
  

  

Abstract—The goal of a robot formation control architecture 
is to get a number of robots into a specified form. To be 
effective and practical, the control architecture must be able to 
transition a group of robots from an initial swarm to a final 
formation. It must then be able to handle real-world events that 
could disrupt the formation, thus, requiring formation repair, 
obstacle avoidance, and changes in the formation. In previous 
work, we presented a distributed, reactive cellular automata-
based formation control architecture capable of controlling any 
number of robots in formation at once. In this paper, we 
examine our architecture with respect to necessary 
characteristics to handle real-world occurrences. To address 
issues of formation repair and obstacle avoidance, the control 
architecture is extended by a distributed auctioning method 
that allows the robot formation to reconfigure autonomously. 

I. INTRODUCTION 
roposed applications of large formations of mobile 
robots are numerous and include search and rescue, 

battlefield reconnaissance, and exploration and survey. 
Some proposals call for formations of robotic satellites, 
specifically, space-based solar power collection [1] and 
sparse aperture telescopes like NASA's Terrestrial Planet 
Finder [2] and the ESA's Darwin telescope (Fig. 1) [3]. 
These applications call for large numbers of homogeneous 
robotic satellites to establish a tight formation, maneuver and 
maintain formation, and exhibit fault-tolerance such that the 
malfunction of one or a small group of units can occur 
without affecting the function of the system as a whole. 
 

 
Fig. 1: An illustration of ESA's Darwin. [3] 
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It is useful to draw a distinction between swarms and 
formations. An example of a swarm in nature is a school of 
fish. The individual members of the school have no fixed 
relationship to any of the other members. The school 
undulates and changes size and shape as it maneuvers, with 
individuals changing position relative to one another [4]. An 
example of a formation in nature is a “V”-shaped flock of 
migratory birds. Such natural formations differentiate 
themselves from swarms in that any two individuals 
maintain a relatively constant relationship to one another. 

For robot formations to be effective in the applications 
noted, the control architecture must be able to transition a 
swarm into a formation and handle the various difficulties of 
malfunctions, interactions with the physical environment, 
and other unexpected events. To determine the effectiveness 
of a formation control system, Fredslund & Matarić [5] have 
defined a number of criteria. In this paper, we examine our 
approach for control against these criteria and propose an 
extension to alleviate identified limitations. 

II. BACKGROUND 
As described in [6], the approach taken to robot formation 

control is to treat robots as cells in a cellular automaton. An 
individual robot's behavior is reactive with respect to its 
neighbors, producing order among the entire group. Each 
unit need only be aware of its relative position and 
orientation to each neighbor in its neighborhood to calculate 
and realize a motion path to reach its desired position. Thus, 
a formation is established and maintained using a distributed 
reactive control architecture, requiring no global information 
or coordinate system, and no central leader. 

An important aspect of this approach is that the robots are 
cells in a robot-space cellular automaton rather than a 
world-space cellular automaton. The latter assumes that the 
space in which the robots exist is topologically segmented 
into a grid of cells. The former views the robots that make 
up the structure as the cells in the automaton; in this sense, 
the automaton is an abstraction for the formation (Fig. 2). 
This approach overcomes many of the limitations of the 
world-space automaton, eliminating the dependence on the 
environment and reducing automaton complexity [6]. 
 

 
Fig. 2: Robots as cells in a 1-dimensional robot-space cellular automaton. 
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While the major goal of a formation control method is to 
attain an overall formation of robots, to be effective, the 
control architecture must also handle various real-world 
conditions to maintain or repair the formation. Fredslund & 
Matarić [5] define a number of criteria for evaluating the 
performance of the control architecture for robot formations. 
The first, generality, is the ability to define formations to 
conform to a variety of different shapes. The second is 
stability, or, the ability to maintain a formation over time. 
The third criterion is robustness, or, the flexibility and 
responsiveness of the formation to changes in group size. 
The forth criterion is dynamic switching capability, or, the 
ability to switch from one formation to any other formation. 
The final criterion is obstacle avoidance, which evaluates an 
ability to deal with both large and small-scale obstacles. 

To deal with some of these dimensions, our control 
architecture needs to be extended in a way that allows robots 
to dynamically determine which robots in the vicinity are 
relevant to the given task (we refer to these robots as 
neighbors). Previous work by Lemay et al [7] has been done 
on dynamically establishing relationships between robots 
attempting to initialize a formation. The method describes a 
neighbor discovery state, in which each individual builds a 
visibility table of all the robots within its sensing range. 
These tables are then cross-populated and shared among the 
group. Each individual robot then performs a bounded 
depth-first search looking for the best positioning with itself 
as the leader of the formation. 

In contrast to a method that requires sharing of 
information among the entire group of robots, we propose a 
distributed auction-based approach to dynamic 
neighborhoods. Implementations of auctions for mobile 
robot coordination take many forms, ranging from the high-
level frameworks for communicating the terms of auctions 
(such as the “contract net protocol” [8]) to the more specific 
application of auction algorithms to the allocation of tasks to 
a heterogeneous group of mobile robots [9]. A distributed 
auction method has the benefit of a decentralized 
implementation. While the solution is not guaranteed to be 
optimal, it is uniquely suited to a collection of mobile robots, 
in that each individual already possesses the knowledge 
needed to calculate its bid. 

III. FORMATION CONTROL ALGORITHM 
The inter-agent communication required by the robot-

space cellular automaton is limited to a few key parameters. 
Each of N robots is represented as a cell ci (where i refers to 
the ith robot in the cellular automaton), which maintains a 
neighborhood hi, a state si, a formation definition F, and a 
state transition function S (each described in this section): 
 
 ci = {hi, si, F, S} (1) 

A. Neighborhood 
The neighborhood hi of ci consists of n neighbors in 

addition to ci itself, where n ≤ nmax (Eq. 2). The entire 
automaton C can then be expressed as the union of all N 
neighborhoods (Eq. 3). 

 

 hi = {ci-n/2, …, ci-1, ci, ci+1, …, ci+n/2} (2) 
 C = h1 U h2 U … U hN (3) 

B. State 
The state si of cell ci is written as: 

 
 si = {pi, ri,des, ri,act, Θi, Γi, ti} (4) 
 

The variable pi represents the formation-relative position, 
a calculated value that corresponds to a position in the 
formation (used only for calculating relationships; does not 
necessarily correspond to a global physical robot location); 
ri,des and ri,act are sets of calculated desired and actual spatial 
relationships with all neighboring cells, respectively; Θi and 
Γi represent the accumulated rotational and translational 
error, respectively; and ti represents the time step [6]. 

C. Formation Definition 
A desired formation F is defined by f', a geometric 

description (i.e., a set of m mathematical functions); R, the 
desired separation between neighbors in the formation; Φ, 
the orientation of each robot relative to the formation 
(referred to as formation-relative orientation); pseed, a 
formation-relative position that serves as the starting point in 
the formation from which relationships will propagate [6]: 
 
 F = {f', R, Φ, pseed} (5) 
 
This definition is sent to any single robot, which we refer to 
as the seed cell cseed of the automaton. Note that cseed is not a 
leader; rather, this action instigates changes in the state of 
the cell, which, in turn, propagates changes in its neighbors. 

D. State Transition 
In a cellular automaton, each successive state of a cell is 

dictated by a state transition function S, which considers the 
current state of the cell as well as the states of its neighbors. 
In a robot-space cellular automaton, cells are distributed 
units and, thus, each cell ci must maintain the communicated 
state of its neighbors. Therefore, a robot must transmit its 
own state information within the neighborhood. 

For purposes of determining relationships with 
neighboring robots, a cell considers itself to be at some 
formation-relative position pi (Eq. 6); in the case of cseed, the 
position pseed is provided as the starting point from which the 
formation and relationships will propagate. The desired 
relationship ri→j,des from ci to some neighbor cj is determined 
by calculating a vector v from pi to the intersection of f'(vx) 
and a circle centered at pi with radius R (Eqs. 7 & 8; Fig. 3). 
Solving for ri→j,des results in two intersections: one in the 
positive direction and one in the negative direction. These 
solutions define right and left neighbor relationships ri→i+1,des 
and ri→i-1,des, respectively; these relationship vectors are then 
rotated by –Φ, so that robot heading is consistent within the 
formation definition [6]. 

 
 pi = [ xi      f'(xi) ]T (6) 
 R2 = (vx - pi,x)2 + (f'(vx) - pi,y)2 (7) 
 ri→j,des = [ vx      f'(vx) ]T (8) 

4806



  

 
Fig. 3: Calculating desired relationships, ri-1 and ri+1, from pi to neighbors. 

 
The formation definition and relationship information are 

communicated locally within the neighborhood. Each 
neighboring robot cj repeats the process in a distributed, 
asynchronous fashion, considering itself to be at a different 
formation-relative position as determined by the propagated 
desired relationship from its neighbor (Eq. 9). The resulting 
relationship rj→i,des is complementary to ri→j,des, in that it is 
equal in magnitude, but opposite in direction (Eq. 10). This 
property of the algorithm guarantees convergence and 
stability between two robots attempting to establish and 
maintain relationships with one another. The calculated 
desired relationships generate a connected graph that yields 
the shape of the formation (Fig. 4). Using only sensor 
readings, the ith robot determines its actual relationship 
ri→j,act with its neighbor cj (described in [10]). Discrepancies 
between ri→j,des and ri→j,act are used to calculate 
corresponding rotational and translational errors, Θi and Γi, 
respectively [6]. Correcting for these errors produces robot 
movements that result in the desired formation [10]. 

 
 pj = pi + ri→j,des (9) 
 rj→i,des = –ri→j,des (10) 

 
Fig. 4: Calculated relationships generate a parabolic formation. 

E. Extended Formation Definition 
With minor modification, the approach generates lattice 

formations defined by multiple mathematical functions [11]. 
The standard implementation of the algorithm produces a 
sort of “branching structure” due to the use of the pi term in 
Equation 7; thus, we omit this term from the equation for 
purposes of lattices (note that pi does not go away 
completely—it is still propagated in Equation 9): 
 
 R2 = vx

2 + f'2(vx) (11) 
 

As an example of a formation that uses this alternative 
equation (Eq. 11), we consider a hexagonal lattice (i.e., an 
equilateral triangular lattice) structure by defining a 
formation by three functions: f' = {f1(x), f2(x), f3(x)}, where 
f1(x) = 0, f2(x) = x √3, and f3(x) = –x √3. As cells calculate 

desired relationships, they begin to develop common 
neighbors as neighborhoods intersect one another, and an 
emergent hexagonal lattice structure results (Fig. 5). 
 

 
Fig. 5: A formation defined by three functions yields a hexagonal lattice. 

IV. EVALUATION 
The formation control algorithm was implemented on 20 

custom-built robots. These robots are homogeneous—atop a 
two-wheeled ScooterBot II base sits an XBCv2 
microcontroller with a color camera; an XBee wireless 
communication module with a custom interface to the XBC 
allows for inter-robot communication. A colored bar-coding 
system facilitates neighbor identification, with each robot 
featuring a unique “face”. Once a neighbor cj is identified, 
the color camera is used to determine the distance and 
orientation to that robot and, subsequently, the actual 
relationship ri→j,act [10]. 

For purposes of comparison and analysis, we base our 
evaluation of system performance on the criteria discussed 
in Fredslund & Matarić [5]. We consider the status of the 
formation at discrete time intervals that correspond to steps 
within the cellular automaton (i.e., the actual motion during 
state transitions is not relevant to our task domain). 

A. Generality 
The generality of a system refers to its ability to conform 

to a variety of different formations [5]. Analysis from 
various trials and experiments suggests that the algorithm is 
extremely general and has warranted a classification of the 
formations that can currently be produced: 
 

I. Non-formation—swarm 
II. Explicit formation—strict relationships are provided 

(like how a marching band is formed) 
III. Straight line formation—conform to the function    

f(x) = a x, where a is some constant; relationships 
calculated using Equation 7 or 11 (pi-independent) 

IV. Function-based formation—defined by a single 
mathematical function f(x); relationships calculated 
using Equation 7 

V. Branching formation—defined by multiple 
mathematical functions; relationships calculated using 
Equation 7 

VI. Lattice formation—defined by multiple mathematical 
functions; relationships calculated using Equation 11 

 
Other potential classifications have also been identified, 

but have not yet been investigated; these include three-
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dimensional and disconnected (disjoint) formations [6]. 
Formations falling into any of these categories can currently 
be realized provided that the neighborhood of each cell is 
given (Fig. 6). In Section V, an auction-based method for 
dynamically determining neighborhoods is discussed that 
improves the initialization of such formations. 
 

 
Fig. 6: Robots exhibiting generality, conforming to a variety of formations: 

(a) a line, (b) a parabola, (c) a hexagonal lattice, (d) a square lattice. 

B. Stability 
A system’s ability to maintain formation (once 

established) dictates its stability [5]. To test the control 
algorithm against this principle, we manipulated one or 
many robots (either via remote control or by hand) in a 
variety of different formations, changing both its position 
and orientation (e.g., Fig. 7). 
 

 
Fig. 7: An example of robots exhibiting stability; a "lost" robot as it finds its 

way to the correct position. Note that its neighbors maintain formation.  
 

Following a search for its neighbors, the “lost” robot 
would recognize that it was out of position and then take a 
movement action to correct for this error. More significant, 
however, were the behaviors of its neighbors—their 
respective positions and orientations were maintained. This 
is a result of each neighborhood communicating the relative 
accumulated translational and rotational error of the system. 
Neighbors would detect discrepancies in their respective 
desired and actual relationships with the “lost” robot, but 
would also recognize that it was, indeed, the “lost” robot that 
was in error. Similar reactive formation control systems 
would propagate this error physically, responding to the 
displacement of a single robot with an action that would 
correct for the relative error, but, consequently, cause a 
chain reaction of movements, thus, displacing the structure 
as a whole [5]. Our work distinguishes itself in that this 
detected error is propagated through communication. The 

algorithm exhibits strong stability in that any number of 
“lost” robots will reestablish their relationships in the 
formation while robots in their correct formation-relative 
position will maintain their pose. 

C. Robustness 
Evaluating robustness considers the ability of a system to 

respond to changes in group size [5]. Relying only on local 
information within an established neighborhood, it can be 
shown that the algorithm is independent of the number of 
robots; however, in the current implementation, the number 
of robots must be given at startup so that neighborhood of 
each robot can be initialized (i.e., all neighborhoods are 
specified manually). While this number can, indeed, be any 
value that corresponds to the true number of robots in the 
system, once set, this implementation is limited to only this 
number. This is not acceptable for most real-world 
applications. It is quite common for robots to be reassigned 
to different tasks or exhibit failure; likewise, as numbers 
begin to dwindle or the task changes, it is possible that other 
robot units join the ranks to increase these numbers. A 
robust formation control system must be tolerant of this. In 
Section V, we propose a method to address dynamic 
neighborhoods, thus, overcoming groups of static size. 

D. Dynamic Switching Capability 
We have already demonstrated that the algorithm is 

general in establishing a wide variety of formations. We now 
discuss its dynamic switching capabilities—the ability of the 
system to respond to an operator’s commands for changes in 
formation organization [5]. To manipulate the formation, a 
human operator need only send one of a variety of 
commands to any single robot. This propagates changes in 
the automaton, causing a chain reaction in neighbors, which 
then change states accordingly, resulting in a global 
transformation of the formation. Commands include 
formation translation, rotation, scaling, resizing, and change 
[6]. The ease with which an operator can manipulate 
formations with potentially large numbers of robots is a 
hallmark of this system. The current implementation, 
however, presents a limitation in formation transitions that 
require a change in the size of the neighborhood—recall that 
neighborhoods are currently specified manually (i.e., they 
are static) and, thus, cannot accommodate such scenarios. 
This limitation is clear when an operator commands a 
change from, say, a function-based formation (e.g., a 
parabola; two neighbors) to a lattice formation (e.g., a 
hexagon; six neighbors). Section V describes a method for 
dynamic neighborhoods to allow such a transition. 

E. Obstacle Avoidance 
The ability of a system to deal with both large and small-

scale obstructions is obstacle avoidance [5]. This is yet to be 
addressed in the current implementation. In Section V, we 
discuss the implications of dynamic neighborhoods on group 
obstacle avoidance, as relationships between neighbors 
might be required to change to navigate an obstruction. 
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V. DYNAMIC NEIGHBORHOODS 
Autonomous initialization and switching of formations, as 

well as changes to group size, all require dynamically 
tasking robots to fill a position in the formation. We propose 
a distributed auction method to accomplish this, and discuss 
its application to formation repair and obstacle avoidance. 

A. Phase Transitioning 
Transitioning from a swarm to a formation will be 

referred to as a phase transition, since it has many parallels 
to the state phase transitions observed in matter (Spears et al 
[12] also use this term in a similar context). For example, it 
is useful to think of a group of mobile robots with no 
particular programming for interaction with each other, aside 
from collision avoidance, as similar to matter in a gaseous 
state. That is, the “volume” (i.e., number of robots) and 
shape that the group takes on is determined by its 
surroundings. Robots in a swarm can be thought of as 
similar to matter in a liquid phase—the swarm is free to 
assume the shape of the boundaries of its surroundings, but 
will maintain a fixed volume. Robots in formation are 
similar to matter in a solid state, assuming both a fixed 
volume and a fixed shape. As seen in Figures 6 & 8, a 
formation can resemble a crystalline structure quite closely, 
with an internal configuration situated in a repeating lattice. 

As in our previous example, we consider a hexagonal 
lattice formation; however, the phase transition method is 
generalizable to any formation definition. It is assumed that 
each robot has the ability to detect the distance and 
orientation of all other robots within its sensor range. In the 
current implementation this is accomplished using vision 
processing with a color camera [10]. Trilaterative 
localization is another example of such range and orientation 
sensing [13]. As in the current implementation, it is expected 
that there will be a number of robots within communication 
range. If no robots are in communication range, individual 
robots proceed to a given destination and can then initiate 
the phase transition. 

B. Communication Model 
A topic-based publish/subscribe model [14] is used to 

facilitate communication among a group of cells in the 
automaton and among robots wishing to join the formation. 
The publish/subscribe paradigm allows a distributed group 
of agents to send (i.e., publish) and receive (i.e., subscribe) 
various types of information regarding select topics of 
interest. This allows state information to be passed among 
neighbors, while still allowing broadcast messages to nearby 
agents. A topic is addressed with a unique identifier, which, 
for our purposes, is a formation-relative position pj. This 
allows subscribers to discriminate between relevant and 
irrelevant published information. The content of a topic is 
the state of the cell cj associated with pj. We write the topic 
identified by this formation-relative position as: 

 
 T(pj) = {pj, sj} (12) 
 

C. Auction Model 
A cell ci that requests information on T(pj) encounters one 

of three response conditions: (1) {pj, sj}, a response directly 
from cj containing its current state information; (2) {pj, ø}, a 
response from the publisher regarding the topic, but 
containing no state information because cj does not exist yet; 
and (3) {ø, ø}, no response regarding the topic, indicating 
that no other cell has expressed interest in T(pj) and cj does 
not exist yet. In the first condition, the formation-relative 
position pj is occupied by cj. In the latter two conditions, pj is 
unfilled, necessitating the auction process (Fig. 8). 

In the case of Condition (3), ci will announce an auction 
for pj—denoted A(pj)—if and only if ||pi – pseed|| < ||pj – pseed|| 
(for densest packing) and Γi ≈ 0 (for stability). This cell, 
referred to henceforth as an auctioneer a, becomes the sole 
publisher of information on the topic T(pj) and will respond 
to any subsequent inquiries from subscribers to topic with 
{pj, ø}, thus, fulfilling Condition (2). 

A robot that receives an auction message for pj must 
determine whether or not it is advantageous for it to fill the 
position. This robot will bid if and only if (1) it has no 
neighborhood (i.e., it is not yet part of the automaton) or (2) 
its neighborhood is not full (i.e., n < nmax) and ||pj – pseed|| is 
less than the magnitude of the difference between its current 
formation-relative position and pseed. This robot, referred to 
henceforth as a bidder b, will announce a bid to fill pj. This 
bid, denoted B(pj), consists of a weighted sum composed of 
the distance d from b to pj (weighted by an energy cost 
modifier E) and the number of existing neighbors n in b’s 
neighborhood (weighted by a relation cost modifier X): 

 
 B(pj) = E d + X n (13) 
 
The distance factor d impacts the efficiency of moving 

into the position. The auction A(pj) includes the relationship 
(i.e., range and bearing) of pj relative to a. This information, 
coupled with the relationship from b to a, is used to 
determine the actual relationship of b to pj. The number of 
existing neighbors n favors moving robots that are not 
already in the automaton or those that have fewer existing 
neighbors; however, it is sometimes advantageous for a 
robot to sever existing relationships to move into a new 
position (as will be seen in Formation Repair). The energy 
cost constant E and the relation cost constant X can be 
modified to minimize the time taken for phase transition or 
to minimize energy usage. These constants are currently 
tuned by empirical trials on the simulator; a more principled 
approach is being considered for future implementations. 

After a period of time, the auctioneer a determines the 
winning bidder of A(pj) based on the minimum B(pj). The 
auctioneer passes publishing rights to this bidder, which is 
now identified as cj. This cell, now associated with the 
position pj, becomes the sole publisher on the T(pj), and will 
only ever respond to queries about the topic with {pj, sj}, 
thus, addressing Condition (1) above. 
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Fig. 8: Distributed auctioning of formation-relative positions. 

D. Formation Repair 
In the event of robot failure, it may be desirable for robots 

with established positions in the formation to break free and 
rejoin the formation in a new formation-relative position. As 
an example, we consider a scenario in which a cell has been 
disabled (indicated with an “X” in Fig. 9-1). The formation 
repair process is initiated upon the confirmation of the loss 
of communication with the robot. Neighbors auction the 
position just as in the initial formation process (Fig. 9-2). 
 

 
Fig. 9: The formation repair process: (1) a robot malfunctions and is lost, 

(2) the position is auctioned, (3) a cell wins the auction and breaks its 
current relations, (4) the winner takes the position. 

 
As before, a bid for a position considers the distance to 

travel, as well as the number of neighbor relations that 
would be broken. In the case of the latter, if the winner of an 
auction must leave an already existing neighborhood, it 
notifies its neighbors that it will be vacating its current 
formation-relative position by unsubscribing to its topic. 
This robot then proceeds to its new position, and begins the 
auctioning process for its neighbors (Fig. 9-4). Assuming 
that there is no single robot free of the formation, this same 
process repeats for each vacant position. The conditions for 
determining when to bid—specifically, the second 
condition—guarantees that open positions closest to the seed 
are filled before farther positions (i.e., densest packing) [6]. 

Note that, in real-world scenarios, a disabled robot will not 
simply disappear (as in Figure 9); rather, it will become an 
obstacle and, thus, a method for its avoidance is necessary. 

E. Group Obstacle Avoidance 
The phase transition metaphor suggests a method for 

avoiding obstacles. As robots on the perimeter of the 
formation encounter an obstacle, they may loosen their 
“bonds” (relationships; inspired by molecular bonds) to their 
neighbors (much like solid ice melting into liquid water). 
For a widely spaced formation encountering a relatively 
small obstacle—perhaps something no more than twice as 
big as the robot itself—the neighbor bonds may be loosened, 
but not broken, allowing the robots in the path of the 
obstacle to shuffle out of the way. For tighter formations or 
larger obstacles, it may be necessary to “melt” local portions 
of the formation, breaking or temporarily ignoring relations 
with neighboring robots in order to flow out of the way of 
the obstacle. Once the robot determines itself to have passed 
the influence of the obstacle, it either reestablishes its 

temporarily ignored relationships or bids on open positions 
in the formation. Robots that have “melted” revert to 
Reynolds-like rules of swarming [4]. If the entire formation 
must be melted in order to facilitate obstacle avoidance, then 
the phase transition method may be employed once again to 
precipitate the formation from the swarm of robots. 

VI. CONCLUSIONS AND FUTURE WORK 
An analysis of our cellular automata-based robot control 

architecture was presented with respect to characteristics 
necessary for practical applications. The distributed, reactive 
nature of the architecture provides generality, stability, 
robustness, and controllability. An extension to the 
architecture provides a method for robots to form dynamic 
neighborhoods. It was shown that this extension could 
manage initial formation creation, formation repair, and 
obstacle avoidance. This approach is currently being 
implemented in the simulator described in [6] and will be 
ported to the robots described in [10] for further analysis. 
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