
Visual and Laser Guided Robot Relocalization Using Lines, Hough

Transformation and Machine Learning Techniques

Miguel Bernal-Marin and Eduardo Bayro-Corrochano

Abstract— This paper describes a new approach for building
3D geometric maps using a laser rangefinder, a stereo camera
system and a mathematical system the Conformal Geometric
Algebra. The use of a known visual landmarks in the map
helps to carry out a good localization of the robot. These
landmarks are found using the Viola and Jones algorithm and
are represented with their position in the 3D virtual map. This
landmarks help in the relocalization of a robot in a previously
captured environment. This machine learning technique is used
for recognition of objects in the environment.

I. INTRODUCTION

Mobile robots are equipped with multiple input devices to

sense the surrounding environment. The laser rangefinder is

widely used for this task due to its precision, and its wide

capture range. In this paper we merged the data obtained

by the laser and the stereo camera system to build a 3D

virtual map with the shapes obtained by these devices. The

3D objects seen by the stereo camera system can be modeled

by geometric entities, which are easy to represent and to

combine. Some of these 3D objects can act as a landmarks

for the robot navigation and relocalization. Line segments

are used to build a 3D map and they are the most widely

used features [1] [2].

Using the Conformal Geometric Algebra we can represent

different geometric shapes including the line segments (as a

pair of points) and the data captured by the stereo camera

system (landmarks as labeled spheres). This framework also

allows us to formulate transformations (rotation, translation)

using spinors or versors.

For relocalization we use the line’s characteristics in the

Hough domain [3] (θ,ρ), for find out the current robot

position in the 2D map.

We present experiments using real data which validate the

efficiency of our approach.

II. GEOMETRIC ALGEBRA

The Geometric algebra Gp,q,r is constructed over the

vector space Vp,q,r, where p,q,r denote the signature of the

algebra; if p 6= 0 and p = r = 0, the metric is Euclidean;

if only r = 0, the metric is pseudo Euclidean; if p 6= 0,

q 6= 0, r 6= 0, the metric is degenerate. The dimension of

Gn=p+q+r is 2n, and Gn is constructed by the applications of

the geometric product over the vector basis ei. The geometric

product between two vectors a,b is defined as

ab = a · b + a ∧ b

E. Bayro-Corrochano and M.Bernal-Marin are with Center for Research
and Advanced Studies of the National Polytechnic Institute, Guadalajara,
Mexico edb,mbernal@gdl.cinvestav.mx

and the two parts; the inner product a · b is symmetric

part, while the wedge product (outer product) a ∧ b is the

antisymmetric part.

In Gp,q,r the geometric product of two basis is defined as

eiej :=





1 ∈ R for i = j ∈ {1, . . . , p}
−1 ∈ R for i = j ∈ {p + 1, . . . , p + q}
0 ∈ R for i = j ∈ {p + q + 1, . . . , n}
eij = ei ∧ ej for i 6= j.

this lead in a basis for Gn that contains elements of different

grade called blades (e.g. scalars, vectors, bivectors, trivectors,

etc.):

1, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, · · · , e1 ∧ e2 ∧ · · · ∧ en

which is called basis blade; where the elements of maximum

grade is the pseudoscalar I = e1 ∧ e2 ∧ . . . ∧ en. A linear

combination of basis blades, all of the same grade k, is called

k-vector. The linear combination of such k-vectors is called

multivector, and multivectors witch certain characteristics

represent different geometric objects or entities (as points,

lines, planes, circles, spheres, etc.), depending on the GA

where we are working (for example, a point (a, b, c) is

represented in G3,0,0 [the GA of the 3D-Euclidean space

E3] as x = ae1 + be2 + ce3, however a circle can not be

defined in G3,0,0, but it is possible to define it in G4,1,0

(CGA) as a 4-vector z = s1 ∧ s2 [the intersection of two

spheres in the same space]). Given a multivector M, if we

are interested in extracting only the blades of a given grade,

we write < M >r where r is the grade of the blades we

want to extract (obtaining an homogeneous multivector M’

or a r-vector).

The dual X∗ of a r-blade X is defined by X∗ = XI
−1

n
.

It follow that the dual of a r-blade is an (n − r)-blade.

The reverse of any multivector M is defined as

〈M̃〉i = (−1)
i(i−1)

2 〈M〉i, for M ∈ Gn, 0 ≤ i ≤ n. (1)

The reader should consult [4] to detailed explanation about

CGA and its applications.

A. Conformal Geometric Algebra

To work in Conformal Geometric Algebra (CGA) G4,1,0

means to embed the Euclidean space in a higher dimensional

space with two extra basis vectors which have particular

meaning; in this way we represent particular entities of the

Euclidean space with subspaces of the conformal space. The

extra vectors we add are e+ and e−, defined by the properties

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4142



e+
2 = 1, e−

2 = −1, e+ · e− = 0. With this two vectors, we

define the null vectors

e0 =
1

2
(e− − e+); e = e− + e+ (2)

interpreted as the origin and the point at infinity, respectively.

From now on and in the rest of the paper, points in the

3D-Euclidean space are represented in lowercase, while

conformal points in underline letters; also the conformal

entities will be expressed in the Outer Product Null Space

(OPNS) (noted with an asterisk beside, also know as the

dual of the entity), and no in the Inner Product Null Space

(IPNS) (without asterisk) unless it is specified explicitly. To

go from OPNS to IPNS we need to multiply the entity by

the pseudoscalar.To map a point x ∈ V3 to the Conformal

space in G4,1 (using IPNS) we use

x = x +
1

2
x2

e + e0 (3)

Applying the wedge operator ”∧” on points, we can express

new entities in CGA. All geometric entities from CGA are

show in the table I for a quick reference.

The pseudoscalar in CGA G4,1,0 is defined as

I = IEE (4)

where IE = e1e2e3 is the pseudoscalar from G3 and E =
e+e− is the pseudoscalar from the Minkowski plane.

TABLE I

ENTITIES IN CGA

Entity IPNS OPNS

Sphere s = p + 1
2
(p2

− ρ2)e + e0 s∗ = a ∧ b ∧ c ∧ d

Point x = x + 1
2
x2e + e0 x∗ = (−Ex −

1
2
x2e + e0)IE

Plane P = NIE − de P ∗ = e ∧ a ∧ b ∧ c
N = (a − b) ∧ (a − c)
d = (a ∧ b ∧ c)IE

Line L = P1 ∧ P2 L∗ = e ∧ a ∧ b

= rIE + eMIE

r = a − b

M = a ∧ b

Circle z = s1 ∧ s2 z∗ = a ∧ b ∧ c

sz = (e · z)z

ρz = z
2

(e∧z)2

P-pair PP = s1 ∧ s2 ∧ s3 PP ∗ = a ∧ b

In GA there exist specific operators to model rotations

and translations called rotors and translators respectively. In

CGA such operator are called versor and are defined by (5)

being R the rotor, T the translator.

R = e−
1
2 lθ; T = e

et

2 , (5)

where the rotation axis l = l1e23 + l2e31 + l3e12 is a unit

bivector which represents a line (in IPNS) through the origin

in CGA, θ is the rotation angle, t = t1e1 + t2e2 + t3e3 is

the translation vector in V3. The equations (5) can also be

expressed as

R = cos

(
θ

2

)
− sen

(
θ

2

)
l; T = (1 +

et

2
) (6)

due to the exponential properties. Such operator are applied

to any entity of any dimension by multiplying the entity by

the operator from the left, and by the reverse of the operator

from the right, as show in (7).

x′ = σxσ̃ (7)

where x is any entities mentioned in table I, and σ is a versor

(rotor, translator or motor mentioned below). Using (7) is

easily to transform any entities from CGA (points, point-pair,

lines, circles, planes, spheres), not only points as is usual in

other algebras.

In CGA it is possible to use the rotors and translator

to express general rotation and screw motions in space. To

model a screw motion, the entity has to be translated during

a general rotation with respect to the rotation axis. The

implementation consecutive of a translator and rotor can be

written as the product of them. Such operator is called motor

and expressed as

M = TR (8)

The translator, rotor and motor (all of them versors)

are elements from G+
4,1, and they defines an algebra called

motor algebra. This algebra greatly simplifies the successive

computation of rotations and translation, applying only the

geometric product in consecutive versors, giving the final

result another versor of this algebra, where all the transfor-

mations are together in one element.

Vector calculus is a coordinate dependent mathematical

system and its cross product can not be extended to higher

dimensions. The representation of geometric primitives is

based in lengthy equations and for linear transformations

one uses matrix representation with redundant coefficients.

In contrast conformal geometric algebra a coordinate free

system provides a fruitful description language to represent

primitives and constraints in any dimension and by using suc-

cessive reflections with bivectors one builds versors to carry

out linear transformations avoiding redundant coefficients.

III. 3D MAP BUILDING

Using an equipped mobile robot with a laser rangefinder

sensor and stereo camera system mounted on a pan-tilt

head, each one with their own coordinate system. We apply

the method of hand-eye calibration [5] to get the center

coordinates of each devices related to a global robot co-

ordinate system. While the robot is moving exploring the

new areas two maps are performed simultaneously, one with

local coordinates ”L” (according to the current reading of the

robot) and the other with global coordinates ”G” (according

to the initial position of exploration). The use of the encoders

help us to estimate the actual position of the mobile robot

but this lectures has errors due to frictions on the wheels.

Therefore the pose of the robot, its rotation angle and

translation are calculated by

θ = θo + θerror (9)

T = To + Terror (10)

4143



where θo and To are the rotation angle and the translation

vector given by the odometer, and θerror and Terror are the

value of correction error generated by the comparison of

the actual laser reading (line segments in local map) and

the prior reading (line segments in global map). Using the

perpendicular line to plane (x, y) as rotation axis and (9),

and adding a third fixed coordinate to (10) we can apply

this values in (5) to make Tpos and Rpos that represent the

movement of the robot in the environment.

In the next section we explain how to model data from

the input devices in the 3D environment.

A. Laser rangefinder

To extract line segments from range points, we use recur-

sive line splitting method as show in [1] [2], this is a speedy

and correctness algorithm that performs divide-and-conquer

algorithms [6]. For every endpoints of the line segments, we

maps them to CGA to get the pair of points entity (see table

I) and store in a local map L. As the endpoints are 2D points

we take the last coordinate in V3 and give the 0 value to fix

the point in that plane. Now the local map L has every line

segments represented as pair of points in CGA and we can

apply any transformation on it (rotation, translation). While

the map is being built the collected data is stored in it with

regard the initial position The following records taken from

the laser rangefinder replace the actual local map for every

new robot position in the environment. When a new local

map L is taken, it is mapped to the global coordinate system

using (14) to perform a line matching. Here we use one

property of sphere to matching line segments (pair of point),

namely having two spheres s1
∗ and s1

∗ the product

(s1 ∧ s2)
2





< 0 if s1 and s2 intersect

= 0 if s1 and s2 are tangent

> 0 if s1 and s2 don’t intersect,

and to get a sphere from pair of points we use

SPP∗ =
PP ∗

PP ∗ ∧ e

(11)

When we got the line matching, we merge both maps and

correct the angle and displacement of the lines comparing

between local and global map, this little error is caused by

the odometry sensor. Then update the actual position of the

robot using (9) and (10).

We can express a motor that maps any entity that have

been taken from the laser coordinates system to the global

coordinates system. Taking the laser’s center of coordinates,

and making a motor Mlsr that represent the rotation and

translation from the center of the global coordinates system

to the laser’s center, and developing

Mcl = RposMlsrR̃pos (12)

Mpos = TposRlsr (13)

Mlu = MclMpos (14)

where (12) is the translation and rotation motor toward laser’s

center; (13) is the movement of robot using laser rangefinder

and (14) is the motor which leads us to the source of the laser

sensor in the global coordinate system.

Using (14) with any geometric entity (points, lines, circles)

recorded with the laser rangefinder sensor, we can move

easily to the global coordinate system using the form

x′ = MluxM̃lu (15)

As we are dealing in a 3D real world and the laser

rangefinder only show us a plane measure, we can add a

virtual wall (fig. 1) to the shapes from laser rangefinder to

get a 3D visual sense of the walls that are inside of the virtual

world.

If a new laser rangefinder is mounted on the mobile robot

or if the laser rangefinder is moved in another place in the

mobile robot, is easy to get the new motor that maps the data

from laser rangefinder to the global map, only updating the

motor Mlsr that represent the rotation and translation from

the center of the global coordinates system to the laser’s

center, and recalculate (14).

Fig. 1. 3D objects in the map and the virtual walls

B. Stereo camera system with pan-tilt unit

The pan-tilt unit has two degrees of freedom which can

be expressed as two rotation, one for pan and other for tilt.

This rotation we can modeled using rotors as show in (5).

Let Rpan be the rotor for the pan movement and let Rtilt for

the tilt movement. Applying this rotors using the geometric

product we can model all the pant-tilt system. The stereo

camera system has is center coordinates on the left camera

(right camera viewing in front). We apply the method of

hand-eye calibration [5], to get the axis from the pan-tilt

unit and getting its intersection (or the closet point between

the rotation axis), we build a translation from this intersection

to the source of the stereo camera system. This translation

is performed using a translator Teye as show in (5). Now

getting all this information we develop a motor that maps any

entities taken from the stereo camera system to the global

coordinates system as

Tap = RposTaxisR̃pos (16)

Rpt = RposRpanRtilt (17)

Topt = RptTeyeR̃pt (18)

Mmpt = TposRpt (19)

Msu = ToptTapRmpt (20)

4144



where (16) is the translation to the point that has the

minimum distance to the axis of pan-tilt, taking into account

rotation of the robot position. (17) is the rotor resulting of all

the spins that has done so much in the position of the robot,

as in the pan-tilt. (18) is the translation to the left camera

of the stereo camera system taking into account all the

movements that had the system. (19) is the movements motor

of the robot, along with the pan-tilt. (20) is the complete

movement motor of the robot.

Any point captured by the cameras in any angle of the

pan-tilt unit, in any position of the robot can be map from

the stereo camera system to global coordinate system using

the form

x′ = MsuxM̃su (21)

Using the CGA we can capture all the entities showed

in the table I, using the OPNS form. By capturing the

3D objects using its representative points we can represent

points, line segments (pair of points), lines, circles, planes,

spheres in the frame of stereo camera system and then take

them to the global coordinate system using (21).

With (21) and (15) all entities (stereo camera and laser

rangefinder data) can merge in the same 3D virtual en-

vironment. This combined data give us the location from

the 3D object with respect to the mobile robot in the real

environment.

IV. RELOCATION IN A MAP

The location of a robot in an environment already captured

is one of the problems that arise once the robot has finished

the full map of its environment, and it is moved to an

arbitrary place within it. The goal is to relocate the mobile

robot within the map previously captured. This is known

as the ”kidnapping problem”. The map that has been made,

has geometric information of the surrounding environment.

From such, we only use the records obtained by the laser

rangefinder sensor, as lines are less noise sensitive.

The Hough Transform [3] is a robust and effective method

to identify the location and orientation of lines. The trans-

form is the parametrization of a line from the (x,y) plan

(a Cartesian plan) to the (θ,ρ) plan (the Hough domain).

The line segments of the map are transformed to the Hough

domain, defining the transformation in the domain of θ ∈
[0, 2π), so every line segment in (x,y) correspond to a point

(θ,ρ). This gives us one characteristic in a line, if it varies

only in its angle θ it keeps the value of ρ constant. So given

a previous captured map G (global map) and a new captured

map L (new local map) the difference between them is an

angle ∆θ and a displacement ∆x and ∆y which affects the

ρ value.

The difference of two angles θa and θb in the Hough

domain is defined as follow

∆θ(θa, θb) =





θa − θb − 2π if case 1

θa − θb + 2π if case 2

θa − θb if other

(22)

where

case 1 : if θa > θb and θa + θξ ≥ 2π and θb + θξ ≤ 0

case 2 : if θa < θb y θb + θξ ≥ 2π y θa + θξ ≤ 0

this give us the calculus of an any point near by other where

its angles are near to 0 = 2π.

The relocation follows the next steps:

• Extract the actual environment, using the laser

rangefinder, extract the line segment and map them to

the Hough domain and store in L (L only has (θ,ρ)

from each line). See fig. 2 (a) and (b).

• Make the difference for each element in L with each

element in G (using (22) in angles) and store it in ∆(θ,ρ),

giving us a twist and displacement, this step can see

as the difference of the actual map an the previous

captured. See fig. 2 (c)

∆(θ,ρ) = G − L (23)

• Now we build a new global map adding all the elements

of ∆(θ,ρ) to an element li ∈ L and store it in G′

i as show

in (24)

G′ = ∆(θ,ρ) + Li (24)

this give us a displacement of the actual map close to

the global map.

• Now the angle ∆θ have been shifted in G′

i, so we

decrease G by the value of G′

i, and get an error of

displacement ξi. The goal is to reduce this error using
∑

G′

i − L = 0 (25)

• Let V be a zero vote matrix of dimension |G| × |L|,
which votes are given if the error of the displacement

is less than a threshold

ξi < (ξθ, ξρ) (26)

where ξθ and ξρ are threshold from the angle an the ρ

respectively.

Fig. 2. Steps in relocation

Repeat last 3 steps for each line in L. Finally when all the

line where displaced and voted and extracting the maximum

value per column from V where the row position correspond

to a line in G so this is the line correspondence, if the value

is null, there is not matching. Now we get all the information

about which lines are matching, and with this data we can

move and rotate the robot to the right place on the map

according to the samples taken.

4145



Using each matching line to get the average of the angles

and with this angle get the rotation angle to build a new rotor

to turn the robot and the local map L (line segments) in the

new environment. Now we have the orientation of the mobile

robot and is only missing the displacement position. We can

find the displacement ∆x and ∆y using the closet point to

the origin in the matching lines, to generate a translation

vector. The closet point in to the origin on a line in CGA

can be calculate by

p = −(L∗ · E) · ((e+ · L)IE) (27)

as we get line segments (pair of points in CGA) only need to

apply the wedge operator with the point at infinity as show

in (28)

L∗ = PP ∗ ∧ e (28)

to get the line in CGA and perform (27). With the translation

vector we make a translator and apply it to the local map

and to the mobile robot. And now the robot is locate in

the correct place into the map, then we can continue with

navigation within the environment. In Fig. 2 we can see the

relocation evolution, where (a) show the initial position of

the robot and it is taking a sample of the environment, (b)

generating the lines segments of the actual environment (c)

load previous map to perform matching, here we can see that

the mobile robot is displaced and turned in an random place,

(d) locate and put the robot in the correct place into the map,

here the robot is located itself on the previous environment

and placed in the right place.

Using these steps on a line based map, the mobile robot

can get its position taking small samples of the surrounding

environment. Only the line parameters (θ,ρ) are need to

performs the re-localization.

V. GETTING 3D POSITIONS BASED ON VISUAL

LANDMARKS

A landmark literally is a geographic feature used by

explorers and others to find their way back or move through

an area. In the map building process a mobile robot can use

these landmarks to remember the place where it was before

while it explore its environment. Also the landmarks can

be used to find robot position in a previous building map

facilitating the re-localization. As we are using a camera

stereo system, the 3D position of any object can be also

calculated and it can be represented in the 3D virtual

environment. Using these objects as a landmarks, the robot

gets its relative position.

A. Machine learning phase

A natural or artificial landmark located in the actual

environment helps to the mobile robot to know its position on

the map. Viola and Jones present a new and radically faster

approach to face detection based on the AdaBoost algorithm

from machine learning [7], and this approach can be used

to detect our statics landmarks. Once the landmarks have

been selected and trained, the mobile robot can use them

to navigate in the environment performs the Viola an Jones

algorithm. If a landmark is found we get a sub-image IL

from the left camera image. This IL is the region of the

image where the landmark was found (fig. 3).

When a landmark is identified in one image (left camera),

we must be sure that the landmark is in the other image as

well (right camera of the stereo camera system). To get the

3D position, the landmark must be detected in both images.

The landmark in the right image is also detected by Viola

and Jones algorithm, and identify its region by a sub-image

IR.

B. Landmark position estimation

When we talk about the landmark position estimation, we

are looking for the 3D location of these landmark in the

environment and not for the pose (position and orientation)

of the object found. To do this task we precalculated the

depth using the disparity of one object fixed point.

Getting the landmark identified in both images, we pro-

ceed to calculate the points of interest. To do this we use

Canny edge detection operator on IL and a correlation. A

number of correlation-based algorithms attempt to find points

of interest on which to perform the correlation. In fact, the

normalization embodied into the Normalized Cross Correla-

tion (NCC) and Zero Mean Normalized Cross Correlation

(ZNCC) allows for tolerating linear brightness variations.

Further more, thanks to the subtraction of the local mean,

the ZNCC provides better robustness than the NCC [8] since

it tolerates uniform brightness variations as well.

Fig. 3. Identify an object and getting its position in the 3D virtual
environment

Correspondences of an image patch are searched for along

the epipolar line by calculating the ZNCC only in a given

interval (dmin, . . . , dmax) of so-called disparities [9] [10].

The term disparity denotes the Euclidean distance from one

point on the epipolar line to a given point in the other camera

image [11]. A small disparity represents a large distance to

the camera, a large value a small distance (parallax).

When all the points are matched in both images we

proceed to calculate its 3D position using the triangulation.

4146



Then we integrate this set of points to get its center of gravity

and place the center of a sphere on it. The radius of the

sphere is calculated taking the highest number of points of

the landmark. The sphere is stored in the 3D virtual map

using CGA and it is labeled as a landmark.

VI. EXPERIMENTS

Fig. 4. Registering the environment, merging laser and stereo data

The fig. 1 shows a virtual scenario using a laser

rangefinder simulator and a real 3D objects capturing with

the stereo camera. Here we can see the 3D objects (the small

colored objects) are in the place where the robot took the

samples from them (its 3D position), also we can complete

the environment representation using the virtual walls.

Fig. 4, shows the creation of a real small 3D map merging

the data registered by the laser rangefinder and the 3D shapes

recorded by the stereo camera system. Here we can see that

the laser line (line segments) are together with the rest of

the 3D objects in the right pose.

In the Fig. 5, it is shown the creation of a real 3D map

and the found landmarks.

All the maps are stored using only CGA entities, this help

to reduce storage space and it has all the information about

the objects inside the environment, and it has the property to

be updated. Also we can apply any transformation as rotation

or translation to move on the map.

VII. CONCLUSIONS

In this paper the authors have shown the use of geometric

entities in Conformal Geometric Algebra (CGA) for mode-

ling input data for a 3D virtual environment, in this way

merging in a global coordinate system, the laser rangefinder

and stereo camera system (mounted over a pan-tilt unit),

Furthermore we present a new method for relocalization

using lines and the Hough transform. The machine learning

technique is used for the object’s recognition. The detected

objects are used as a landmarks witch greatly help in the

interaction with the environment. The experiments with a real

Fig. 5. Mobile robot founding landmarks while it is navigating its
environment. On the top see the zoom of the landmark, the stereo view
and the 3D map.

robot validate our method. We believe that our approach can

be of great use for mobile robots or upper body humanoids

installed on mobile platforms.

REFERENCES

[1] L. Zhang and B. K. Ghosh, “Line segment based map building and
localization using 2d laser rangefinder,” in Proceedings of the IEEE

International Conference on Robotics and Automation, vol. 3, 2000,
pp. 2538–2543.

[2] A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, “An
optimized segmentation method for a 2d laser-scanner applied to mobile
robot navigation,” in Proceedings of the 3rd IFAC Symposium on

Intelligent Components and Instruments for Control Applications, pp.
153-158., 1997.

[3] P. Hough, “Methods and means for recognizing complex patterns,” U.S.
Patent 3 069 654, 1962.

[4] E. Bayro-Corrochano, “Robot perception and action using conformal
geometry,” in the Handbook of Geometric Computing. Applications in

Pattern Recognition, Computer Vision, Neurocomputing and Robotics,
E. Bayro-Corrochano, Ed. Springer Verlag, Heidelberg, 2005, ch. 13,
pp. 405–458.

[5] E. Bayro-Corrochano, K. Daniilidis, and G. Sommer, “Motor algebra
for 3d kinematics: The case of the hand-eye calibration,” Journal of

Mathematical Imaging and Vision archive, vol. 13, pp. 79–100, October
2000.

[6] V. Nguyen, S. Gächter, A. Martinelli, N. Tomatis, and R. Siegwart, “A
comparison of line extraction algorithms using 2d range data for indoor
mobile robotics,” Auton. Robots, vol. 23, no. 2, pp. 97–111, 2007.

[7] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of
simple features.,” In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pp. 511-518, December 2001.
[8] L. Di Stefano, S. Mattoccia, and F. Tombari, “ZNCC-based template

matching using bounded partial correlation,” Pattern Recogn. Lett.,
vol. 26, no. 14, 2005

[9] O. Faugeras et al., “Real-time correlation-based stereo: algorithm,
implementation and applications,” INRIA Technical Report no. 2013,
1993.

[10] P. Azad, T. Gockel, R. Dillmann,“Computer Vision: Principles and
Practice,” Ed. Elektor Electronics, 2008

[11] R. Hartley, A. Zisserman, “Multiple View Geometry in Computer
Vision,” Ed. Cambridge University Press, 2004

4147


