, T2 T3 are monitored by sensors N1 and N3. When 
duplicate information about T2 arrives to N2 from two different nodes, N2 
propagates the information only once. 
 

 
Fig. 2.  Our distributed architecture uses two layers (application and 
network) to reduce the bandwidth and latency of handling the sensor 
measurements. The application sets policy to efficiently process 
measurements at the network layer. 
 

IV. SYSTEM OVERVIEW 
    In this paper, we provide a new architecture, Intelligent 
Distributed Architecture (IDA). Our architecture consists of 
application and network layers. 
    In this approach, the application layer is responsible for 
the mission specific tasks, such as collecting sensor data 
and sending it to the correct destination. The destination 
can be a node with central authority or it can be just 
another network node. The application layer has very limited 
information of the network operations and information 
transmission occurring at the network layer. This abstraction 
provides the application developer an ability to concentrate 
on mission specific goals. The network layer in addition 
to being responsible for transmitting the application layers’ 
data to its destination, also propagates data efficiently from 
other sensors to their final destination. While it is possible 
to send all the data to its destination, there could be several 
sensor nodes already sending nearly the same information 
resulting in reduced bandwidth. In order to increase 
efficiency, we propose an intelligent network layer that, 
based on a defined policy, evaluates the network traffic 
(packets) it is transmitting either from the application layer or 
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the neighboring sensor. This policy-based intelligent 
approach offers an opportunity to drop the duplicate packets 
as well as merge the information from different sources. 
Furthermore, if the application requires the data from other 
sensors, policy may dictate that information be sent to the 
application layer to provide policy.  For example, the 
application layer policy specifies methods for aggregation of 
nearest node data to help increase the accuracy of the target 
location. The policy can also specify thresholds used to 
aggregate data. 
    In the following section, we will discuss how this 
architecture can be applied to target tracking. Briefly, our 
application layer is responsible for analyzing the sensor 
measurements, matching each reading to existing tracks and 
sending the updated track information to the network layer 
for delivery. Our network layer evaluates the new 
information through the policies provided by application 
layer. For example, if there is network congestion, it sends the 
higher priority information first. 
    The policy also enables the network layer to evaluate the 
necessity to send the received target information. If there 
were recent updates on a target, the network layer can drop 
older information in the queue related to that target. 

V. APPLICATION LAYER  
    In target tracking, a common practice is to integrate many 
measurements from a sensor to determine where the target is 
actually located. This process is called track fusion, where 
each track represents the trajectory of a target. Hence our 
goal of correctly matching a sensor measurement report 
(MR) to a target is in fact matching a sensor reading to 
a track. The accuracy of the fusion process can be further 
improved using distribute track fusion adding MRs from 
other sensors [9]. 
    Our application layer implements distributed track fusion 
using matching and sending mechanisms. First we match 
each sensor reading to a track. The matching algorithms are 
usually computationally expansive, so the matching is a two 
step process:(i) Candidacy identifies candidate readings for 
expansive evaluation, (ii) Association assigns reported target 
locations (measurement reports) to tracks. After the targets 
are matched, the measurement reports are prioritized and 
sent. These mechanisms are shown in Figure 3. Next, we 
will discuss the individual steps in detail. 

A. MATCHING   
    The application layer continuously monitors the 
measurements to match them to existing targets based on 
spacial location. Candidacy (step 1) and Association (step 2) 
are all parts of the correct matching process to prioritize the 
measurement reports. In some cases, the targets may 
broadcast unique identification information that can be 
supplied by Interrogate Friend or Foe (IFF) information. 
However, in most scenarios, 

 
Fig. 3.  Our distributed architecture (IDA) on sensor nodes intelligently 
matches and sends sensor measurements. Unassociated measurement reports 
(UMRs) are matched to objects being tracked to create associated 
measurement reports (AMR). 
 
only limited information, such as the target location, is 
available. Hence we use the previous target locations (i.e., 
target tracks) to predict the next possible target location. If 
the Candidacy test is passed, we attempt to associate the new 
sensor measurements to known target tracks. Our matching 
mechanism includes the traditional processor intensive 
matching approaches in target tracking. At any given time the 
sensors maintain information on several targets, hence it is 
important to eliminate impossible matches. For example, if 
the sensors identify a target far away from a known track, 
there is no need to consider that target as a candidate for 
the current track. Once we identify the candidates, we then 
associate the MRs with the existing tracks. Please note that, 
it is possible that none of the candidates are good matches 
in which case the sensor reading actually corresponds to a 
new target.  
    1) Candidacy: The first step in the target matching process 
is identifying possible readings (MR) for the track association 
process. Candidacy is a coarse filtering process to improve 
the computational efficiency of the next step, Association, by 
eliminating out of bound readings. In order to identify 
candidates, we consider two tests, (i) maximum distance, a 
commonly used test, and (ii) track to measurement distance, a 
new test we developed. 
Maximum distance tests sensor readings to determine if a 
target could reach that location given the current speed and 
velocity constraints, such as estimated maximum velocity. 
The spherical bound is based on the last known target 
location. The maximum velocity (Vmax) is computed based 
on current velocity and last know position. The time since 
the last measurement is �t. The maximum distance, Mmax, 
is calculated using Mmax = Vmax�t. All the readings that 
are closer than Mmax to the last track position are accepted 
for Association. 
    The track to measurement distance (Mtm) predicts a target 
trajectory based on the track data and then tests if a sensor 
reading is near this trajectory. We use two different 
measurement methods; track to measurement distance (MtmE) 
is based on Euclidian distance and track to measurement 
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distance (MtmM) is based on Manhattan distance. For target 
location prediction, usually a Kalman Filter (KF) is used to 
smooth the data used to create the velocity prediction. 
    The KF can also be used to help predict the next target 
location. The error between the predicted estimated position 
and the position determined based on actual measurements 
is a variance that is fed back into the system to improve 
future predictions. Our KF weighting can be adjusted to 
rely more on the historical measurements rather than the 
current sensor measurements. Once the prediction is made, 
then sensor readings near the trajectory are accepted for 
further evaluation. Figure 4 depicts both approaches. In this 
figure any reading outside circle is not evaluated for a target 
as it would be impossible to reach. In the figure there is a 
target reading M and we want to match it to our predicted 
target position using two methods. Mmax calculates a vector 
for the maximum distance the target could have moved then 
checks to see if the vector from the last known position to 
the measurement is less than the maximum distance vector 
or is within the sphere. Mtm calculates a threshold from 
the maximum distance to generate a sphere around the 
measurement. Mtm then determines if the predicted position 
of the track is inside the sphere. The Candidacy steps of 
matching are shown in the algorithm as steps 3-8. Both 
approaches have the ability use the distance metric of choice, 
such as Euclidean or Manhattan distances. 
2) Association: Once we have candidate targets for a 
sensor reading, we evaluate each of the candidates to identify 
which target is the best match to that reading. Association 
of sensor readings to a target uses three different evaluation 
methods: (i) distance of measurement to a track (Atm), (ii) 
statistical distance from measurement to a track prediction 
(Amt) error, and, (iii) distance between statistical 
measurement and statistical tracking error (Amat). Amat is the 
most complex of the three and is the common  
method used. 
    This method calculates the value of �2 distance between 
the measurement variance and the track variance. Atm is 
the least complex method and is easily computed. Amt 

is in between the most and least complex methods. This 
Association test is similar to Malahanobis distance in the 
literature and is often used in sensor networks for data 
Association [10]. Our contribution improves the performance 
by modifying the Malahanobis distance formula. 

B. SENDING THE TARGET INFORMATION 
    Once the target is identified, the application layer correctly 
assigns and updates the track information prior to sending it 
to remote nodes. A frequent update rate may reduce the 
bandwidth available for other nodes to send MRs, so instead 
of a continuous stream, our application layer prioritizes then 
sends the target information to the remote nodes in update 
intervals defined by the target properties. Latency of the MRs 
sent may also require re-prioritization of the measurements 
due to operations with the remote fusion application. 
 

 
 

 
Fig. 4.  Candidacy evaluation filters unassociated measurement reports 
(UMRs) using a maximum distance bound set by estimated maximum object 
velocity to select the measurements for Association. Measurements within 
the circle depicted are considered candidates for Association. We contrast 
this with our track to measurement distance based on the projected object 
location using Euclidian and Manhattan distance methods. 

VI. INTELLIGENT NETWORK LAYER:  
The application layer creates policy that sets up the 
network layer to process the sensor measurements locally. 
The majority of the data is processed and filtered by 
applications to create a prioritized list of measurements to be 
sent. There are frequent variations in bandwidth that require 
decisions at the network layer to ensure valuable bandwidth is 
not wasted. Selecting the right measurements locally at the 
network layer is critical to achieving scalability and 
enhancing the quality of information. Communication 
between the application layer and the network layer can 
assure this occurs efficiently using policies. These policies 
can be scripts or binary plugins that are sent to program the 
network layer. This layer is responsible for matching and 
sending the data it received from the application layer or 
other nodes to its destination based on the policy distributed. 
As we are interested in target tracking, the policy dictates 
the decisions controlled by the application layer, i.e., it 
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Fig. 5.  Association of Candidate measurement reports with an object 
beingtracked traditionally use a measurement and track statistical error 
distance approach based on �2 distance depicted as the solid line. The 
measurement to track statistical error distance uses the our new method based 
on the Mahalanobis distance to reduce complexity. Measurements that are 
longer than the dotted line shown are not candidates. Note that this diagram is 
only a conceptual representation. 
 
compares the current target information received from the 
local application layer and other nodes with the sensor 
measurements, matches the measurement to a track, evaluates 
the last time the information related to the specific target was 
sent, then makes a decision to transmit or drop it. 
    The two key decisions are matching and sending network 
data more intelligently.. 

��Matching targets: The task of identifying the same 
targets from different nodes requires accurate time 
synchronization of the measured data. Identifying targets 
based on very limited stored historical data is more 
difficult due to fewer available measurements. Similar 
to the application layer, we evaluate the same algorithms 
(Amat, Amt, and Atm) for implementation at the network 
layer. We contrast commonly implemented methods that 
are more complex with using less complex methods for 
matching the measurements to the existing tracks at the 
network layer. 
��Sending the target information: once the measurement 
is matched with the target, we then compare the 
last time the packet was transmitted related to this 
target’s priority and make a decision to either transmit 
the data or drop it. Amat and other distance algorithms 
measure how well the data fits the projected track. The 
strength of the measurement is evaluated by distance 
metrics. For example �2 distance computed for Amat relates 
goodness of fit between the measurement and the projected 
track. Amt designates how many sigma the projected track 
is from the measurement to indicate the likelihood of 
association. Atm calculates the physical distance between 
the linear track projection and the measurement. 

    The network layer evaluates the Candidacy and 
Association based on the distance algorithm and threshold set 
by the application layer. Other key factors, such as 
complexity, must be carefully weighed by the application 
layer because they will affect the latency and accuracy. 

VII. EXPERIMENTS 
   Our experiments are designed to answer the following 
questions: (i) how successful is IDA at prioritizing and 
sending important information, (ii) how well are the matching 
algorithms working, and (iii) how do the number of sensors 
and mobility effect our architecture. 
    In order to answer those questions, we have designed 
two scenarios using IDA. Both scenarios have 20 randomly 
moving targets in the environment. The targets can have 
velocities upto 40kms. In the simple scenario, targets are 
allowed to move in a wider volume ( 100 × 100 × 100km3, 
see Figure 6(a)). In contrast, the complex scenario restricts 
the area to ( 10×10×10 km3, see Figure 6(b)) causing more 
frequent track cross-overs making correct track associations 
very challenging. The sensors measure the distance (range, 
azimuth and elevation) to the object being tracked. The 
default sensor error settings are 4M in range, and 0.1 degrees 
in azimuth and elevation. In select experiments, we varied 
the channel capacity (bandwidth), and update rates. Three 
sets of experiments (single sensor, multiple sensors and 
mobile sensors) evaluate the performance of IDA. In all of 
our experiments we evaluate the inaccuracy, i.e., error in 
predicting a target’s location at a single node. This error 
happens when a destination node does not have enough 
measurements (packets) arriving for a given target. In a 
preferred architecture, the prediction error should be affected 
less as the bandwidth is reduced when intelligent algorithms 
select the information to be transmitted. Traditional solutions 
increase the update rate as priority increases. The update 
rate represents the number of messages each sensor has to 
send per second for each target it senses. We evaluate the 
effectiveness of this approach by varying the update rate for 
twenty targets. 

a. Evaluation of IDA on A Single Sensor 
In this experiment, our goal is to evaluate the performance 
of our system without exchanging information from other 
sensors. There is only one sensor that is collecting and 
sending the target data to a destination. We vary the 
bandwidth in the system by changing the number of messages 
that can go through a link. We used network simulator tool, 
NS-2, to evaluate bandwidth usage. Our preliminary 
observation indicated that less bandwidth (below 7 
reports/sec) prevents sending adequate meaningful 
information since most packets will be dropped. More 
bandwidth (more than 13) allows a majority of the packets to 
be sent and all algorithms are shown to perform similarly, 
thus we have selected the values  between 7 to 13 to describe 
the performance enhancements of IDA. In order to evaluate 
IDA, we compared different combinations of Candidacy and 
Association algorithms using the used by the Boeing 
Distributed Mobile Fusion Toolkit (BDMFT).    As we are 
interested in implementing our architecture on a 
FPGA, we are interested in simpler computations, such as 
using Manhattan distance as opposed to Euclidean or �2). 
So, in our experiments, we also compare the performance 
of Manhattan and Euclidean distance metrics when they 
are used in Candidacy and Association algorithms. 
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Fig. 6.  Simulation scenarios with 20 randomly moving targets. The closer 
the targets, the harder it is to correctly identify them. (a) Simple Scenario 
with 100×100KM3 area. (b) Complex Scenario with 10×10×10KM3 
area.. 
The 
prediction accuracy also depends on the frequency of the 
updates (update rate). For example, more frequent updates 
with large bandwidth should provide increased accuracy. Our 
experiments are designed to evaluate less frequent updates 
with lower bandwidth to determine the affects of IDA 
selecting different algorithms to improve accuracy. Hence, 
we also investigate the affects of update rates ranging from 5 
to 15 messages per second. In this paper, we will show the 
results for a simple environment with update rates of 10 and 
15 reports/second, and complex environment with an update 
rate of 10 reports/second. The rest of our results can be 
obtained by contacting the authors. 
Figures 7 show the results of our experiments 
using the simple environment (scenario) with the update 
rates 15 and 10. In these figures, x-axis represents the 
channel capacity (bandwidth), where as the logarithmic y axis 
represents the error in the prediction of target location. 
    In Figure 7 the update rate is 15 track reports per second 
for each target. The update rate of 15 is chosen to examine 
the fusion algorithm performance with reduced flexibility to 
choose the best measurements. In each sub-figure in the 
figure show a different Candidacy algorithm: (a) “Maximum 
Distance”, (b)“Distance to Track” with Manhattan, and (c) 
“Distance to Track” with distance metric. 
Each sub-figure contains the performance values for different 
Association algorithms that are applied after the 
designated Candidacy method was used. In the figures, 
we show the error in the prediction if all the messages 
were transmitted regardless of the bandwidth (”All sent”) 
to create the lower bound. We also create an upper bound 
by including a measurement indicating if the messages were 
to be dropped randomly (”random”). The lower bound (“All 
sent”) represent the best possible prediction, where as the 
upper bound (“Random”) is always the worst case because 
it does not use intelligent selection. 
    Our results show that IDA performed far better than 
“random” in all scenarios. All algorithm results are bounded 
by the ”all sent” and ”random” bars on the graph shown in 
Figure 7. Our track to measurement (Mtm) algorithm reduces 
the number of measurements to associate by over 55% per 
track in the complex scenario, which results in decreased 
processing. Our new Association algorithm also decreases 

the miss-association errors for measurements with the same 
error to reduce processing. 
 

 
Fig. 7.  Simple Environment with update rate 15. Bandwidth vs. prediction 
error for three Candidacy algorithms: (a) Maximum Distance, (b) track to 
measurement (Manhattan) (c) track to measurement (Euclidian)). Each bar 
group represent different Association algorithm used (from left to right: 
“Random drop”,Atme,Atmm,Amat,Amt,”All messages sent”) 
 
    We varied the bandwidth (channel capacity) with each of 
the four Association methods using different distance meth 
ods that include �2, Manhattan, Euclidian, and Mahalanobis. 
The Association track to measurement (Atmm) algorithm 
using the Manhattan distance actually outperformed, or was 
more accurate, than other more complex methods as shown 
in Figure 7. In these figures, the performance of random 
selection was less accurate using low bandwidth. 
 

 
Fig. 8 Complex Environment with update rate 10. Bandwidth vs. prediction 
error for three Candidacy algorithms: (a) Maximum Distance, (b) track to 
measurement (Manhattan) (c) track to measurement (Euclidian)). See Figure 
7 for the legend. 
 
    Due to space limitations, we only show the results for the 
complex environment with an update rate of 10 in Figure 8. 
These results are very similar to the simple scenario but 
overall show the accuracy decreasing due to mismatching 
of sensor readings. Frequent crossing of tracks causes 
miss-association, resulting in poor track prediction. 
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b. Multiple Sensors  
    Next, we investigated the affects of multiple sensors. In 
this experiment, we have two sensors sending data to a 
common node. In our previous experiment, we had found 
that the “distance to track” with Manhattan distance metric 
gave the best results. So, for our multiple sensor experiments, 
IDA will select this Candidacy algorithm. We also evaluate 
IDA with different association algorithms and compare them 
to the tradition approach. Further more, we have selected an 
update rate of 10 track reports per second. We first set both 
sensors to have the same accuracy error. Figure 9 (a) shows 
the results in simple environment. Next, we have increased 
one of the sensor errors by a factor of 10, to 400 meters. In 
this case, the track to measurement Association (Atm) 
algorithm using the Mahalanobis distance performed 
significantly better (see Figure 9 (b)) for sensors with 
different errors. We modified our Amt algorithm to use the 
position of the predicted track measurement with the 
statistical variance of the track measurement and achieved 
over 25 takes into account the statistical variance of the data 
while the simpler methods (Atmm and Atme) do not. 

c. Moving Sensors  
In our last experiment, we have two sensor moving 
randomly in the simple environment with a speed of 60 
kmph. We set the accuracy of both sensors to 40 meters, 
kept the speed constant, and varied the 20 randomly moving 
targets. The results were very similar to static sensors and 
therefore show one example result in Figure 9 (c), where 
“Maximum Distance” Candidacy algorithm are used with 
different Association algorithms. 
 

 
Fig. 9 Simple Environment, update rate 10, multiple and mobile sensors: 
(a) Multiple sensors with equal error using the simple scenario show no 
significant changes in accuracy. (b)Multiple sensors with different sensor 
errors. (c) Mobile sensors. See Figure 7 for the legend. 
 

VIII. CONCLUSION AND FUTURE WORK 
    In this paper, we have presented a two-layer architecture, 
Intelligent Distributed Architecture (IDA), that is able to 
improve the performance of many network enabled 
distributed applications. The application layer is responsible 

for collecting the application specific information while the 
network layer is responsible for transmitting that information. 
    A policy, provided by the application layer, dictates how 
the information will be transmitted. We studied our 
architecture using a target tracking scenario with traditional 
and new algorithms. Our experiments show that IDA is able 
to identify the quality information to exchange over low 
bandwidth and help improve accuracy by reducing error. This 
results in improved accuracy while reducing the required 
bandwidth. We also showed that less complex algorithms for 
distributed track fusion exceeded existing approaches for 
select situations. 
    The network hardware and software approach is able 
to apply the most efficient algorithms as conditions change. 
We plan to further investigate the complex scenarios using 
additional moving sensors to assess the local decisions made 
by IDA. Our future goal is to create dynamic policies 
that will be distributed via mobile agents to the network 
layer. The dynamic policies will be assessed using dynamic 
inference engines or solvers to enable more intelligent local 
decision making. Our future research will enhance the 
intelligent layers of IDA. 
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