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Abstract— Finding objects and tracking their poses are essen-
tial functions for service robots, in order to manipulate objects
and interact with humans. We present an approach for object
detection and 3D pose estimation for autonomous mobile robots,
that is suitable for general uses in a modularized robot control
system. Our apprach extracts local features from the input
images, searches for the reference pattern, and then produces
the 3D pose in camera coordinate system, using only a single
reference image and the 6-DOF pose in it. We have created
an RT(Robot Technology) component that can be used in any
RT-based system, and developed an algorithm that can extend
the range of detection and produce robust pose estimation.
For evaluation, we have integrated our vision component in
an autonomous robot system with a search-and-grasp task,
and tested it with several objects that are found in ordinary
domestic environment. We present the details of our approach,
the design of our modular component design, and the results
of the experiments in this paper.

I. INTRODUCTION

In order to manipulate objects and interact with humans
more intelligently, service robots need to find objects and
estimate their three-dimensional poses. Although we may tag
each object with RFID and other types of equipments and
sensors [1], it is highly desirable to use vision as the primary
sensing mode, because of availability of small, inexpensive,
and low-powered cameras and non-intrusive nature of the
vision, without any alteration of the environment.

Object tracking has been an active research area, and most
of techniques can be divided into two classes depending
on the types of cues: edge-based and texture-based. The
former techniques rely on spatial gradients outlining the
contour or some geometric features, and frequently used
for pose estimation problem with 2D or 3D model of the
object [2] [3]. The latter techniques depends on local features
(corners, gradient characteristics, or a template) [4] [5] [6],
and they are less subject to jitter and better suited for dealing
with initial registration and large displacements. These two
classes of techniques have complementary advantages and
drawbacks. Edge-based techniques have been proved to be
effective and robust with 2D and 3D model of the object, but
it may fail in the presence of complex background. Initial
registration has also been an issue. Texture-based techniques
on the other hand are restricted to a class of objects with
strong texture, and mainly exploited in 2D tracking, such as
KLT tracker [4] and region of interest [7], due to the lack
of precision when the scale changes. Some researches have
been focused on combining the power of both texture-based
and edge-based techniques [8] [9].

Fig. 1. A shot from an on-line experiment with object detection and pose
estimation on our robot platform, Enon. The robot was about to grab the
object after estimating its pose successfully.

Recent progresses in robust local features, such as SIFT
(Scale Invariant Feature Transform) [10], helped a lot to
resolve many issues with feature-based approaches, including
robustness, precision, invariance in scale, and initial regis-
tration. With robust and scale-invariant features, collective
matches can successfully be used for global detection and
pose estimation. Two main limitations have been the speed
and the range of applicable object types, which is com-
mon for texture-based techniques. Thus we have seen SIFT
features used in many researches for global registration in
initialization or intermediate steps [11]. We’d like to note
that, with fast-developing GPU(Graphics Processing Unit)-
based implementation of local feature extraction, full SIFT
extraction and matching can be run in real-time, without
having to trade off in terms of feature quality. In addition,
for the vision system on service robots, the lack of required
object model and global registration are big advantages for
more general and practical use.

Another important aspect of object detection and pose
estimation for service robots is the performance in the
practical settings, which we found quite challenging. When
the scene is observed by the robot, the target object is
relatively small especially from a wide angle camera, the
images are often blurred by motion, the texture of the target
object may not be strong enough, and background is usually
complex. Even though SIFT features were designed so that
they could provide robustness, repeatability, and uniqueness
in the feature space, careful matching can improve the
matching results further in challenging situations. In this
paper, we also present a new approach for feature matching
scheme that enforces local geometric consistency, and simple
pose estimation algorithm that do not require 3D model of
the target object.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2710



System integration of basic robot functions has become
more important as individual technologies in Robotics are
getting mature and academic researches and industry move
toward robotic systems in non-manufacturing fields. Ando
et al. [15] introduced RT, an open and event-based robot
integration platform based on CORBA. This platform, like
other platforms with similar goals including Orocos [12],
ORiN [13], ORCA [14] and Microsoft Robotics Studio,
provides software-level modularization and concurrent ex-
ecution of robot functions in a distributed system, regardless
of operating system and programming language. On this
platform, the task of developing a complex robotic system
is reduced to identifying compatible modules with desired
functions, and binding them together to achieve high-level
control. The product of our project is an on-line vision
component for object detection and 3D pose estimation with
general input/output specification, which can be used in
any robot system that is based on RT-middleware, without
modification.

In this paper, we explain our system design based on
RT-middleware in Section II, and then give more details of
the object detection and 3D pose estimation in our vision
component in Section III. And then we show the results
from our experiments in Section IV. Finally, in Section V,
we discuss the strength and shortcomings of our approach –
local feature based object detection and 3D pose estimation.

II. DESIGN OF VISION MODULE AS A RT
COMPONENT

The goal of our project is to create a module-based
control system for a autonomous service robot that can search
and find small objects, manipulate the object, and interact
with humans (by receiving or handing over the object, for
example). Figure 1 shows our robot platform, Enon from
Fujitsu Frontech Ltd., with a Bumblebee2 stereo camera from
PointGrey Research mounted on its head, while it’s trying to
grab the target object after pose estimation.

Our system design is based on RT(Robot Technology)-
middleware, which is a distributed platform that provides
re-usability and interoperability of different components that
encapsulate different functions across operating systems or
programming languages through standardized interface [15].
The vision component encapsulates object detection and pose
estimation, provides general interface for integration, and can
be used without modification on any RT-based system. Figure
2 illustrates our component design.

Our experimental system consists of four components,
designed around the vision component for object detection
and pose estimation. ‘Bumblebee’ camera component is one
of the image capture components, which provides a sequence
of images in a simple minimalistic image format (width,
height, pixel format, and pixel data). ‘Enon Robot Controller’
component is the controller component of the robot Enon.
This component provides all the basic control of Enon such
as arm control, vehicle control, speech, pan and tilt of head,
and so on. By combining these components, user can realize
the target object manipulation based on user’s scenario.

Fig. 2. Our system design with RT-components

Finally, ‘Enon Action Controller’ component is a component
for pose conversion and higher-level logic. This component
maintains an action scenario, and decides what to do next
based on detection results from the vision component and
the robot’s current state.

Input of the vision component is an image in the same
format with the camera components. Output of the vision
component is the pose of the object, represented by a 3 ×
3 rotation matrix and a 3 × 1 translation vector in camera
coordinate system, and a success/failure flag. Alternatively,
the vision component also provide a service port, which is an
equivalent of a synchronized function call in RT-middleware
framework, that can be used to invoke the detection and get
the pose of the target in return. Table I explains the port
types of the vision component.

TABLE I
INTERFACE OF THE VISION RT COMPONENT

interface port type description
image info ConsumerPort width, height, pixel format
pixel values InPort image stream
object info ProviderPort search result and object pose

The interface of the vision component was designed with
simple specifications of minimal number of ports, in order to
improve re-usability and interoperability of the component.
The vision component is provided with a reference image of
the target object, and its corresponding pose (6 degrees of
freedom) in camera coordinate system when the image was
taken. This simple prior knowledge is loaded at the start-up
of the component. This simplified requirements also make it
easier to use the vision component for many other objects.
We explain in the next section the algorithms of the vision
component in detail.

III. OBJECT DETECTION & POSE ESTIMATION

SIFT features are invariant against scale and rotation,
and robust against modest viewpoint changes, illumination
changes, and partial occlusions. [11] and other researches
have already used these robust local features to detect and
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Fig. 3. A challenging scene from a robot in indoor environment. Extracted
SIFT features are illustrated as red arrows, and the matching results are
shown with green lines. Upper image is the result of global matching, with
distance-ratio-criteria set to 0.8, and below is the result of local matching
with geometric consistency described in Section III-B

track object and its pose. We also use SIFT features for object
detection and pose estimation for our service robot.

The challenge is that, in typical domestic environments,
matching and tracking those local features from the view-
point of a mobile robot is very difficult in practice, because
the size of target objects in the scene is relatively small,
their texture may not be strong enough, the image is often
blurred by motion, and there are a lot of noise due to complex
background patterns. Extraction of the local features is also
computationally expensive. For example, when we consider
more general and practical situations like the one shown in
Fig. 3, it is clear that naive approaches which depend only
on the uniqueness of individual SIFT descriptors will not
produce the result that we want. We also need a stronger,
more robust, and more efficient approach for matching and
tracking of the local features. In following sections, we
explain the details of our approach to local feature matching
that exploits local geometric consistency, and 3D pose esti-
mation that requires minimal prior knowledge (six values for
reference pose) using planar surface assumption.

A. Local Feature Extraction

For SIFT feature extraction, we used SIFT++ [17], an
open-source implementation that was shown to produce as
good results as David Lowe’s original implementation in
terms of repeatability, robustness, and uniqueness of the
features [16]. We also have implemented SIFT extraction
on GPU using NVIDIA’s CUDA framework, using the same
procedures and parameters of SIFT++. With initial up-
sampling (doubling image width and height) of the input
image, SIFT++ processes a single 640 × 480 RGB image

in about 3 seconds on 2.4 GHz Intel Core2Duo laptop, and
GPU-based SIFT processes the same image in about 250
milliseconds with NVIDIA’s GeForce 8600M GT on the
same machine, making on-line applications possible.

B. Matching Local Features

Typical approach for SIFT feature matching is to find
‘good’ matches independently, and use RANSAC algorithm
or Hough transform [10] to find the most probable transfor-
mation from the given set of matches. Goodness of a match
between two features can be evaluated by the ratio of the
distances to the matching feature (the closest) and the second
closest in the 128 dimensional vector space of SIFT features.

We note that there are three properties of each local
feature that we can use for geometric consistency: scale,
orientation, and relative position. These values are also cal-
culated for each local feature (keypoint) during the extraction
of invariant feature vector, but are not a part of feature
descriptor. Hough transform described in [10] utilizes these
values by creating bins of different scale and orientations,
but relative position is still not used at all. In general,
typical approach try to find good matches in entire image
first, and then find a consistent pose transformation using
clustering or binning. We found matching can be improved
significantly, by creating multiple pose hypotheses and find
the best hypothes by evaluating their overall fitness and the
geometric consistency of the pattern in the local region.
This approach helps particularly when we deal with multiple
instances of the same pattern or symmetric patterns, because
the best match is not excluded by the distance ratio criteria
when there are similar features with different orientations at
different relative location on the image.

Our object detection component extracts local features,
and creates a 2D map of pointers to the features, with
the same width and height of the input image, in order
to speed up the local search. And then, every feature in
the reference pattern is compared with every feature in the
scene to find global matches, with the same distance-ratio
threshold described above (typically 0.7 or 0.8). The scale
and orientation of each match in this global comparison
is used for the initial hypothesis of pose transformation.
Let the affine transformation of k-th match be T k, and
fk

r = (x, o, s)k
r and fk

s = (x, o, s)k
s be features (with position

x, orientation o, and scale s) in the reference and the scene
of the match, respectively. Then,

T (x) =
(

+s′ cos(o′) −s′ sin(o′)
+s′ sin(o′) +s′ cos(o′)

)
(x−cr)+(cs−cr),

(1)
fk

s = (x, o, s)k
s ' T k((x, o, s)k

r ) = T k(fk
r ), (2)

where s′ and o′ are scale and orientation differences, c is
the center of the pattern. Now with a initial hypothesis of
a particular match, matches for all the reference features
are searched over the local area around the position x
in (x, o)k

s . For this local search, we set maximum image
distance to fairly large value (two times the expected value).
We also use fairly generous tolerance range of orientation,
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[−π/3,+π/3] and scale, [−s/2,+s/2], and rather strict
distance-ratio criteria 0.5. All these parameter choices means
that we take a quite generous approach in finding local
matches. And then we choose the closest neighbor in the
multi-dimensional descriptor space as the best match, among
all the valid ones that passed through all the criteria. Based
on the local matches of T k, we now evaluate the overall
similarity of the entire pattern with an evaluation function
given as follows:

E(T k) =
1
N

N∑
Di(xs, T

k(xr)) ∗Dd(fs, fr), (3)

where Di represents L2 distance in 2D image space, Dd

represent L2 distance in descriptor space of local features
(128 multi-dimensional space for SIFT), and N is the number
of found local matches for T k. In general, there might be
multiple instances of the same pattern in the scene. Since
we evaluate multiple pose hypotheses based on their local
matches, it is easy to extend our approach for the matching
of multiple instances. At the moment, we just take the best
match.

C. 3D Pose Estimation

With the matches found between local features from the
reference image and the scene, we can now estimate the 3D
pose of the target object, assuming the 3D pose of the object
in the reference image is already known.

First, we calculate the homography [18], H , of the object
pattern from the reference image to the scene. Then we
calculate the pose of the target object Rs and T s in the
current scene using pin hole camera model, assuming we
already know the intrinsic parameters K of the camera and
the pose of the object in the reference frame Rr and T r.
Here the pose, R and T , are represented as 3 × 3 rotation
matrix and the 3×1 translation vector, even though the pose
has only six degrees of freedom.

The pinhole model of the camera is given by:

pi = K [R T ] pw, (4)

where pi = (u, v, 1)T refers to the homogeneous coordinate
of the point on the image frame, and pw = (x, y, z, 1)T is
the homogeneous coordinate of the point in the world frame,
and K is 3 × 3 matrix with the intrinsic parameters of the
camera.

Since the points in the reference image are matched with
the points in the scene images using homography, we get

ps = kH pr, (5)
K [Rs T s] = kH K [Rr T r], (6)

where ps, Rs, and T s refer to the point and pose of the object
in the scene image, and pr, Rr, and T r are the point and
pose of the object in the reference image. From the equation
above, we can calculate the object pose in the scene image,
given the intrinsic parameters and the pose in the reference
image.

[cRs
o

cT s
o ] = kK−1HK [cRr

o
cT r

o ]. (7)

Fig. 4. The results of the 3D pose estimation: The leftmost image is the
reference image. The 3D pose was visualized with two axes (x: red, z:
green) of the object coordinate system centered at the object bottom center.

However, equation (7) is ill-conditioned, and it’s not
very robust in practice. It’s because we are solving for 12
unknowns (cRs

o[9] and cT s
o [3]) from 8 DOF information. As

a result, the rotation matrix cRs
o in return will not typically

be orthogonal, and cT s
o tends to have some errors.

To resolve this problem, we have added a non-linear
optimization step. First, we enforce the orthogonality of
cRs

o, and convert the rotation matrix to a rotation vector
of 3 values. In order to enforce the orthogonality, we use
SVD, and replace cRs

o = U S V T with U V T . Through
experiments, we found the singular values in S vary in the
range of [0.3, 2.0], and that the new cRs

o and cTo is good
enough as an initial value. And then, we use Levenberg-
Marquardt method so that it minimize the sum of the squares
of the deviations of the four corners of the pattern:

S(R, T ) =
4∑

i=1

[yi − f(xi, R, T )]2,

where xi and yi are the four corners of the object pattern
boundary in the reference (3D) and the input (2D) images,
respectively, and f is the perspective transformation from
camera space to the image space given by the calibration of
the camera. Through many experiments, we found a small
number of iterations is enough for this final optimization,
and we set it to 50 in all the experiments in this paper. An
examples of the final results of pose estimation are shown in
Figure 4. We also perform a sanity check of the estimated
pose as a final step, by checking if the object position is
indeed in the observable area in front of the camera, within
the distance range of [0.2, 10.0] in meters.

The biggest benefit of this approach is that it does not re-
quire the explicit model of the target object, thus simplifying
the process of constructing the reference pattern for object
detection. The system only needs the reference image of the
object, and the pose of the object (six DOF) in the image
in camera coordinate system. This simple requirements can
make it much easier for the robot to create a reference pattern
of the target object on the fly, while interacting with humans.
On the other hand, our approach also has a weakness in that it
assumes planar surface for the pattern. As a result, the result
of matching can be worsen if the target is viewed from a
different viewpoint. But we note that round surfaces with
big viewpoint change can cause problems with local feature
matching at the first place, thus we don’t consider it to be a
big disadvantage.

Our vision component uses both images from the stereo
independently, and then combines the two estimations of the
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3D pose in order to improve the quality and robustness of
the pose estimation. We simply take the average of positions
and orientations represented in rotation vector from the left
and right image.

IV. EXPERIMENTS

In order to evaluate the performance and robustness of our
approach on a mobile robot in realistic environment, we have
conducted series of experiments with various objects using
an on-line autonomous robot. We used Enon from Fujitsu
together with our autonomous control system that is based on
RT-middleware as described in Section II. Figure 5 shows the
estimated poses rendered on the input images with a rather
cluttered background.

Fig. 5. Pose estimation results while robot is searching and approaching
toward the target

Figure 6 shows some captured images during an on-line
experiment with our autonomous robot system. The robot
was assigned a sear-and-grasp task with given reference
pattern and corresponding pose. The robot was programmed
to search over the scene for a particular object, approach to
the object, align its pose against the object for manipulation,
and then grab the object with its hand. Through out the run,
the vision component successfully recovered the 3D pose
of the target while the robot moved around, and allowed
the manipulation module to grab the object without any
sophisticated feedback control.

In further analysis of the estimated poses in several exper-
iments, the results are very promising in terms of precision
and stability, that we can even use the estimated 3D pose
from vision component as direct input parameters of the
arm control, leading to successful grasp in many cases. Of
course, manipulating objects relying only on frame by frame
pose estimation is not a good idea, and the precision in
manipulation can be improved significantly by using a real-
time feedback control such as visual servo. But it is clear
that the results from our pose estimation can be used as a
reliable starting point for manipulation control.

The next experiment we performed was the detection of
static objects on a table at various distance from the front of
the robot. We used six small objects, whose size vary from
5cm to 10cm in width. The reference images were taken at
a different time of the day with different background. Figure

Fig. 6. On-line search-and-grasp: The photos show the robot searching,
approaching, confirming the object pose, and grabbing the object.

Fig. 7. The result of detection and 3D pose estimation for static objects. The
objects were placed on a table at different distances from the robot. Small
objects with round surface results in poor detection rate due to perspective
transformation. When detected, the variance of the estimated pose in Z axis
(the largest) is kept below 0.001(m) for planar objects (0.022 for object C
and 0.042 for object D), which means very robust estimation against noise.

Fig. 8. False positive rate from a video sequence over 73 seconds, in
which the robot was navigating through a very cluttered lab environment
with many desks, chairs, bookshelves, humans, and other equipments. No
target object was present at the scene.
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7 shows the results from the experiments. As we can see
from the result, our approach find the objects and estimates
their pose reliably when they are close, and then success rate
drops dramatically when they are too far away. The variance
of the estimated pose over many observations of a static
object was kept very small in our experiment, which means
the pose estimation is very robust against noise. We consider
this type of characteristics – sudden drop in the success rate
– is more desirable than, for example, gradual deterioration
of the estimated pose over distance. The object C and D
are small and have round surfaces, and their input images
have quite large perspective deformation from the reference
images that are taken from a perpendicular viewpoint. As a
result, their success rates are significantly lower than other
objects with flat surface. Of course, the performance on the
non-planar objects can be as good as the planar objects, if
the viewing angle in the input images is the same as in the
reference image.

To evaluate the false positive rate of the detection, we have
also captured a video in a very cluttered lab environment
by manually controlling the robot to move through the
environment with varying head orientation. The environment
had many desks, chairs, humans, bookshelves, and other
equipments, without any of the target objects. The result
of the object detection for each target pattern is shown in
Figure 8. As we can see in the result, our approach using
local geometric constraints produces very few false positives.
Since the false positives are few and the estimated pose of
them tend to be almost random, it is very easy to filter
them out by simply checking consistency of the results over
consecutive frames, for example.

V. CONCLUSIONS AND FUTURE WORKS

We have presented an approach for object detection and
3D pose estimation, based on local feature matching. The
advantage of our approach is that it can be implemented
easily as an independent component in a module-based robot
control system, because our approach requires minimal in-
formation – single image and its 3D pose – for the reference
pattern. We have also proposed a new matching scheme
between the local features of the reference and scene images
that exploits local geometric consistency.

We implemented our approach as a RT(Robot Technology)
component that can be used in any RT-based robot control
systems. Our experiments show that our matching approach
can extend the range of object detection and the estimation
results of 3D poses are robust enough, while it maintains very
low false positive rate. Our RT-component implementation
also shows that our approach can be used in an on-line
robot control system for a search-and-grasp task in realistic
environment.

Of course, our approach is limited by the same limitations
of the local features, which requires reasonable amount of
texture on the target object. And for the long range discovery
where the object get considerably smaller and its signals get
weaker, our approach do not work well for obvious reasons.
For such cases, we just need other techniques such as active

search and maybe some probabilistic approaches to deal with
weak signals and big uncertainty.

Our future research direction includes improving the per-
formance of our implementation, enhance the interoperability
of our RT-component, and developing other higher-level
components that will operate upon the estimation results of
the 3D pose of objects that are returned by the component
of our approach. Automatic capture of the reference pattern
and its pose through human interactions is another interesting
research direction.
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