
Impedance Control of Manipulators Carrying a Heavy Payload

Farhad Aghili

Abstract— A heavy payload attached to the wrist
force/moment (F/M) sensor of a manipulator can fail
the conventional impedance controller to establish a desired
impedance due to the non-contact components of the force
measurement, i.e., the inertial and gravitational forces of the
payload. This paper proposes an impedance control scheme
for such a manipulator to accurately shape its force-response
without needing any acceleration measurement. Therefore, no
wrist accelerometer or a dynamic estimator for compensating
the load inertial forces are required. The impedance controller
is further developed using an inner/outer loop feedback
approach that allows not only to overcome the robot dynamics
uncertainty, but also to specify the target impedance model
in a general form, e.g., a nonlinear model. The stability
and convergence of the impedance controller are analytically
investigated, and the results show that that control input
remains bounded provided that the desired inertia is selected
to be different from the payload inertia. Experimental results
demonstrate that the proposed impedance controller is able to
accurately shape the impedance of a manipulator carrying a
relatively heavy load according to a desired impedance model.

I. INTRODUCTION

The impedance control of a manipulator to shape its force-

response was proposed by Hogan [1]. In his approach the

contact force, measured by a wrist force/torque sensor, is

used by the controller to establish a relation between force

and velocity according to the impedance model. Contact

stability of the conventional impedance controllers has been

analyzed [2], [3]. Lasky et al. [4] proposed the inner/outer

loop control scheme for impedance control of manipulator to

compensate the robot dynamics uncertainties by a position

control algorithm in the inner loop, while adaptive impedance

control schemes for robots with uncertain dynamic model pa-

rameters are presented in [5], [6]. The stability of impedance

control in dealing with unknown environment has been

addressed in [7]–[9]. All of above impedance control ap-

proaches suppose that the direct measurements of external

or contact force/moment are available.

In the case that the manipulator carries a payload with

significant inertia, the conventional impedance controller can

fail to achieve the desired impedance, because, the mea-

surement of the wrist force sensor have components of not

only the external forces but also the inertial and gravitational

forces of the payload [10]. In addition, a heavy payload can

significantly change the manipulator dynamics. Particularly,

space manipulators can handle very heavy payload owing

to the weightlessness environment of the space; e.g., the
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Dexter manipulator of the International Space Station (ISS)

can handle payloads as massive as 600 kg.

Approaches to deal with the non-contact force components

of a manipulator wrist F/M sensor are mainly based on

compensating for the inertial force components of the sensor

measurements using one kind of estimator or another, rather

than modifying the impedance control law itself. Estimation

of inertial components of a force sensor signal for the case

where the planned trajectories are known beforehand was

addressed in [11]. Uchiyama et al. proposed an estimation

method to extract the external forces and moments from the

forces and moments measured by a force sensor [12]. Their

method includes dynamic modeling of the process of force

sensing and estimation of the external forces and moments

by an extended Kalman filter. However, the convergence

of extended Kalman filter is not guaranteed because that

depends on the persistent excitation of the input signals

[13], [14]. A method of eliminating all non-contact force

components of the force sensor measurements by fusing

force and accelerometer sensors in an extended Kalman filter

was proposed in [15]. This estimation technique was further

developed in [14] for estimating not only the inertial forces

but also all ten inertial parameters of the load as well as the

sensor offset. However, these estimation techniques require

an additional 6-axis accelerometer sensor. Contrary to the

above approaches, we do not use a dynamic estimator or

an accelerometer to estimate the inertial forces of the load.

Rather, the impedance control law per se is modified so

that it can directly incorporate feedback signal from the

force sensor to establish the desired impedance. From a

practical point of view, the advantage of this approach is

that one does not need to deal with the excitation of the

input signal for convergence of a dynamic estimator or

with the stability of the closed-loop system of the dynamic

estimator and a force controller. Moreover, the additional 6-

axis accelerometer device to be attached to the manipulator

wrist is not required in the proposed method.

The purpose of this paper is to present an impedance con-

trol scheme for manipulators carrying a heavy payload that

does not require compensating for the inertial components of

the force/moment measurement. Investigating the limitations

of such an impedance controller scheme is also aimed in

this work. The impedance controller takes the force/moment

measurements from a force-sensor installed between the

manipulator wrist and its payload to establish the dynamic

relation between force error and position error according

to the standard mass-damping-spring model. The impedance

controller is further developed using an inner/outer loop feed-

back approach that allows specifying the target impedance
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Fig. 1. A manipulator carrying a heavy payload.

model in a general form. Using the robust control theory [16],

[17], we also show that the control algorithm can overcome

the modeling uncertainty. Stability and convergence of the

robot impedance to the target impedance under the proposed

impedance control scheme have been analyzed.

This paper is organized as follows: Section II introduces

the impedance control law for manipulators carrying a heavy

payload. The impedance controller is further developed in

Section III using an inner/outer control scheme. Finally,

Section IV presents some experimental results.

II. IMPEDANCE CONTROL

Fig. 1 shows a manipulator carrying a payload with non-

negligible mass. Denote q ∈ R
n as the vector of the

manipulator joint angles. Without loss of generality, we

assume that n = 6 and that no kinematic singularities are

encountered meaning that the robot can always operate in

the 6-dimensional task space. A 6-axis force/moment sensor

installed at the manipulator wrist to measure the external

force applied to the payload. However due to the payload

mass, the force sensor signal f ′

s contains the component

of the generalized external force f ′

ext superimposed by the

gravitational and inertial forces of the payload. Let assume

that vector x is the minimal representation of the position

and orientation of the payload, v and ω are the linear and

angular velocities of the payload expressed in the fixed-

body frame {C}, and ν = col (v, ω) is the vector of

generalized velocity. Then, the following mapping through

the manipulator Jacobian matrix J̃(q) is in order

ν = L(x)ẋ = J ′(q)q̇, (1)

where L = diag (13, Lo) with 13 being the 3 × 3 identity

matrix, and transformation matrix Lo depends on a particular

set of parameters used to represent the orientation [18].

The above kinematic mapping can be also written as ẋ =
J(q)q̇, where J(q) = L−1J ′(q) is called the analytical

Jacobian [18]; here we have assumed that no representation

singularities of the rotation occurs. According to the virtual

work principal, two sets of generalized forces f ′ and f

performing work on ν and ẋ satisfy νT f ′ = ẋT f , and

hence they are related by fs = LT f ′

s and fext = LT f ′

ext.

Now, assume that the manipulator is cut right at its

junction to the payload. Note that the interaction force and

moment between the two separated systems of the manipula-

tor and the payload are detected by the force/moment sensor.

Then, the equation of motion of the payload in the task space

can be written by

Mpẍ + hp(q, q̇) = −fs + fext, (2)

where

Mp =

[

mp13 0

0 LT
o IpLo

]

(3a)

hp =

[

mp

(

ω × v + gRT k
)

LT
(

ω × Ipω
)

+ LT IpL̇oL
−1
o ω

]

. (3b)

Here, mp and Ip are the payload mass and inertia tensor,

rotation matrix R(q) represents the end-effector attitude,

unit vector k is aligned with the gravity vector 1 which

is expressed in the manipulator’s base frame {W}, and

g = 9.81 m/s2. Note that all force terms in the right-hand-

side (RHS) of (2) are expressed in the fixed-body coordinate

frame {C} whose origin coincides with the payload’s center-

of-mass. Note that the linear and angular velocities in (3b)

can be computed from the manipulator’s joint angles and

velocities using the kinematic relation (1), and hence the

nonlinear vector hp, which contains the Coriolis, centrifugal

and gravitational terms associated with the payload, can be

expressed as a function of the joint angles and velocities,

i.e., hp = hp(q, q̇).
It is known that the dynamics model of a manipulator in

the task space becomes [18]

Mmẍ + hm(q, q̇) = u + fs, (4)

where

u = J−T τ ,

Mm is the Cartesian inertia matrix of the manipulator;

nonlinear vector hm(q, q̇) contains the Coriolis, centrifugal

and gravitational terms; and τ is the vector of joint torques

(see Appendix I for details). Assuming kinematic singularity

does not occur, there is an one-to-one correspondence with

the joint vector τ and auxiliary input u. Therefore, in the

following derivation, we will take u as the control input for

the sake of simplicity. Now, eliminating the interaction force

fs from (2) and (4), we can express the combined dynamics

of the manipulator and the payload by

Mt(q)ẍ + ht(q, q̇) = u + fext, (5a)

where

Mt = Mp + Mm, (5b)

ht = hp + hm. (5c)

The desired impedance model that dynamically balances

the external contact force fext is typically chosen as the

second-order system [18]

Md(ẍ − ẍd) + Dd(ẋ − ẍd) + Kd(x − xd) = fext, (6)

1If the z-axis of the coordinate frame {W} is perfectly parallel to the
earth’s gravity vector, then k = col (0, 0,−1).
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where Md, Dd and Kd are the desired inertia, damping and

stiffness, respectively. Eliminating the acceleration from (2)

and (6) and then from (5a) and (6), we get a set of two

equations as:

fext = (1− MpM
−1

d )−1
(

fs + hp + Mpẍd

)

(7a)

+
(

1 − MdM
−1

p

)

−1
(Ddė + Kde),

u = Mt

(

ẍd − M−1

d (Ddė + Kde)
)

+ ht (7b)

+ (MtM
−1

d − 1)fext

where e = x−xd is the position error. Finally, substituting

fext from (7a) into (7b) we obtain the overall impedance

control law as

u =
(

Mt(q) − Γ(q)Mp

)(

ẍd − M−1

d (Ddė + Kde)
)

+ ht(q̇, q) − Γ(q)
(

fs + hp(q̇, q)
)

(8a)

where

Γ(q) , 1− MmM−1

d

(

1− MpM
−1

d

)

−1
. (8b)

By inspection, one can show that the impedance control law

(8) coincides with the conventional impedance control law

[18] if Mp ≡ 0.

From a stability point of view, the fundamental difference

between impedance control of manipulators without and with

a payload is that, unlike the former case, the latter does not

always lead to a stable system. Denote

∆d , MpM
−1

d . (9)

Then, it is apparent from expressions (8a) and (8b) that

the control input remains bounded if matrix 1 − ∆d is not

singular, i.e.,

det(1− ∆d) 6= 0. (10)

Since det(1−∆d) =
∏

i(1−λi(∆d)), then we can sat that

(10) is equivalent to

λi(∆d) 6= 1 ∀i = 1, · · · , n. (11)

In the case that the desired inertia is a diagonal matrix with

all of its diagonal elements equal to md, i.e., Md = md1n,

the above condition is reduced to

md 6= λi(Mp) ∀i = 1, · · · , n. (12)

Theorem 1: Assume that the desired inertia matrix is

selected such that (11) is satisfied. Then, applying control law

(8a) to the manipulator system (4) attached to a payload with

generalized inertia Mp establishes the desired impedance (6)

between the external force fext and the position error.

III. IMPEDANCE CONTROL WITH INNER/OUTER LOOP

In this section, we extend the impedance control of manip-

ulators carrying a heavy payload using an inner/outer loop

control scheme in order to enhance the system robustness

with respect to the robot dynamics uncertainties. We also

assume that the desired impedance model relating the force

and motion takes the following general form

Md(x)ẍ + hd(ẋ, x) = fext. (13)

Here, we will assume without loss of generality that xd ≡ 0.

It is worthwhile mentioning that an interesting application of

such a impedance control approach is in zero-g emulation

of a scaled spacecraft prototype under the test in a 1-g

laboratory environment [19].

Let us define an estimation of the acceleration ẍ⋆ that is

obtained by subtracting (2) from (13), i.e.,

M∆ẍ⋆ + h∆ = fs, (14a)

where

M∆ , Md − Mp and h∆ , hd − hp.

It should be pointed out that variable ẍ⋆ does not have any

physical meaning, rather it is just a definition. As will be

shown later in this section, the manipulator establishes the

desired impedance (13) if the actual acceleration ẍ follows

ẍ⋆.

Remark 1: By inspection, one can show that if condition

(11) is satisfied, then matrix M∆ is invertible

Therefore, if (11) is satisfied, then the estimated velocity ẋ⋆

can be obtained through a numerical integration of (14a),

i.e.,

ẋ⋆(t) =

∫ t

0

M−1

∆

(

fs − h∆

)

dτ, (14b)

and x⋆ can be similarly obtained by another numerical

integration. Note that ẍ⋆ and ẍ are not necessarily equal

and neither do their integrated values.

Now, the objective is to force the manipulator to follow

the trajectory dictated by (14b). this goal can be achieved

by using an inverse-dynamics controller [18], [20] based

on the complete model (5a) and by compensating only

for the external force fext, which is not correlated to the

inertial forces. However, the difficulty in this approach is

that because of the acceleration estimation error, one can

only obtain an estimation of the external force fext; as will

be show in the following analysis. Let

¨̃x , ẍ⋆ − ẍ (15)

denotes the acceleration error. Now, upon substitution of

ẍ⋆ from (14a) into (15) and then substituting the resultant

acceleration term into (2), we can write the expression of the

external force as:

fext = f⋆
ext + f̃ext,

where

f⋆
ext =

(

1 + MpM
−1

∆

)

fs + hp − MpM
−1

∆
h∆ (16)

is the estimation of the external force and

f̃ext = −Mp
¨̃x (17)

is the force estimation error. Clearly, the force estimation

error goes to zero if and only if the acceleration error does

so.
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Now, considering the force estimation (16) for compen-

sating the force perturbation, we propose the following inner

loop control

u = Mt(q)ẍ⋆ + ht − f⋆
ext

+ Mt(q)
(

Gd(ẋ
⋆ − ẋ) + Gp(x

⋆ − x)
)

, (18)

where ẍ⋆, ẋ⋆, x⋆ and f⋆
ext are obtained from (13)- (16),

while Gd > 0 and Gp > 0 are the feedback gains. In

the following analysis, we will show that the inner loop

controller (18) in conjunction with the outer loop (14) can

shape the impedance of the combined system of manipulator

and payload according to (13) provided that a condition on

the system mass distribution is met. Substitution (18) into

the dynamics model (5a) yields the equation of force error

as

Mt

(

¨̃x + Gd
˙̃x + Gpx̃

)

= −f̃ext. (19)

Using (17) in (19) yields the following autonomous system
(

1− M−1

t Mp

)

¨̃x + Gd
˙̃x + Gpx̃ = 0,

which is equivalent to
(

1 − M−1

t Mp

)(

¨̃x + Gd
˙̃x + Gpx̃

)

+ M−1

t Mp

(

Gd
˙̃x + Gpx̃

)

= 0. (20)

Multiplying both sides of (20) by M−1
m Mt and using

identity (5b) in the resultant equations yields

¨̃x + Gd
˙̃x + Gpx̃ + ∆m

(

Gd
˙̃x + Gpx̃

)

= 0, (21)

where

∆m , M−1

m Mp. (22)

Stability of the closed-loop system (21) remains to be proved.

We will show in the followings that system (21) remains

stable if the coefficient matrix of the additive term, i.e.,

∆m, is sufficiently small. Let us assume that z = col(x̃, ˙̃x)
represents the state vector. Then, (21) can be written in the

following compact form

ż = Az + d(t, z), (23)

where

A =

[

0 1

−Gp −Gd

]

and d(t, z) = −D∆mGz,

with G = [Gp Gd] and DT = [0 1]. Since the perturba-

tion term d satisfies the linear growth bound

‖d‖ ≤ ‖G‖‖∆m‖‖z‖,

where

λmin(Mp)

λmax(Mm)
≤ ‖∆m‖ ≤

λmax(Mp)

λmin(Mm)
< ∞ ∀z ∈ R

2n,

system (23) is in the form of vanishing perturbation [21]—

here, ‖·‖ denotes the Euclidean norm of a vector or a

matrix. Moreover, since A is Hurwitz, one can show that

the perturbed system can be globally exponentially stable if

the gains are adequately selected, i.e.,

‖∆m‖ ≤ κ(G), (24)

TABLE I

MANIPULATOR’S LINK PARAMETERS.

Parameters Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

m (kg) 27.31 21.00 10.00 4.33 4.02 1.59
Ixx (kgm2) 0.31 0.35 0.17 0.035 0.026 0.01
Iyy (kgm2) 0.38 3.30 2.60 0.05 0.04 0.01
Izz (kgm2) 0.30 -0.490 2.50 0.02 0.02 0.003
cx (m) -0.140 -4.90 -0.401 -0.166 -0.162 0.000
cy (m) -0.044 0.000 0.000 0.079 -0.009 0.000
cz (m) 0.170 0.125 0.030 0.171 0.204 0.220

where κ(G) is a function of the feedback gains; see the

Appendix II for details. That means there must exist scalar

µ > 0 such that ‖z‖ ≤ ‖z(0)‖ e−µt. Therefore, it can be

inferred from (21) that

‖ ¨̃x‖ ≤ φe−µt, (25)

where scaler φ depend on the initial error

φ = (1 + ‖∆m‖) ‖G‖z(0).

Now, we are ready to derive the input/output relation of the

closed loop system under the proposed control law. Adding

both sides of (2) and (14a) yields

Mdẍ + hd(ẋ, x) = fext + δ, (26a)

where

δ(t) = −M∆
¨̃x. (26b)

It follows from (25) and (26b) that

‖δ‖ ≤ φλmax(M∆)e−µt, (27)

which means that the perturbation δ exponentially relaxes to

zero from its initial value.

To summarize, consider the target impedance dynamics

(13) for a manipulator with inertia Mm carrying a payload

with Mp. Assume that the inertia ratios ‖∆d‖ and ‖∆m‖
satisfy conditions (11) and (24), respectively. Then, the force-

response of the combined manipulator and payload under

the impedance controller with the inner/outer loops (14)-(18)

converges to the target impedance (13), while the control

input remains bounded.

IV. EXPERIMENT

This section describes experimental results obtained from

implementation of the proposed impedance control scheme

using a robotic manipulator at the robotics laboratory of

the Canadian Space Agency (CSA), see Fig. 2. The inertial

properties of the manipulator links have been identified

[22] as listed in Table I. A dummy box which weights

16 kg, is mounted on the manipulator wrist. The payload

inertia is calculated to be Ip = diag(0.33, 0.62 , 0.71)
kgm2. The target inertia of the impedance controller is set

to be three times higher than the actual mass and inertia

of the payload. The force/moment interaction between the

manipulator and the payload were measured by a six-axis

JR3 force/moment sensor. The impedance controller scheme

(14)-(18) was developed using Simulink and matrix ma-

nipulation was performed by using the DSP Blockset of
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Fig. 2. The manipulator carrying a payload.

Matlab/Simulink [23]. The Real-Time Workshop package

[24] generated portable C code from the Simulink model

which was executed on a QNX real-time operating system.

The objective of the experiment is to show that the

proposed controller is able to match the manipulator force-

response according to the desired impedance even though

the force sensor signal is directed incorporated into the

controller without compensating for the inertial forces. Fig. 3

shows trajectories of the forces and moments due to external

force impulses applied by hand. Note that despite the fact

that the external forces and moments can not be directly

measured, they can be estimated by making use of the

dynamics model of the load. The subsequent trajectories of

the linear and angular velocities of the payload are illustrated

in Fig. 4(a). The simulated velocity profiles according to the

target impedance model are also depicted in Fig. 4(b). A

comparison between trajectories of Figs. 4(a) and 4(b) shows

that the impedance controller has succeeded to establish the

target impedance characteristic even though the wrist force

sensor sees inertial forces of the load.

V. CONCLUSIONS

An impedance controller for manipulators carrying a

rigid-body payload has been developed that does not rely

on any acceleration measurements in order to compensate

for the inertial forces of the payload. The stability and

convergence of the impedance controller have been ana-
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Fig. 4. Trajectories of the linear and angular velocities.
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lytically investigated. The results showed that the control

input remains bounded provided that the desired inertia

was selected to be different from that of the payload. The

impedance controller was further developed with utilizing

an inner/outer loop approach. This allows specifying the

desired impedance model in a general form. Moreover, the

robust control theory was employed to modify the proposed

impedance controller so that it could compensate for robot

modeling uncertainty. Experimental results have shown that

the proposed impedance controller enabled a manipulator

carrying a payload with a non-negligible mass to establish the

desired impedance characteristic even though no acceleration

measurements were used.

APPENDIX I

Dynamics equations of the manipulator in the joint space

is described by

M ′

mq̈ + h′

m(q, q̇) = τ + JT fs (28)

Substituting the joint acceleration from q̈ = J−1ẍ−J−1J̇ q̇

into (28) and then multiply the resultant equation by J−T

yields (4), in which

Mm , J−T M ′

mJ−1

hm , J−T h′

m − MmJ̇ q̇

APPENDIX II

Since A is Hurwitz, there exists Lyapunov function

V (z) = zT Pz (29)

with P > 0 satisfying

PA + AT P = −1. (30)

The derivative of V (z) along trajectories of perturbed system

(23) satisfies

V̇ ≤
(

− 1 + 2 ‖G‖λmax(P ) ‖∆m‖
)

‖z‖
2
. (31)

Therefore, according to the stability theorem of perturbed

system [21, p. 206], the origin of (23) is globally exponen-

tially stable if

‖∆m‖ ≤ κ(Gp, Gd) ,
1

2 ‖G‖λmax(P )
. (32)
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