
  

  

Abstract—Industrial robots offer a cheaper yet more flexible 
alternative to the CNC machines in the cleaning and pre-
machining applications of automotive aluminum castings. But 
the low stiffness has limited the application of industrial robots 
to the machining tasks with very low precision requirement. 
This paper presents a practical method to compensate the 
robot deformation caused by the machining force. A constant 
joint stiffness model based feed forward compensation scheme 
is implemented in the robot controller. The compensation 
scheme is shown to be able to reduce the position error by more 
than 60%. Application test in milling a standard aluminum 
block has demonstrated the effectiveness of the proposed 
deformation compensation method. The surface error is 
reduced from 0.5mm to 0.1mm. 

 

I. INTRODUCTION 
he automotive industry represents the fastest-growing 
market segment of the aluminum industry, due to the 

increasing usage of aluminum in cars for lower fuel 
consumption and better vehicle performance. Most of the 
automotive aluminum parts start from a casting in a foundry 
plant, followed by the downstream processes usually 
including cleaning and pre-machining of the gating system 
and riser. Robot based flexible automation offers an ideal 
solution for the cleaning and pre-machining applications due 
to its programmability, adaptability, flexibility and relatively 
low cost. Nevertheless, the foundry industry has not seen 
many success stories for such applications and installations.  

The major hurdle preventing the adoption of robots for 
the machining processes is the fact that the stiffness of 
today’s industrial robot is much lower than that of a standard 
CNC machine. Field tests using industrial robots for heavy 
machining such as milling often found that a perfect robot 
program without considering contact and deformation fails 
to produce the desired path once the robot starts to execute 
the machining task. Due to the much lower stiffness, a 500N 
cutting force during a milling process will cause a 1 mm 
position error for a robot compared to a less than 0.01mm 
error for a CNC machine. Since the robot typically has 
0.1mm motion error without contact, the majority of the 
position error in heavy machining operations comes from 
the contact force induced deformation. Therefore, to achieve 
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higher accuracy in robotic machining, the deformation must 
be accurately compensated. 

The existing research of robot deformation compensation 
is mostly focused on gravity and deflection compensation of 
flexible manipulators [1], [2]. To increase the position 
accuracy, rigid manipulators are treated flexible so that the 
compliance from the joints and links are included in the 
compensation model [3]. In these research efforts, the 
external load applied on the manipulator is basically a dead 
weight fixed to the robot end effector. Not much attention 
has been paid to the compensation of process force induced 
robot deformation. 

Methods for compensating the robot deformation can be 
classified as model based and sensor based. Model based 
compensation uses a model to predict the robot deformation 
and then modify the robot position reference accordingly.  
[4]-[7] described the modeling and identification of the 
robot stiffness for milling and cutting applications. A 
complex joint stiffness model was used to include not only 
the elasticity in the direction of the joint motion but also the 
compliances orthogonal to the joint motion.  

 Unlike the model based method, the sensor based 
methods measure the deformation induced position error in 
either the joint space or the Cartesian space and then adjust 
the position reference accordingly. In [8], a linear scale unit 
was placed on each prismatic link of a hexapod parallel 
kinematics machine to measure the link deformation caused 
by external forces and heat. It is natural to apply the 
feedback scheme for the sensor based methods to 
continuously adjust the robot position until the position error 
is within the specified limit. However, the setting time will 
be a concern if the robot is moving with high speed.   

Although sensor based compensation methods offer 
higher position accuracy, they are very difficult to 
implement on an existing robot manipulator. Even it is 
possible to install the sensor, the final system cost would be 
expensive because of the sensor cost. This makes the sensor 
based methods more suitable for high accuracy discrete 
processes such as drilling, while the model based methods 
are better for continuous processes such as milling and roller 
hemming. 

The goal of this paper is to present a practical method to 
improve the machining accuracy through robot deformation 
compensation. This paper does not strive to achieve the 
maximal possible deformation compensation, but rather a 
reasonable cost to benefit ratio as often requested in an 
industrial product. Under this guideline, a constant diagonal 
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joint stiffness model is used for easy identification and real 
time implementation in the industrial robot controller.  

The remaining paper is organized as following. Section 2 
and 3 describe the modeling and identification of the robot 
deformation, while section 4 is devoted to the 
implementation of deformation compensation in the robot 
controller. The performance of the model based deformation 
compensation is verified through a simplified milling test in 
section 5.  

II. ROBOT DEFORMATION MODELING 
A robot manipulator deforms under external forces 

because of its compliance. The sources of the compliance 
are the compliances at the manipulator base, gearboxes, 
motors, links and other transmission elements, in addition to 
the active stiffness provided by the position control loop. 
For many industrial manipulators it is reasonable to assume 
that: 1) the compliance in the joints (gearbox and motor) is 
the dominant source of the robot deformation, 2) the links 
are infinitely stiff, 3) a joint PID control loop is used and the 
active joint stiffness provided by the control loop has small 
variation over time at the steady state. These assumptions 
are similar to those stated in [9]. It is worthwhile to point out 
that, robot manufacturers are moving toward the new 
generation slim manipulators and these 3 assumptions might 
be invalid. Especially, the links might contribute equally to 
the deformation as the joints. 

A. Joint Stiffness 
With the above three assumptions, the stiffness of a 6-axis 

serial robot manipulator shown in Fig. 1 can be represented 
by its link side joint stiffness: a constant 6*6 diagonal matrix 
with each diagonal term defining the stiffness of a joint. 

[ ]( )TkkkkkkDiagK 654321 θθθθθθθ =    (1) 

B. Cartesian Stiffness 
As the deformation is often observed and compensated at 

the tool tip, the Cartesian stiffness at the tooltip tK  is 
important. It can be computed as  

1−−= t
T

tt JKJK θ                 (2) 

where tJ is the Jacobian matrix that transforms a small joint 
angle displacement θ∆  to the translational and rotational 
displacements tx∆ of a Cartesian frame attached to the tool 
tip 

θx ∆=∆ tt J                   (3) 
The deflection caused by the external force vector can be 

calculated through the Cartesian stiffness as: 

tt
T

tttt JKJK xxF ∆=∆= −− 1
θ            (4) 

The joint stiffness matrix θK  reflects the natural entity of 
a manipulator structure. It is diagonal, positive definite and 
constant irrespective of the external force or the robot 
configuration. In contrast, the Cartesian stiffness matrix tK  
is configuration dependent. 

Note that here we did not use the enhanced stiffness 
modeling as shown in [9][10], where an external force and 
robot configuration dependent stiffness term is included in 
the Cartesian stiffness formulation. This is because under the 
rated robot payload range, the contribution of this extra 
stiffness term to the total robot deformation is very small. In 
addition, the conventional formulation (2) has the 
computational advantage.  

C.  Deformation Characteristics of a serial manipulator 
Unlike the Cartesian robots, serial manipulators 

demonstrate counter intuitive deformation phenomena at 
certain configurations and load conditions due to the 
coupling of its joints during a Cartesian motion. Fig. 2 
simulates the deformation of an ABB IRB 4400-195-60 
robot under a series of load conditions. The robot joint 
stiffness matrix is assumed as: 

[ ] m/radN  1077.2479.9756.11229.37262.61483.386 3 ⋅×=θK  

Figure 2 clearly shows that in a Cartesian direction a 
serial manipulator can exhibit 1) the apparent negative 
stiffness and 2) totally different stiffness for different 
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Fig. 2.  Simulated load-deformation curve for an IRB 4400 
demonstrates the apparent negative and piecewise linear stiffness in a 
Cartesian direction. The loading starts from (-100N,200N,-300N), 
then ramps down to (0,0,0) and finally ramps up to (100N,-
200N,100N).  The counter intuitive phenomenon is due to the off-
diagonal terms in the Cartesian stiffness matrix mathematically, and 
the coupling of the robot joint motion physically. The contribution of 
Fx and Fy forces to the deformation in z direction (Dz) is significant. 

 
Fig. 1.  A 6-axis serial robot manipulator. 
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loading curves. These unique deformation characteristics are 
the key to the explanation of many seemingly strange 
phenomena occurred during contact operations performed 
by a serial manipulator. 

III. ROBOT DEFORMATION IDENTIFICATION 

A. Mathematical Formulation 
A least square solution of (4) can be used to identify the 

joint stiffness provided that the full force/torque vector and 
the full translation and rotation displacement can be 
measured in the same coordinate frame. In reality, this is 
hard to achieve since the measurement of a rotational 
deformation is difficult. In addition, the torque measurement 
is often less accurate than the force measurement. Due to the 
space constraint, the setup of the stiffness identification 
often requires the external force acting on a location 
different from the deformation measurement location. As a 
result, (4) has to be modified to account for these 
constraints. 

For convenience, we define two tool frames: the force 
action frame fT  as identified by subscript f and the 

deformation measurement frame mT  as identified by 
subscript m. The external load and the corresponding 
deformation can be then expressed in fT  and mT   

respectively as 
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Using the duality between the joint space and the 

Cartesian space, the joint torque needed to balance the 
external force fF  is calculated as 

f
T
fJ FΓ =                  (6) 

The joint deformation caused by this joint torque is 
obtained through joint stiffness matrix as 

Γθ 1−=∆ θK                  (7) 
This joint deformation will be reflected at the 

measurement frame and the corresponding Cartesian 
deflection can be calculated through the Jacobian matrix as 

f
T
fmmmm JKJKJJ FΓθD 11 −− ==∆= θθ       (8) 

If only the translational displacement can be measured, 
then (8) should be changed to 
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where [ ]Tkkkkkk 654321 111111 θθθθθθθ =C    

is the joint compliance vector. The diagonality of the 
stiffness matrix is used in the derivation of (9). 

If the measurement is taken N times, the least square 
solution of the joint compliance vector is 
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The fitting error is given by 
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where 
    [ ] ( ) ( ){ }i

fi
T
fimi JdiagJIA Fθθ3333 0 ××=    

i
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B.  Experimental setup for stiffness measurement 
Fig. 3 shows a setup for identifying the stiffness of an 

ABB IRB4400 robot. An ATI Omega force sensor is 
mounted on the robot wrist and used to measure the external 
force acting on the robot. To measure the deformation, a 
portable coordinate measurement arm from Romer, the 
CimCore series 3000i, is attached to the robot end effecter. 
The claimed accuracy of this digitizer is about ±0.016mm in 
a measurement volume of 0.9 m3. The external force is 
exerted by an air cylinder through a pulley relayed string. 
The magnitude of the external force can be adjusted by 
changing the air pressure, while the direction of the force 
can be altered by the position of the pulley on the column. In 
this setup there will no torque applied at the force action 
point due to the use of the string and the point connection of 
the string to the robot end effector. Using the static 

equilibrium, the force vector at the force action frame is the 
same as the one at the force sensor frame. This setup is 
intentionally designed to avoid the usage of the torque 
measurement since the torque component measurement in 

 
 
Fig. 3.  Experimental setup for robot stiffness identification. The force 
action frame Tf is parallel to the deformation measurement frame Tm 
but with a different origin. 

Tf Tm 

3828



  

ATI force sensor has much poorer accuracy than the force 
component measurement.   

Before the test, the setup needs to be calibrated. This 
includes the calibration of the digitizer base frame relative to 
the robot base, the pose of the force action frame and the 
pose of the measurement frame.  

Although the joint stiffness matrix can be identified at a 
single robot configuration by altering the load magnitude 
and direction, performing the test at multiple configurations 
allow the verification of the assumptions made for the 
deformation model, and the reduction of identification error 
through averaging. At each robot configuration, in order to 
have a full picture of the deformation, the application of the 
external load forms a full cycle of loading and unloading as 
shown in Fig. 4a. At each load condition, a one minute 
waiting time is imposed for the stabilization of the load and 
the deformation. The measurement from the force sensor 
and the digitizer are then taken 6 times to average the 
measurement noise. Since the digitizer measurement is 
actually the robot position, the deformation of the robot for a 
given load can be obtained by simply subtracting the robot 
position measurement at the initial unloaded condition.   

C. Stiffness Identification Result 
 The stiffness identification is performed at 6 different 

joint configurations. Fig. 4 shows the loading curve, 
deformation curve, and the load vs. deformation curve for 

the first test configuration.  
The linear least square fitting is performed on the entire 6 

test sets to find the solution of the joint stiffness as: 
[ ] m/radN  1016.55   56.87   59.52    428.61    488.31    731.82 3 ⋅×=θK  

For comparison, Fig. 4 also shows the model predicted 
deformation based on the identified joint stiffness. It can be 
seen that the modeling error is within ±0.2mm over the 
±1.5mm deformation range. Therefore, the deformation 
compensation can be expected to reduce the deformation 
error by more than 60%.  

IV. DEFORMATION COMPENSATION 
The constant and diagonal joint stiffness model lends 

itself to the real time implementation due to the low 
computation cost. The block diagram of the real time 
deformation compensation is shown in Fig. 5. After filtering 
the force sensor noise and compensating the gravity of the 
force sensor payload, the force signal was translated into the 
robot tool frame. Based on the stiffness model identified 
before, the deformation due to the external contact force is 
calculated in real time and the joint reference for the robot 
controller is updated. Fig. 5 has been implemented in the 
ABB’s IRC5 robot controller using the existing force control 
platform. The deformation is calculated every 4ms. 
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Fig. 4b.  Loading vs deformation curves at test configuration 1. Note that 
the force action frame is parallel to the deformation measurement frame 
but with an offset. 
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Fig. 4a.  Loading and deformation curves at test configuration 1. 
Note that the force action frame is parallel to the deformation 
measurement frame but with an offset. 
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A. Static performance of deformation compensation 
To verify the performance of the deformation 

compensation, the same test setup for the identification is 
used. The difference is that at each joint configuration the 
test procedure is performed twice, one without the 
compensation and one with the compensation activated. Fig. 
6 compares the measured deformation before and after the 
compensation at one joint configuration. The magnitude of 
the deformation is shown to be reduced from 1.8mm to 
0.4mm at the maximal load condition. The compensation 
actually changed the direction of the deformation vector. 

 
B. Dynamic performance of deformation compensation 
Since the deformation compensation is implemented in 

the 4ms loop, fast response can be expected.  This can be 
verified by applying the robot with an impulse load. The 
impulse load can be realized by the sudden drop of a dead 
weight. This is achieved by replacing the air cylinder with a 
dead weight in Fig. 3. This approach makes sure all the 
calibrations are not affected. Fig. 7 shows the deformation 

response under such an impulse load. The compensation 
delay is about 50ms, which is significantly greater than 4ms. 
Part of the delay comes from the poor synchronization 
between the force sensor measurement and the digitizer 
measurement. The measurement from the force sensor is 
directly sampled by the robot controller with 4ms rate. But 
the digitizer measurement is first acquired by a PC using a 
serial port and then forwarded to the robot controller 
through a fast Ethernet connection. Efforts are needed to 
measure the exact delay caused by this poor synchronization 
so that its significance can be evaluated.  

V. APPLICATION TEST 
Fig. 8 shows the setup of a milling test where a 6063 

aluminum block is used for testing purpose. A laser 
displacement sensor is used to measure the finished surface. 
The surface error without deformation compensation 
demonstrates the counter intuitive “negative stiffness 
phenomenon”; an extra 0.5mm was removed in the middle 
of the milling path. This can be easily explained by the off-
diagonal terms of the Cartesian stiffness matrix resulting 
from the coupling of the robot joint motion. Although the 
normal contact force Fn pushed the cutter away from the 
surface, the force in the feed direction Ff and the cutting 
direction Fc actually caused the robot to deform into the part 
surface. Since the feed force and the cutting force are 
significant in this setup compared to the normal force, the 
overall effect is that the actual depth of cut is 0.5mm more 
than the commanded. Fig. 9 compares the surface error with 
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Fig. 6.  Measured load-deformation curve before and after 
compensation at configuration [-45.8058, 4.61262, 38.8404, -
0.105546, 51.8232, -72.9578]. 

 
 
Fig. 5.  Block diagram of a real time deformation compensation. 
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Fig. 7.  Dynamic deformation response under an impulse load at joint 
configuration [-40.1679, 0.9757, 31.8607, 3.2696, 56.7923, -
30.5593]. 
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and without the deformation compensation. A less than 0.1 
mm surface error is achieved with the deformation 
compensation. This error is in the range of robot path 
accuracy. The negative surface error in the figure means less 
material was removed than the commanded one. 

 
 

 
Fig. 9. Surface error before and after deformation compensation in a milling 
test. 

VI. CONCLUSION AND DISCUSSION 
This paper describes in detail the modeling, identification 

and compensation of robot deformation caused by the 
external process forces from the machining applications. 
Lab measurement and application tests have shown that, 
with a simple joint stiffness model based feed forward 
approach the deformation compensation can reduce the 
contact force induced position error by more than 60%. 
While robot deformation compensation is technically 
feasible, more efforts are needed to make it available as a 
product to be used in the field. The main challenge is to 
simplify the stiffness identification process. The 
recommendation for future work is to investigate the 
existing compliance models in the robot controller [3] and 
try to implement the deformation compensation using these 
models. 
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Fig. 8.  A milling test on a 6063 aluminum block to verify the 
effectiveness of the deformation compensation. 
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