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 Abstract – Many biologically inspired approaches have been 

investigated in relation with researches on mobile robot(s) that 

can effectively locate targets that induce gradient information. 

Here, we concentrate on realizing an adaptive searching behavior 

in mobile robot that is simple, yet effective with and without 

sensing the gradient information. We are interested in two 

searching behaviors found in biological creatures: bacterial 

chemotaxis, probably the simplest yet effective gradient sources 

searching behavior found in living creatures; and Levy walk, 

specialized random walks with fractal movement trajectories that 

optimize random search for sparsely and randomly distributed 

target(s). Our approach is to implement and combine the two 

searching behaviors based on “yuragi”, a Japanese word for 

biological fluctuation.     

  

I.  INTRODUCTION 

         IOLOGICAL creatures provide many examples  on  how  

         to realize adaptive behaviors in robots or artificial 

agents. Chemotaxis behavior, a motion of organism in 

response to the presence of chemical concentration gradients 

[1], has been exploited in many literatures as an effort to 

realize mobile robot(s) that can effectively search and locate 

targets that induce gradient information. Some examples 

include biomimetic robot lobster built to investigate the way 

lobster localize and track odor plumes [2], insect-size mobile 

robot inspired by silkworm moth [3], moth-inspired behavior-

based AUV [4], as well as a multi robot system inspired by 

swarm intelligence of ants [5].  

The simplest organism in which its behavior has been 

imitated to perform such task is bacteria. The motion of 

bacteria in response to chemical concentration gradients is 

called bacterial chemotaxis [1, 6], which has been adopted in 

certain ways to realize simple yet effective searching behavior 

for gradient-inducing targets performed by robot or artificial 

agent [1, 8].  

Indeed, while such robots can be instrumental in tasks 

such as locating hazardous chemical leaks, oil spill in the 

water and environmental monitoring, problems such as local 

minima and absence of gradient are commonly faced. 

Furthermore, when the targets are sparse, it is likely that most 

of the time the robot won’t be able to sense the induced 

gradient information. 
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    In fact, ranging predators actually have to make foraging, 

searching for food, decisions with little, if any, knowledge of 

targets distribution and availability [9]. Therefore, as a result, 

the creatures do a random search. In relation with this, a 

special kind of random walk, called Levy flight, or to be more 

exact Levy walk, receives many attention in the literatures 

[9][10][11][12][13].  

Our aim is to realize a searching behavior in mobile robot 

that is simple, yet effective with and without sensing the 

gradient information, by imitating certain searching behaviors 

found in biological creatures. We are interested in two of 

them: bacterial chemotaxis and Levy walk. Our approach is to 

implement and combine these two searching behaviors based 

on “yuragi”, or biological fluctuation [14].  

The organization of the paper is as follow. First, we will   

explain about the two mentioned searching behaviors: 

bacterial chemotaxis and Levy walk. Then, the principle and 

realization of yuragi-based searching behavior in mobile robot 

that implement and combine them will be explained. In order 

to verify the approach, we perform simulation experiments, 

with sensory model from real robot. The experiment setup, the 

aim of each experiment condition, and the results will be 

described. At the end, we will discuss some conclusions as 

well as future works.    

II.  SEARCHING BEHAVIORS IN BIOLOGICAL CREATURES 

A. Bacterial Chemotaxis  

In a bacterial chemotaxis, such as performed by 

Escherichia coli, the motion can be characterized as a 

sequence of smooth-swimming runs, punctuated by 

intermittent tumbles that effectively randomize the direction of 

the next run [6]. These two motions can be called the 

“swimming” and the “tumbling” mode. The probability that a 

smooth swimming E. coli cell will stop its run and tumble is 

dictated by measurement of attractant chemical gradient in the 

environment. As E. coli are only a few microns long, they are 

unable to measure the gradient by comparing head-to-tail 

concentration differences, but use a kind of memory to 

compare current and past concentration.  

When the bacterium perceives conditions to be worsening, 

the tendency to tumble is enhanced. Conversely, when it 

detects that the condition, i.e. the attractant chemical 

concentration, is improving, tumbling is suppressed and it 

keeps running. As a result, when the bacterium runs up a 

gradient of attractant, it will do chemotaxis, as it tends to 

continue on course and do a biased random walk toward the 

source of the attractant. However, in the absence of this 

gradient, the bacterium will simply do random walk.  
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Fig. 1 Bacterial chemotaxis. left: swimming and tumbling mode,                 

top right: “chemotaxis”, biased random walk toward the source of attractant,                                     

bottom right: random walk in the absence of a gradient of attractant           

 

This bacterial chemotaxis behavior with and without the 

gradient information can be explained by Fig. 1. Here, an 

interesting question is whether the random walk part is really 

effective.   

 

B. Levy Walk 

As many creatures do random search, in [10], a general 

question of what is the best statistical strategy to optimize a 

random search has been addressed. It is shown that the search 

efficiency depends on the probability distribution of the flight 

lengths taken by the forager, and when the target sites are 

sparsely and randomly distributed, the optimum strategy is a 

specialized random walks movement so called Levy flight. By 

performing Levy flight, creatures can optimize the number of 

targets encountered versus the traveled distance. This Levy 

flight motion has been found among various organisms, such 

as marine predators [9], fruit flies [12], even humans [13]. 

Levy flight is specialized random walks comprising ‘walk 

clusters’ of short move step lengths (distance moved per unit 

time) with longer reorientation jumps between them. This 

pattern is repeated across all scales, with the resultant scale-

invariant clusters creating trajectories with fractal patterns 

[12]. Levy flight move steps are drawn from a probability 

distribution with a power-law tail: 

 

with 0<µ<2, and l is the flight length, that is the length before 

changing direction randomly. Compare to Brownian motion, 

where the flight distribution are drawn from Gaussian 

distribution, the probability of Levy flight for returning to 

previously visited site is smaller, and therefore advantageous 

when target sites are sparsely and randomly distributed [10].  

 However, to be more exact, a more technically correct 

term is actually Levy walk. While Levy flight’s expression 

only considers the flight length, and does not consider a time 

cost which depends on this length, Levy walk does [11].  

A creature performing a Levy flight jumps between sites, 

no matter distant, which leads to a divergence of the mean-

squared displacement. Levy walk is a stochastic process which 

visits the same sites as in the Levy flight, but with a time 

"cost" that depends on the flight length or distance, and 

therefore has a finite mean-squared displacement [11]. In other 

word, the sites visited in Levy flight are the turning points in 

Levy walk [9]. While in Levy flight we only need to specify 

p(l), in a framework of continuous time random walk, we can 

write p(l,t), the probability to move a distance l  in time t  in a 

single motion event and to stop at t  for initiating a new motion 

event at random. It is given by: 

 

The delta function accounts for the motion at a constant 

velocity, while length l and time t are given in dimensionless 

units. Therefore, (2) describes Levy walk with constant 

velocity, where p(t) follows a probability distribution with a 

power-law tail with 0<µ<2:  

 

III.  YURAGI-BASED SEARCHING BEHAVIORS IN MOBILE ROBOT 

A. The Principle 

“Yuragi” is a Japanese word for biological fluctuation. It 

is used by Kashiwagi et al [14] to explain bacteria adaptation 

to environmental changes by altering their gene expression. 

This gene expression is controlled by a dynamical system with 

some attractors, and the model can be represented by Langevin 

equation as: 

    

where x and f(x) are the state and the dynamics of the attractor 

selection model, with f(x) can be designed to have some 

attractors. ε is the noise term, which will be called the “yuragi” 

noise, because we could also have noises from the 

environment. A is a variable called “activity” which indicates 

the fitness of the state to the environment. From the equation, 

f(x)×A becomes dominant when the activity is large, and the 

state transition approaches deterministic. When the activity is 

small, ε becomes dominant, and the state transition becomes 

more stochastic. The activity is therefore designed to be large 

when the state is suited to the environment and vice versa. 

This framework actually introduces many design possibilities, 

with one explained in [15]. 

In order to apply (4) to robot control, we interpret the 

state x as the posture of the robot, thus    as the motion of the 

robot. f(x) can be designed to have some attractors which 

correspond to particular motions. Therefore, the state of the 

system entrained into a particular attractor when the activity is 

large and let the robot tends to keep taking the same motion. 

Here, we want the robot to keep going forward when the value 

of the activity is large, and change direction randomly when 

the value is small.  

While we could construct more complex equations by 

having some attractors in f(x) as shown in [15], this behavior 

can simply be seen as having an “imaginary” attractor in front 

of the robot. Therefore, if the orientation of the robot is 

defined as α, we can construct a Langevin equation based on 

(4), shown in (5). Here x(t) and y(t) are position of the robot at 

time t in Cartesian coordinates, k is a constant, A(t) is the 

activity, and εω(t) is the “yuragi” noise term. 
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In the simplest scenario, one can easily see that we can let 

the activity has a binary value that causes the robot to switch 

behavior between purely moving straight forward in α 

direction when the activity is “1”, and purely change direction 

randomly when the activity is “0”. This also explains the 

addition of term (1- A(t)) and why we only let the yuragi noise 

term exists for the orientation state. In this paper, εω(t) is set as 

zero-mean Gaussian noise. 

As the kinematic equation of a (nonholonomic) mobile 

robot is as shown in (6) [16], then (5) is actually the same as 

(7), where v(t) is the linear velocity, with a constant value of  

k,  and ω(t) is the angular velocity. 

 

 

 

 

 

  

 

 

By observing (7), we see that different type of searching 

behaviors can be realized by designing a rule on how the value 

of the activity changes. We call it “the activity rule”. Here, we 

are interested in designing the activity rule to realize three 

types of searching behaviors: bacterial chemotaxis type, Levy 

walk type and the combination of the two. As for the target, we 

define it as a particular signal source that induces gradient. 

 

B. The Realized Searching Behavior Types 

1) Bacterial chemotaxis type. For this type, the activity 

must depend on sensory input, as it is the searching behavior 

type that will help the robot to find the target by following the 

induced gradient. We define sensory input as the change of 

detected signal amplitude emitted from the target:  

 

We implement the simplest relationship between the 

activity and sensory input as a step function shown in (9): 

 

 

 

 

where θ is the “activity threshold”, the sensory input value that 

will change the activity value to become “1” or “0”, 

corresponds to the “swimming” and “tumbling” mode in 

bacterial chemotaxis behavior. 

As can be seen from (9), when the sensory input only 

contains noise from the environment, the sequence of 

swimming and tumbling will only be random, which 

corresponds to random walk part in bacterial chemotaxis. 

However, when there is a gradient, the robot will do 

“chemotaxis”, a biased random walk toward the source. 

2) Levy walk type. For this type, the activity does not 

depend on sensory input, as it is the searching behavior type 

that will help the robot to do an effective random search when 

the targets are sparse, and therefore most of the time there is 

no useful gradient information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instead, here the activity is a function of an “internal 

oscillation”, similar to the concept of central pattern generator 

that drives spontaneous behavior in organism [12]. By  letting  

A(t)=1  follows   the   probability   distribution function with a 

power-law tail as p(t) in (3), punctuated by constant  short   

periods  of   A(t)=0,  the  robot  will  do  Levy walk with 

constant velocity like the model explained in (2). As sequence 

of the activity is now driven by a stochastic, Levy, process, the 

whole behavior therefore becomes stochastic. This “internal 

activity oscillation” is illustrated in Fig.2.  

3) Combination type.  In combining the two searching 

behavior types, the activity depends on both sensory input and 

the internal oscillation. Fig. 3 explains how the activity, A(t), 

changes due to sensory input, ∆S(t), sensed by the robot. In 

order to define the range where the value of the activity is a 

function of internal oscillation instead of sensory input, two 

activity threshold parameters, θ1 and θ2, are used. This range is 

shown by the gray area. As can be seen, in bacterial 

chemotaxis type, θ1=θ2=θ  in (9). Levy walk type means     

θ1=-∞ and θ2=∞. In the combination type, θ1 and θ2 have 

particular different values. 

IV.  SIMULATION EXPERIMENTS 

A. Experiment Setup and Conditions 

We verify the effectiveness of the searching behavior 

types by building a simulation. The sensory model is obtained 

from a real robot by attaching a microphone to the robot and 

collecting sound amplitude data versus the distance and the 

angle between the robot and a speaker.  

The movement of the robot is modeled by using (8). The 

constant linear velocity of the robot is chosen as 15 [cm/sec], 

while the random angular velocity is limited to   90 [deg/sec]. 

The simulated area is 30 x 30 [m], while the robot diameter is 

set as 25 [cm].  
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Fig. 3 The comparison of how the activity changes in the bacterial 

chemotaxis type (top left), the Levy walk type (top right)                      

and the combination type (bottom) 
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Fig. 2 Internal oscillations of the activity in Levy walk type.               

The durations of moving forward, T1,T2,…, follows power law-tail 

(Levy) distribution, while durations of changing direction, T, is constant 
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Fig. 4 (left) shows screenshot of the simulation. The goal 

is put at the center of the area. The initial position of the center 

of the robot is 1450 [cm] left from the goal, facing down. The 

small dot in the middle is the signal source, and it shows the 

robot searches for the goal and moves towards it. The intensity 

of the trajectory indicates the activity. When it is 0, the color is 

black, and when it is 1, the color is gray. From the left, the 

graphs at the bottom of the screenshot show A(t), v(t), and 

ω(t). An obstacle avoidance algorithm works if the robot faces 

the wall to orient it perpendicularly. 

The simulated time length for the simulation is 1000 [s]. 

For the bacterial chemotaxis type, a new value of the activity 

based on the change of sound amplitude is calculated every 

simulated 1 [s], and therefore so is the new linear and angular 

velocity. For the Levy walk, the A(t)=1 periods follows power 

law distribution with resolution of 0.02 [s], with the random 

numbers for the period produced using stable random number 

generators encoded in Matlab by J. H. McCulloch at Ohio 

State University [17] and is based on the method described in 

[18]. We use the characteristic exponent µ=0.75, the skewness 

parameter β=1, scale c=0.5, and location parameter τ=0. The 

punctuating periods of A(t)=0 is 1 [s]. Every simulated 0.02 

[s], a new position and orientation for the robot is shown. 

As for the sensory model, it follows certain gradient  

pattern  that  depends on the  distance and  relative  orientation  

between   the   robot  and   the   speaker,  plus  sensory  noises. 

The overall mathematical model is shown in (10): 

 

 

 

 

 

 

where S(t) is the detected sound amplitude at time t, d(t) is the 

distance of the robot to the sound source, φ(t) is the angle 

between the sound source and the robot, which equals to 0 

when the robot perfectly facing toward the sound source, η(t) 

is the sensory noise, h and p are constants. Based on the 

collected data, we choose h=950 and p=2. η(t) is modeled as 

zero mean Gaussian noise with standard deviation 0.7. Fig. 4 

(right) shows the data collection from real robot.  

We want to confirm the effectiveness of each searching 

behavior type with and without sensing the sound gradient, and 

see how the related parameters affect the performance. 

Therefore, three experiment conditions are chosen as:  

1) Bacterial chemotaxis type with sound gradient. The 

sound source is turned on, gradient information exists 

everywhere in the environment. We expect the bacterial 

chemotaxis type to do chemotaxis toward the target. 

2) Comparison of random walks. The sound source is 

turned off, sensory input contains only noises and the bacterial 

chemotaxis type will simply become random walk. The 

random walk behavior is compared with the Levy walk type.  

3) Comparison of searching behavior types with limited 

sound gradient. The sound gradient is limited within certain 

area. The three searching behavior types are compared.  

B.   Experiment Results 

1) Bacterial chemotaxis type with sound gradient.  Fig. 5 

shows the trajectory examples of the first condition. The first 

row of the pictures show trajectory of the robot with the same 

activity threshold θ and different size of yuragi noise εω(t), 

defined by the standard deviation. The second row shows 

those with the same size of yuragi noise and different value for 

the activity threshold.  We confirm that the robot can reach the 

goal, and the next interesting question is how the parameters 

affect the behavior and performance.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Simulation screenshot and data collection from real robot 
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 (Size of εω(t)=90, θ=0) 

Fig. 5 Trajectory examples of bacterial chemotaxis searching behavior type within sound gradient,                                                           

top: with different size of yuragi noise εω(t), bottom: with different value for the activity threshold θ  
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TABLE I 

PERFORMANCE OF THE BACTERIAL CHEMOTAXIS SEARCHING TYPE           

WITH SOUND GRADIENT 

Searching 

behavior type 

Size 

of 

εω(t) 

θ Success rate 

Bacterial 

chemotaxis 

30 0 18 

30 0.2 26 

30 0.4 0 

60 0 30 

60 0.2 66 

60 0.4 0 

90 0 70 

90 0.2 96 

90 0.4 4 

 

The performance is measured from the success rate, the 

percentage of reaching the target in 50 trials. Reaching target 

is defined as reaching 50 [cm] area from the sound source. The 

parameters are the size of yuragi noise εω(t), and the value for 

activity threshold θ. We simply choose some reasonable 

values to reveal the general principle, paying attention to the 

parameter value of sensory model and the robot limitation. 

The result is shown in Table I, and can be explained as follow. 

As shown from the trajectory intensity in Fig. 5, the 

activity keeps alternating between “1” and “0”. For the first 

value, the robot will do the swimming mode, or moving 

forward. For the second value, the robot will do the tumbling 

mode, or change direction randomly. From the first row of the 

figures, it can be seen that when the size of the yuragi noise is 

too low, the tendency to change direction significantly when 

the activity equals to “0” is lower. Therefore, it will take a 

longer time before the robot can find the correct orientation 

toward the goal, and the performance is lower. The top-left 

figure shows the lowest noise size that causes the longest time 

to find the correct orientation. 

From the second row of the figure, it can be seen that 

when the activity threshold is too high, the tendency to easily 

go forward is too low. When the activity threshold is high, It 

will take a large change of detected signal amplitude, ∆S(t), 

before activity becomes “1” and let the robot moves forward. 

Therefore, for example, in the bottom-right figure, the 

trajectory is quite straight, but the robot cannot reach the target 

within the simulation time.       

For the used setup (e.g.: initial condition, target’s place, 

size of the sensory noise), the best combination for the size of 

yuragi noise and the activity threshold seems to be 90 [deg/s] 

and 0.2.  

2) Comparison of random walks. As for this second 

experiment condition there is merely noise and no sound 

gradient in the environment, the bacterial chemotaxis type 

simply becomes random walk. Table II confirms that the Levy 

walk type is the better random walk, regardless of the size of 

the yuragi noise εω(t). Fig. 6 shows the trajectory comparison 

with particular size of the yuragi noise. Even the change of the 

parameters can affect the random walk behavior of the 

bacterial chemotaxis type, the Levy walk type still brings the 

robot nearer to target.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II 

PERFORMANCE OF THE RANDOM WALK IN BACTERIAL CHEMOTAXIS TYPE 

VERSUS THE LEVY WALK TYPE 

Searching 

behavior type 

Size 

of 

εω(t) 

θ Success rate 

Bacterial 

chemotaxis 

30 0 2 

30 0.2 0 

30 0.4 0 

Levy walk 30 N/A 10 

Bacterial 

chemotaxis 

60 0 0 

60 0.2 0 

60 0.4 0 

Levy walk 60 N/A 4 

Bacterial 

chemotaxis 

90 0 0 

90 0.2 0 

90 0.4 0 

Levy walk 90 N/A 6 

It can also be seen that the size of yuragi noise affects the 

behavior of the Levy walk type. When it is smaller, the 

tendency to thoroughly search in a particular area before 

“jump” to another area is lower. Among the tried size of the 

yuragi noise with this experiment setup, it seems that standard 

deviation of 30 [deg/s] results in the best performance. 

  3) Comparison of searching behavior types with limited 

sound gradient. For the third condition, the sound gradient is 

limited within 500 [cm] radius from the source. Outside it, 

only sensory noise exists. We compare all the three searching 

behavior types. We choose the size of yuragi noise εω(t) as 90 

[deg/s] for all the types. For the bacterial chemotaxis type, we 

choose θ1=θ2=θ=0.2. Levy walk type obviously means θ1=-∞ 

and θ2=∞.  For the combination, we choose θ1=-∞ and θ2=0.2.         

The trajectory examples are shown in Fig. 7. While in 

both the chemotaxis and Levy walk type the trajectory 

intensity indicates the activity value, for the combination, the 

grey color means the robot performs Levy walk, and the black 

one means it performs chemotaxis. It can be seen that the 

chemotaxis behavior type simply becomes random walk as it 

cannot reach the area where the sound gradient exists, and the 

Levy walk type is the better random walk. It is interesting to 

notice that when the sound gradient exists anywhere inside the  

Fig. 6 Trajectory examples of random walk in bacterial chemotaxis type (left)                        

versus the Levy walk type (right) with particular size of yuragi noise εω(t)  

 
 

 
 

 
 

 
 

(Size of εω(t)=30, θ=0) 

 

(Size of εω(t)=60, θ=0) 

 

(Size of εω(t)=60, θ=N/A) 

 

(Size of εω(t)=30, θ=N/A) 
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TABLE III 

PERFORMANCE OF ALL THE SEARCHING BEHAVIOR TYPES                            

WITH LIMITED AREA OF SOUND GRADIENT  

Searching 

behavior type 

Size 

of 

εω(t) 

θ1 θ2 Success Rate 

Bacterial 

chemotaxis 

90 0.2 0.2 0 

Levy walk 90 -∞ ∞ 6 

Combination 90 -∞ 0.2 20 

 

30x30[m] area, the chosen parameters actually gives the best 

result for bacterial chemotaxis type.  

Table III shows that the performance comparison. It can 

be seen that the combination type is the best one. From the 

trajectory intensity in Fig. 7 (bottom) it can be seen that the 

Levy walk behavior can bring the robot to the necessary area. 

However, in order to actually reach the target once the 

gradient information exists, the chemotaxis behavior is 

beneficial.  

V. CONCLUSION AND FUTURE WORK 

Here we propose a biologically inspired approach to 

realize an adaptive searching behavior in mobile robot, that is 

effective with and without sensing the gradient induced by the 

target. The proposed approach is to implement and combine 

two already known effective searching behavior: bacterial 

chemotaxis and Levy walk, based on yuragi, or biological 

fluctuation. The yuragi-based framework itself is simple, 

utilizes noise to keep the robot searching for the target, and 

can switch elegantly between stochastic and deterministic 

behavior. It also does not need any model of the environment, 

as already modeled through the activity. 

While the framework actually introduces many design 

possibilities, we show that bacterial chemotaxis and Levy walk 

searching behavior type can be implemented and combined 

based on this framework. In bacterial chemotaxis type, when 

there is gradient information, the robot will do a biased 

random walk toward the source. In the absence of gradient, it 

will simply do random walk, and we have shown that the robot 

can also perform a Levy walk type. We have also shown how 

the parameters affect the behavior and performance in each 

type, and how the combination of the two can be beneficial.  

While in this paper we simply choose some reasonable 

parameter values to reveal the general principle, a more 

thorough analysis is an interesting next step. Aside from that, a 

more complex scenario, real robot experiments, other designs 

based on yuragi framework, and comparison with other 

methods remain as our future work.  
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Fig. 7 Trajectory examples of the bacterial chemotaxis (top left),                     

the Levy walk (top right) and the combination type (bottom)                          

with limited area of sound gradient 
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