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Abstract— Capsule endoscopy has been proved efficient in
examining the small intestine. A lot of work has been devoted
to the study of capsule videos to assist the diagnosis. Different
from previous approaches which worked off-line and couldn’t
be applied in active capsule controls, in this paper we proposed
an in situ capsule video analysis method, which operates in real-
time and provides the first event detection-based scheme for
capsule techniques. Specifically, first we established a theoretical
computing framework. The method addresses two key points:
one is to merge the surgeon’s expertise into the system, and
the other is to identify unusual events. Then we evaluated the
method by some empirical experiments. The preliminary results
verified the usefulness of the method.

I. INTRODUCTION

The capsule endoscopy is an emerging medical procedure
in placement of the traditional endoscopes. It is designed
to visualize the whole gastrointestinal tract for diagnosis
of diseases [1], [2], [3]. The capsule encloses a camera
for imaging and a wireless transceiver to send the captured
images to an external data recorder. This feature not only
exempts the patients from painful operations but also makes
it possible to investigate the part of long and twisted small
intestine. During the examination, the patient first swallows
the capsule, and then the capsule is driven passively by the
peristaltic movement and takes pictures at the same time. It
is excreted naturally at the end of the examination. After the
conclusion of the procedure, the videos are submitted to the
doctors to make diagnosis and give treatments.

In current capsule endoscopy, doctors make diagnosis by
reading the off-line videos. The reading time is dependent on
the experience and expertise of the reader [4]. For a routine
study in which more than 55, 000 images are obtained, up
to 2 hours are required initially. The time may reduce to
about 1 hour while the doctors are gathering experiences.
What makes things worse is that even practiced readers may
find that their accuracy deteriorates as they try to increase
their inspection speed [5]. To solve the problem, several
computing techniques have been proposed to help automate
the checking process, filter out unnecessary video frames and
only keep those that might be useful [6], [7], [8].

The next generation of capsule endoscopy [9], [10], [11],
which will be equipped with an actuation mechanism and
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can be controlled wirelessly by the doctors, presents new
challenges in computer vision and related areas. Because of
the limited free space, the capsule cannot contain many sen-
sors. It is advantageous that some feedback can be provided
by the image method to the external control system [12]. A
real-time analysis of the video frames is desired which may
remind the doctors of the upcoming criticality.

Unfortunately, the existing off-line video analysis tech-
niques in passive capsule endoscopy are not adequate any
more, since these techniques generally assume that all the
video frames have been obtained. While in active capsule
endoscopy, we need to make predictions on the future
images, based on the video frames acquired so far. In this
paper, we start from the problems mentioned above and
present a method that analyzes and predicts video images
in an online manner, which has the potential to be used in
active capsule endoscopies.

The paper is organized as follows. First, we review the
developments of image-based analysis for current capsule
endoscopy. Comparatively, we introduce our work which
is designed towards both passive and active capsule endo-
scopies. Then we present in detail our solution. Next we
report some promising experimental results. Finally we make
conclusions and point out the future work.

II. RELATED WORK

Our work is relevant to a few computing methods in
computer vision. The techniques are proposed for passive
capsule endoscopy, which focus on two lines.

• Feature Extraction: The first is to extract some features
from the video frames (see [6], [7] and references
therein). This involves the extraction of the features of
blood, polyp, ulcer, the discriminating stomach, small
intestine, colon, intestinal contractions, and so on. Dif-
ferent features may involve quite different extraction
methods in practice.

• Classification: The second is to investigate the possi-
bility of off-line classification of the images in capsule
endoscopy (see [8] and references therein). Surely the
feature extraction is a pre-requisite. Classification cor-
responds with a technique called supervised learning in
artificial intelligence [13]. Using the technique, people
wish to automate the process of identifying the patients’
illness by constructing a classifier using labeled training
data.
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III. THE PROBLEM

A. Formulation

Different from previous work, we try to predict the upcom-
ing of video clips that should arouse the doctors’ attention.
This technique potentially facilitates the next generation of
active capsule endoscopy. To the best of our knowledge, little
work has been done explicitly to attain this objective.

Mathematically, given a sequence of video frames
F1, F2, · · ·, we are seeking a binary decision function
E (Fm,M ({F1, · · · , Fm−1)}) which outputs either 1 when
the system captures an interesting event at frame Fm,
or 0 otherwise. The function takes two arguments as in-
put. The first is the current frame Fm. The second is
M ({F1, · · · , Fm−1}), which gives the information carried
by the frames prior to Fm. For such frames that E (F,M)
outputs 1, we regard them as indications of unusual or
interesting events.

B. Applications

We identify a number of potential applications for our pro-
posed model, in both passive and active capsule endoscopies.

• Prediction of Interesting Video Clips: Out of the tens
of thousands of video frames produced in a typical pro-
cedure of capsule endoscopy, quite often only a small
fraction (maybe only tens or even less) of the frames
contain the disease information a patient is suffering,
while most other frames do not. To save the doctor’s
reading time, it will be useful if we provide a solution
that helps identify and predict interesting video clips.
Essentially this can be casted as a clustering problem
in data processing or segmentation problem in video
processing [14]. In passive capsule endoscopy, we may
use conventional computing techniques to identify inter-
esting video segments and reduce the doctor’s reading
time. In active capsule endoscopy, further applications
can be sought along this line. For example, a signal may
be produced to attract the doctor’s attention (or to ask
him back when he is not on-site) when the computer
has identified a potential interesting spot and predicted
that the upcoming frames may be critical.

• Active Control of Capsule Movement: Another related
usage is to help control the capsule movement actively.
Suppose a capsule has moved to a spot suspicious of
diseases, it is desirable that the capsule moves slower
for more observations. When a capsule has moved to
a place that is impossible to have symptoms, it should
move faster to speed up the examination. An online
or sequential analysis of video frames will be of help
in deciding when to exert a control signal and what
the signal should be. Surely this control also heavily
depends on the underlying actuation mechanisms that
is being developed, which goes beyond our discussion.

It can be seen that one fundamental distinction distin-
guishes our work from the previous. As we have mentioned,
previous video-processing methods in this area typically
work in an off-line or batch mode. The recorder outside

the human body first receives the video signals from the
inside capsule. The whole video is processed after all the
frames have been accepted. While our work hopes to provide
a solution that operates both off-line and online, without
requiring to have gathered all the frames.

C. Relationship with Clustering Technology

For further illustration of the difference, let us take the first
application, prediction of interesting clips, as an example.
This application is of help in both passive and active capsule
endoscopies. But it has respective natures in the two areas.
In passive capsule endoscopy, the whole video has been
acquired, and this reduces to a video segmentation problem
or a conventional clustering problem. We need to identify
different video segments or group the video frames together
according to some criteria after an appropriate representation
of images is given.

For active capsule endoscopy, however, we need an in
situ method. We cannot assume all the images have been
acquired. Instead, we are coping with data streams and need
to make predictions on the future data. This task becomes
more difficult than the conventional one. In our case, the
critical point is to make events detection by predicting the
upcoming of interesting frames, based on the experiences
from the frames accumulated so far.

IV. METHODOLOGY

In this paper, we propose a method that monitors the video
frames sequentially and detects unusual events online. In
prediction of video clips, we need to mark the beginning
and the end of interesting clips. In active capsule endoscopy
control, we need to decide when to slow down and when
to speed up. The key assumption to this problem is that
the events should be detected when the computer catches
a sudden change of potential diseases or other interesting
features from video frames. The two applications essentially
comply with our problem formulation in section III.

To make a computer identify and predict the critical frames
like a medical expert, we need to do two things. The first
is to encode the doctor’s expertise into a computer system.
The second is to let a computer analyze the video frames
based on the expertise. Correspondingly, our solution has two
steps. The first step is to construct a disease symptom space,
which implicitly encodes the doctor’s expertise, and represent
each video frame as a point in the space. The second step
is to analyze the importance of the data points based on a
mathematically-consistent model.

A. Image Preprocessing

Preprocessing is a necessary procedure when analyzing
images and videos. Similar to the previous work in feature
extraction, we realized different processing methods for
detection of different symptoms. In this paper, we restrict our
discussion to two symptoms: bubble and bleeding. Surely the
framework we developed here does not have this restriction.
It is applicable to multiple symptoms, rather than two.
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Fig. 1. An image retrieval model which maps each frame to a symptom
space. We divide each frame into many regular grids, and use exemplar
images to retrieve the grids. Each exemplar corresponds to a potential
symptom in suspect. The highest similarity value between an exemplar and
the grids is defined as the value of the frame to the corresponding symptom.

Fig. 2. A symptom space with two diseases. After retrieval, we associate
each frame with a point in the symptom space. This example space has two
symptoms: bubble and blood.

An insightful observation of bubble images may find a
series of highlighted points in the image. These highlights are
the reflections of the lights in the capsule. Correspondingly,
our preprocessing mainly uses this feature as an identification
and involves a blob extraction of highlights. For bleeding, it
is relatively straightforward. We also use the blob extraction
for the red regions.

B. Representation: Encoding the Medical Expertise

We realize a symptom world by a d-dimensional vector
space, where d is the number of disease symptoms we are
going to study. Each axis in the space is associated with a
specific kind of symptom. The value in an axis indicates the
degree of belief that a frame may contain the corresponding
disease. We also construct for each symptom one or more
exemplar images based on the medical knowledge. In doing
so, we have implicitly encoded the medical expertise into the
computer system.

Our current implementation adopts an enhanced histogram
comparison method. Each frame in our experiments is an
image having 640 × 480 pixels, with each pixel represented

Fig. 3. An artificial example which depicts the change of scenes and the
change of prior and posterior distributions, from the center to the upper or to
the lower. Middle: Initially no symptoms are detected, and the possibility of
normal is high. Upper: Something like a bubble suddenly appears, and the
possibility of bubble increases significantly. Lower: Something like blood
is suddenly detected, the possibility of blood increases significantly.

by an RGB color value. After preprocessing, a frame is
further processed as follows. We divide it into 100 × 100
regular grids with overlaps, with each grid having 50 × 50
pixels. Then we use the exemplar images to retrieve all
the grids in a frame (see fig. 1). To do this, we first
make a color conversion from RGB representation to HSV
representation [14]. Then we compute the corresponding
intensity histogram by

g (h, s, v) = N · Pr (H = h, S = s, V = v)

where H , S, and V represent the three color channels, N is
the number of pixels in the grid (in our case N = 2, 500), and
Pr denotes the probability of each specific color setting. Then
we compare the histogram similarities between the exemplar
images and the grids, based on the idea of intersection
distance [15]

S (g, e) =

∑

h

∑

s

∑

v
min (g (h, s, v) , e (h, s, v))

min (|g| , |e|)
,

where g denotes a grid’s histogram, e denotes an exemplar
image’s histogram, and |g| and |e| give the magnitude of
each histogram. Using this measure, colors not present in
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the user’s query images (exemplar images) do not contribute
to the measure. This reduces the contribution of background
colors. The summation is normalized within [0, 1]. A similar-
ity value near 0 reflects that the grid does not contain much
evidence of having the designated symptom; while a value
near 1 reflects a high suspicion of having the symptom (see
fig. 2).

After comparing the exemplar image with all the grids
in a frame, the highest similarity value is used to be the
value of the frame F in the corresponding axis of the disease
symptom.

C. Model: Detecting Events When Capturing Sudden
Changes

After pre-processing, each frame is represented as a d-
dimensional vector, where d is the number of potential
diseases we are interested in. The online analysis system
(the observer) is initialized with some prior hypothesis on
the possibility of having each disease. With the upcoming of
each frame F , the hypothesis changes gradually.

This idea is formalized by Bayesian analysis approach.
The observer captures the underlying frame information
by the prior probability distribution {Pr (M)}

M∈M
over

the hypotheses or models M in a model space M. Given
these prior beliefs, the fundamental effect of a new frame
observation F on the observer is to change the prior
distribution {Pr (M)}

M∈M
into the posterior distribution

{Pr (M |F )}
M∈M

via Bayes theorem

∀M ∈ M, Pr (M |F ) =
Pr (F |M)

Pr (F )
P (M) .

Fig. 3 gives an example of belief updates with two symptoms.
During the analysis, a new frame F does not carry much

information, or is not important, if it leaves the observer’s
beliefs unaffected, that is, if the posterior distribution is
identical to the prior. Conversely, F carries much informa-
tion, or should be important, if the posterior distribution
resulting from observing F significantly differs from the
prior. Therefore we formally measure the importance elicited
by a frame F as a distance measure between the posterior
and prior distributions. This is done using Kullback-Leibler
(KL) divergence [16]. Thus, the importance of a frame F is
defined by the average of the log-odd ratio

I (F,M)

= KL (Pr (M |F ) , P r (M))

=

∫

M

Pr (M |F ) log
Pr (M |F )

Pr (M)
dM

taken with respect to the posterior distribution over the model
space M.

With the importance value for each frame, an interesting
event can be identified by a boolean function

E (F,M) =

{

1
0

I (F,M) > ε

otherwise

where ε is a user-specified positive threshold. Now the
observer is able to detect interesting events. An event occurs

when the capsule returns a frame with a high importance
value.

D. Justification of the Model

Although other methods (for example, a naı̈ve thresholding
method on the change of frame pixels) could be potentially
useful in detecting unusual events in the frames, we are more
interested in a solution that is mathematically consistent.
Theoretically, our proposed method is based on a recent
mathematical framework of surprise in computational neuro-
science [17]. The notion is derived from principles and then
formalized across general data types and data sources. Two
elements are assumed when defining the concept. First, the
surprise exists only in an uncertainty environment. Second, it
is only defined in a relative, subjective manner and is related
to the expectations of the observer. The same data may carry
different amount of surprise for different observers, or even
for the same observer taken at different times.

In probability theory, under quite mild assumptions, it
can be shown that the only consistent and optimal way
for reasoning about uncertainty is through the Bayesian
inference [18]. So the work is done within the Bayesian the-
ory of probability. In Bayesianism, probabilities correspond
to subjective degrees of beliefs in hypotheses or models
which are updated, as data is acquired. Bayes’ theorem is
used as the fundamental tool for transforming prior belief
distributions into posterior belief distributions. In doing so,
the work gives a consistent definition for inference.

Practically, the study has verified the relationship between
Bayesian surprise and human attention. Experiments have
revealed that human attention and gaze are often attracted
by a scene with a high surprise score.

In our problem, we adopt this idea. We design a computer
program to simulate a doctor’s observation process. We make
a hypothesis that a doctor’s attention should be reminded by
an event when the capsule observes a sudden change in the
video frames. Here the “change” is problem dependent. It
does not refer to a naı̈ve change of pixels in scenes, but
actually means a suddenly increased possibility of video
clips having potential diseases. It is noteworthy that this is
also the difference between our work and the mathematical
theory. In practice, we need to encode the medical knowledge
into the expert system, rather than simply applying a general
mathematical theory.

E. Extension to Other Applications

So far, our discussion has focused on the first application,
the prediction of interesting video frames. The idea can also
be applied in the second application naturally, the active
control of capsule directions. When a sudden explosion to
diseases is observed, the computer may decide to adjust
the capsule’s direction and speed, so as to have a closer
examination. Due to the delay between video signals and
actual capsule movement, it is not appropriate that we make
adjustment on the capsule’s movement when it has returned
a clear evidence of diseases. Instead, we need to do so
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TABLE I

COMPARISON BETWEEN HUMAN OBSERVATIONS AND COMPUTER

FIND-OUTS. EACH COLUMN INDICATES AN EXPERIMENT.

EXP I EXP II EXP III
Test: bubble blood bubble/blood
#(frames): 100 200 1000
#(human obs.): 4 4 10
#(computer obs.): 6 8 30
mark coverage: 100% 100% 80%
#(human frame): 17 24 65
#(computer frame): 23 33 127
frame coverage: 100% 100% 86.2%

beforehand when a sudden explosion of diseases just begins
to appear.

Similarly, when the computer “feels” no possibility of
symptoms at the capsule’s current position, the capsule may
be accelerated, and the direction is adjusted. The direction
change instruction is made when a sudden deviation from
the correct one is observed.

V. EVALUATIONS

To test the performance of the method, we carried out
several experiments. We used three video samples: two were
acquired from the medical school, the Chinese University of
Hong Kong; one was downloaded from the web. The samples
ranged from 100 to 1, 000 frames1, roughly 1 to 10 minutes.
We had three tests. The first tried to identify the bubbles
during the examination; the second tried to identify bleeding;
the third tried to identify the both symptoms.

A. Accuracy

In the first experiment, we first let a person with basic
medical knowledge watch the clips. He made a mark when he
think the video has reached a sudden appearance of bubbles,
which indicated a beginning of bubble frames, or a sudden
disappearing of bubbles, which indicated an end of bubble
frames. The results are summarized in table I.

The experiment used 100 frames. The human participant
marked 4 frames. Then we run the computer program and
computed the importance value for all frames, and selected
6 marks with highest importance values. And we found all
the 4 marks observed by the human were contained in the
6 frames found out by the computer program if we allow
for +1 or −1 frame deviation2. Based on the marks selected
by the human observer, there were totally 17 frames relevant
with bubbles, which were 100% covered by the 23 frames
based on the computer marks.

The second experiment used a video clip with 200 frames
to test bleeding. The human observer selected 4 marks which
might be of interest to check, which were covered by 8 marks
selected by the computer. The frame coverage is also 100%.

1The largest one with 1, 000 frames is actually a combination of several
video clips.

2Besides identical observations, we count the case that the person marks
frame s while the computer selects frame s+1, or vice versa. This deviation
is also allowed in frame coverage calculation.

Fig. 4. For a sequence of video frames, the method detected two frames
(with transparency) which marked the begin and the end of the bubble
occurrences.

The third experiment used a video clip with 1000 frames to
test both bubble and bleeding. The human observer selected
10 marks, most of which (8 out of 10) were covered by
the 30 marks with highest importance values selected by the
computer. The frame coverage (86.2%) is also acceptable.

As an example, figure (4) depicts the two marks found by
the computer in a 10-second episode of the first experiment.

B. Speed

As for the computational speed, we implemented the
method in MATLAB without special optimization and run
the code on a computer with intel Pentium IV-2.53GHz CPU
and 1G memory. On this PC, the method gave satisfactory
performance. The total computation time on each frame,
including histogram analysis and importance calculation, did
not exceed 0.1 second. Since the method had left much room
for real-time response, we did not carry out the theoretical
analysis on the method’s complexity any more.

VI. CONCLUSIONS

The capsule endoscope is widely used in examination of
the small intestine diseases. The active control mechanism
represents a direction for the next generation capsule en-
doscopy. So we consider to design computing techniques
towards the upcoming active techniques.

In this paper, we have proposed a new method of analyzing
the video frames in capsule endoscopy. Comparing with
existing solutions, it provides an active way in analyzing the
videos, both off-line and online. To the best of our knowl-
edge, this provides the first event detection-based technique
for the capsule endoscopy and can be potentially applied in
active controls.

Two key points to our solution are to encode the medical
knowledge into the system and to detect interesting or
unusual events. We tackled the two points in a simple way.
Although our current work mainly focuses on the theoretical
part, the preliminary evaluations have reported promising
results of the solution.
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Related to the future, more evaluations will be carried out
to test the applicability of the method. On one hand, we
have used a simple histogram comparison-based approach to
identify bubble and bleeding. More sophisticated features,
for example geometric features, will be used to identify
other symptoms of diseases, such as Crohn’s disease, gastric
ulcers, and colon cancer. On the other hand, a close collab-
oration with the medical experts will be sought before the
deployment of the real-time monitoring system in empirical
applications.
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