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Abstract— Visual Simultaneous Localization And Mapping
(SLAM) implementations must use feature extraction to reduce
the dimensionality of image input, yet no comparison of
feature extractors exists in the context of visual SLAM. This
paper presents both a method for comparison of visual SLAM
performance using several different feature extractors and the
first experimental study using this method. Possible evaluation
metrics are discussed and consistency testing and accumulated
uncertainty are chosen to measure performance. Three feature
extractors commonly used for visual SLAM are examined: the
Harris corner detector, the Kanade-Lucas-Tomasi tracker, and
the Scale-Invariant Feature Transform. All three are found to
perform similarly in an indoor test environment, close to or
within the limits of measurement. A modest scale change is
handled without difficulty. We conclude that feature extractor
choice is not significant in terms of visual SLAM performance
and other criteria may be used to make the selection.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) fuses
the two complementary problems of mapping and localiza-
tion to allow a mobile robot to navigate and map an unknown
environment without any prior information [1]. As a robot
travels through the world, uncertainty in its pose increases
due to imperfect sensor readings. Landmarks observed in
the world are added to a map, and re-observation acts to
decrease the state uncertainty. Total uncertainty is kept from
growing indefinitely and the robot is able to overcome noisy
and incomplete sensor data.

Visual SLAM using cameras is motivated by the fact that
cameras are information-rich, compact, and fast [2]. Access
to the third dimension is easier than the traditional laser range
finders that sweep out a two-dimensional plane parallel to
the ground. Additionally, the maximum distance at which
objects can be sensed is greater for cameras than laser- and
acoustic-based sensors. In fact, points at “infinity” can be
used to determine camera orientation [3]. We further consider
the problem of bearing-only, or monocular, visual SLAM
using a single camera. In contrast to stereo camera setups
that return a range, or depth, estimate for a feature, a single
camera only returns a bearing, or direction, to a feature.
The camera model is not invertible since the projection
process maps a three-dimensional world-space point to a
two-dimensional image-space point. In the bearing-only case
a feature initialization technique is required to track a feature
over multiple images to estimate a depth value.
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Although the amount of information in a single image–on
the order of hundreds of thousands of pixels–is useful for
discriminating between landmarks, it becomes necessary to
reduce the dimensionality of the input to make the SLAM
process computationally tractable. This reduction is known
as feature extraction.

We consider visual SLAM performance with respect to
different feature extractors at two stages in the SLAM
process: directly after feature extraction before any SLAM
processing (the “feature stage”), and after SLAM processing
when the map and robot pose have been estimated (the
“SLAM stage”). Measuring performance at the feature stage
yields results that are not conditioned on the particular
SLAM implementation, so fewer assumptions are made.
However, performance of SLAM itself is not directly mea-
surable a this stage, so a human-derived metric must be used
as an approximation. Evaluation at the SLAM stage has the
advantage of directly measuring the desired performance, but
becomes dependent on the particular SLAM system.

Every visual SLAM implementation requires feature ex-
traction, yet there are few comparisons of different tech-
niques. Performance at the feature stage has been previously
examined in [4] by applying the information retrieval metrics
of recall and precision to the feature extraction and matching
problem. Feature detectors are examined to see how well they
can track points through a sequence of images in [5], and
the separability of clusters representing feature points with
different feature descriptors is measured in [6]. However,
none of these approaches examines the actual performance
of a SLAM algorithm. To overcome these restrictions, this
paper presents two main contributions: a methodology for
measuring SLAM performance, and an experimental study
that examines three commonly used feature extractors.

We evaluate SLAM performance in terms of the estimated
SLAM state. Typically, work describing the performance of
SLAM is presented with a graphic of the final map, showing
that the system “works.” When ground truth is available, as
in simulation, results are sometimes given in terms of final
pose error or plots of error in individual variables with 2σ
or 3σ error limits derived from the estimated covariance. If
the average normalized error over multiple Monte Carlo runs
stays within error bounds, it is judged to be consistent and
offer an estimate compatible with ground truth. Consistency
testing is described in general by Bar-Shalom and Fortmann
[7] and applied to SLAM by Bailey et al. [8].

The methods mentioned above are only able to judge if a
system provides correct estimates, not compare performance
between different systems or configurations. To be able to
produce a ranking of performance with different extractors,
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we introduce the metric of accumulated uncertainty for
quantifying SLAM performance.

In order to describe the SLAM performance evaluation
methodology and explain the experimental study, we first
discuss existing existing feature extraction and matching
algorithms in Section II, followed by a description of our
visual SLAM system in Section III. Performance evalua-
tion metrics are discussed in Section IV. The methodology
used to evaluate and rank feature extractors is presented in
Section V, followed by experimental results in Section VI.
Finally, conclusions are drawn in Section VII.

II. FEATURE EXTRACTION AND MATCHING

Feature extraction consists of a detector that finds points
according to an interest metric, and a descriptor that de-
scribes the immediate area around an interest point. A
matching algorithm compares descriptors between frames to
find corresponding points.

A. Feature Detectors
The Harris-Stephens (or simply Harris) corner detector [9]

is one of the most established and successful algorithms.
For each pixel in an image, a matrix is formed that is
related to the autocorrelation function. The matrix captures
the principal curvatures of the image intensity, that is, how
quickly the intensity changes in response to a small change
in position. The eigenvalues of the matrix are proportional to
the curvatures and are used to decide if a point is a corner,
part of an edge, or a “flat” region of the image. A response
function involving the trace and determinant of the matrix is
used to avoid calculating the eigenvalues explicitly and local
maxima points with response above a threshold are taken
to be corners. The autocorrelation idea is also used in other
detectors [10] but Harris has proven the most popular.

The theory of scale-space shows that in addition to a
two-dimensional image position, a third dimension, scale,
can be constructed using successive Gaussian convolution,
which calculates the appearance of the image as if seen from
further away [11]. It can be shown that points invariant to
scale can be found by generating a pyramid of progressively
Gaussian-smoothed images and then searching for extrema
of the second derivative of the Gaussian convolution (or
Laplacian of Gaussian). This is utilized by Lowe in the scale-
invariant feature transform (SIFT) [11]. SIFT approximates
the Laplacian of Gaussian function using a difference of
Gaussians and extrema are found in the images formed by
subtracting adjacent levels in the Gaussian pyramid. The
method is engineered to be robust, invariant to scaling and
rotation, and partially invariant to affine transformation.

Lucas and Kanade approach feature detection from a
tracking perspective rather than using a human-derived met-
ric for “interestingness” [12]. Features are chosen for their
suitability for the method used to track features from frame
to frame, so in some sense it is “optimal by construction.” A
Newton-Gauss style gradient-based search is used to track
an image patch through consecutive frames, estimating a
displacement that minimizes the sum of squared differences.

Interestingly, this leads to a similar metric as the Harris
detector, where a point is chosen if both eigenvalues of
a matrix similar to the autocorrelation matrix are above a
threshold. Shi and Tomasi extend the work to estimate an
affine warp between the current and original image patches,
and use dissimilarity to detect tracking failure (which could
occur due to occlusion, a feature leaving the camera field
of view, or tracking a depth discontinuity that appears as a
point to the camera but is actually a virtual point) [13]. We
refer to this extractor as the Kanade-Lucas tracker, or KLT.

While this is not an exhaustive list of all feature detectors,
these three are commonly used for visual SLAM, and are
thus the focus of this work. An overview of the state of the
art with respect to feature detectors is given by Mikolajczyk
et al. [10].

B. Feature Descriptors
Harris and KLT describe the local neighborhood of a

point by directly storing the raw image intensity values
from a small square window around the point. This has the
advantage of simplicity of computation but is not invariant
to lighting changes, rotation, or viewpoint changes which
may warp the image in an affine or projective manner. To
overcome the susceptibility to lighting change, the descriptor
can be normalized by subtracting the mean and scaling the
values to cover a certain range (for example, the maximum
range of the data type used for representation).

The SIFT descriptor first computes gradient magnitude and
orientation for every pixel in a small region around the point.
The region is divided into 4×4 subregions, and an orientation
histogram is formed for the subregion, with the contribution
of each pixel orientation the histogram bins weighted by
gradient magnitude. Scale and rotational invariance comes
at the cost of additional computation and may not be usable
in real-time systems.

While the descriptors described here can be applied to
any of the feature detectors described above, in this paper
we treat the detector and descriptor as a unit for simplicity.
The Harris and KLT detectors are paired with raw image
descriptors and the SIFT detector is paired with with the
SIFT descriptor.

C. Feature Matching
Matching is performed using the nearest-neighbor with

distance ratio (NNDR) method [11]. For each detected
feature the first- and second-nearest SLAM map features in
terms of descriptor Euclidean distance are found. Matches
are only accepted if the ratio of distances to the first-
and second-nearest neighbors is less than a threshold. The
reasoning behind this test is that incorrect matches will tend
to match equally poorly to multiple features, so the ratio
will approach unity. Gating based on this ratio ensures that
accepted matches are in some sense unique.

III. VISUAL SLAM SYSTEM

This section outlines the visual SLAM system used for
the experiments. The system requires a camera and a mobile
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Fig. 1. Physical setup and references frames for the visual SLAM system.
Robot and world frames R and W are related through the robot position
r and corresponding transform R

TW . Landmarks mi are represented as
Gaussians in the world frame. Robot frame and camera frame C are allowed
to differ by an arbitrary transform R

TC . In these experiments the camera
is actually mounted pointing to the side of the robot.

robot capable of returning odometry data, and consists of: a
SLAM filter based on the standard EKF-SLAM formulation
[14], [15] and a visual front-end that processes images into
useful SLAM observations. EKF-SLAM is the application of
the Extended Kalman Filter (EKF) to the SLAM problem.
The EKF, being an instantiation of the more general Bayes
filter, estimates a state x in two steps: a prediction step
that predicts a new estimate x−

k from the previous estimate
at time k − 1 and a control vector uk that represents
the odometry input, and a correction step that generates a
corrected estimate x+

k using an observation zk of the world.
Since the filter is recursive and assumes the Markov property,
x+

k becomes the input for the next filter iteration.
We assume a robot moving in the two-dimensional plane,

making observations of landmarks in a three-dimensional
environment. The estimated state is

x =
(

rT ,mT
1 ,mT

2 , . . . ,mT
N

)T (1)

where r = (x, y, θ) is the robot position and heading (pose)
and mi = (xi, yi, zi) is the ith landmark location. One of the
underlying assumptions of the EKF is that state variables can
be represented as Gaussian random variables, which are fully
characterized by a mean and covariance. The filter maintains
the full covariance Σ of x which for SLAM is

Σ =

[

Σr Σrm

ΣT
rm Σm

]

(2)

where Σr is the robot pose covariance, Σm is the covariance
of the map landmarks, and Σrm is the cross-covariance
between the two. A graphical representation is shown in
Fig. 1. Landmarks and robot pose are represented in the
world reference frame W and the robot and camera reference
frames R and C may differ by an arbitrary transformation.

At the start of each iteration of estimation, the predicted
state estimate x−

k is generated from the previous state x+
k−1

and control input uk by a motion model f , where the control

input is assumed to be a Gaussian random variable with
covariance Q. We use an odometry-based motion model that
predicts forward the current robot pose based on odometry
measurements from the robot wheels. The motion model up-
dates the estimated mean deterministically and the covariance
is updated by linearizing the model and using the resulting
Jacobian matrices to transform the previous covariance Σ+

k−1

and and add the control covariance Q.

x−

k = f
(

x+
k−1,uk

)

Σ−

k = FxΣ
+
k−1F

T
x + FuQFT

u

(3)

where Fx = ∂f/∂x|
x
−

k

and Fu = ∂f/∂u|
x
−

k

are the relevant
Jacobians. SLAM assumes a static environment, so landmark
positions are not modified by the motion model update.

After the prediction step, features are extracted from an
image captured from the camera and matched to the features
representing map landmarks. Once an extracted feature with
image position zk had been matched to a map landmark,
the projection ẑk of the map landmark in the image frame
is calculated using the observation model h. We use the
standard pinhole camera model accounting for second-order
radial distortion [16]. The innovation νk is the error between
projected and observed points in image-space, and has a
corresponding covariance Sk that captures the uncertainty in
robot pose, landmark position, and the observation model.
The innovation covariance is calculated by linearizing the
model and using the resulting Jacobian matrices to transform
the predicted covariance Σ−

k and add the covariance R

representing observation model uncertainty.

νk = zk − ẑk = zk − h(x−

k )

Sk = HxΣ
−

k HT
x + HπRHT

π

(4)

where Hx = ∂h/∂x|
x
−

k

and Hπ = ∂h/∂π|
x
−

k

are the
relevant Jacobians, and π is a vector of observation model
parameters. The innovation and innovation covariance are
then used to correct the predicted SLAM estimate.

W = HxΣ
−

k S−1
k

x+
k = x−

k + Wνk

Σ+
k = Σ−

k − WSkW
T

(5)

The innovation covariance Sk is used to gate matches so
measurements are only used if they are compatible with the
current state estimate, reducing mismatches. Measurements
are rejected if the innovation is larger than the 99% confi-
dence limit defined by the innovation covariance matrix.

Implementation details of the system with bearing-only
SLAM specifics and derivations are given in [17].

IV. PERFORMANCE EVALUATION

Ideally, SLAM performance would be assessed directly by
comparing measured robot pose and landmark positions to
the SLAM state vector estimate. Measuring a ground truth is
difficult, especially in arbitrary environments. In our office-
style environment it is possible to measure robot pose by
tracking known points on the ceiling, but it is infeasible to
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measure landmark positions. With these constraints in mind,
evaluation is performed using only the robot pose.

Any filter, whether used for SLAM or not, should produce
estimates that are consistent such that the estimates are com-
patible with ground truth. However, testing for consistency
does not provide a ranking between different estimates, since
estimates are either consistent or not. An additional metric
must be found that provides a means of comparing the
performance between estimates generated, in this case, using
different feature extractors. In the methodology described
later, consistency testing is used as a verification step before
a comparative metric is applied to create a ranking.

A. Consistency Testing
Successful SLAM runs should be consistent in the sense

that the “state errors should be zero-mean (unbiased) and
compatible with the covariance yielded by the filter” [7,
p. 71]. Consistency is tested by calculating the normalized
estimation error squared (NEES)

εk =
(

rk − r̂k

)T

Σ−1
r,k

(

rk − r̂k

)

(6)

using the SLAM estimated robot pose rk, ground truth robot
pose r̂k, and estimated pose covariance Σr,k [7], [8]. As
stated above, the NEES should ideally be calculated with
the entire SLAM state, however since ground truth landmark
positions are unavailable, we only consider robot pose. With
the hypothesis of a consistent filter with correct assumptions
of Gaussianity and linearity, εk follows a χ2 distribution with
degrees of freedom equal to the dimensionality of rk.

A single trial does not yield enough information to de-
termine if the system produces consistent results (a single
run of an inconsistent filter may generate consistent results,
and vice versa, depending on the environment) [8]. Instead,
the average NEES value ε̄k is considered, calculated from N
Monte Carlo runs of the filter

ε̄k =
1

N

N
∑

i=1

ε(i)k (7)

where ε(i) is the NEES for trial i. The robot pose predicted
by the motion model and observation predicted by the
observation model are randomly sampled according to the
(Gaussian) robot pose covariance and innovation covariance,
respectively. The χ2 acceptance test from [7] is then used to
check the hypothesis H0 that the system errors are consistent
with the estimated covariance. This hypothesis is accepted if
the average NEES values lie within a confidence interval
ε̄k ∈ [r1, r2], where the interval is calculated such that

P {ε̄k ∈ [r1, r2]|H0} = 1 − α (8)

where α is a small number such as 0.05 or 0.01, defining a
95% or 99% confidence interval, respectively. This defines a
region for which NEES values are consistent. Values below
the lower bound are conservatively inconsistent, meaning the
estimated covariance is compatible with the estimation error,
but could be made smaller and remain consistent. Above
the upper bound, values become optimistically inconsistent,

meaning that the error is outside a reasonable region defined
by the estimated covariance.
B. Comparative Metrics and Accumulated Uncertainty

A useful metric for comparing performance should con-
sider the state error and uncertainty and allow for a quan-
titative ranking of estimates obtained with the different
feature extractors. This section discusses the shortcomings
of some possible comparative metrics before describing a
novel metric that satisfies the desired properties.

Accumulated error is an obvious metric for comparing
performance, as minimizing the magnitude of state error is
part of the goal of a SLAM system, and the result is easily
comparable. However, it does not account for the uncertainty
in state estimates and is thus not directly applicable to
probabilistic systems. In this application for example, the
case of small absolute error but near-zero uncertainty that is
inconsistent with ground truth should not be ranked more
favorably than the case of large absolute error and large
uncertainty that is consistent with ground truth. Accumulated
error is therefore not appropriate.

To account for the uncertainty, we could weight error by
covariance and accumulate normalized error (the NEES).
However, it is difficult to rank performance based on accu-
mulated NEES. The best performance is not the lowest score,
since a zero score is obtainable by setting the covariance to
infinity at all timesteps, which is obviously not a desirable
solution. Instead, the best performance would have consistent
NEES values, but since NEES is classified in a binary manner
(consistent or not) there is no concept of rank.

All things being equal, it is considered desirable to have
less uncertainty, as the robot position becomes better known.
Therefore, accumulating uncertainty rather than normalized
error is chosen as a solution to the problem of choosing
a metric. The best performance, ideally, is considered to
be the system that remains consistent while obtaining the
smallest uncertainty. The volume V of the ellipsoid that
represents the estimated covariance matrix is considered to
represent “uncertainty” at each timestep. V is found using
the lengths of the principal axes ri of the covariance, which
are equivalent to the square roots of the eigenvalues λi, and
is easily calculated using the determinant of Σr

V (Σr) =
4

3
πr1r2r3 =

4

3
π
√

λ1λ2λ3 =
4

3
π
√

det(Σr) .

(9)
Accumulated uncertainty is simply the sum of volumes over
time, given Ns steps in a trial

AU =

Ns
∑

k=1

V (Σk,r) . (10)

This statistic is calculated over the Monte Carlo runs, and
the average of accumulated uncertainty

AU =
1

N

N
∑

i=1

AU i (11)

is used to rank feature extractors, where the highest-ranked
extractors will have the lowest accumulated uncertainty while
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remaining consistent. It should be noted that the accumulated
uncertainty values obtained in this manner with different
feature extractors are only directly comparable on the same
dataset. Comparison between extractors on different length
datasets could be accomplished by normalizing the accumu-
lated uncertainty with respect to path length.

V. EVALUATION METHODOLOGY

Using the metrics defined in the previous section, we
now present a procedure for performance evaluation of
visual SLAM with different feature extractors. Images and
odometry data are captured from a mobile robot with a
single camera while it is driven through an environment. A
ground truth is captured simultaneously using an independent
vision system to be explained shortly. Data is captured for
later offline processing so that multiple SLAM runs can be
made on the same dataset. After data acquisition, multiple
Monte Carlo runs of the SLAM system are generated by
randomly sampling the robot pose and innovation covari-
ances at the prediction and observation steps, respectively.
Evaluation is then carried out in two steps: the first to test
estimate consistency, and the second to rank the feature
extractors. The average NEES values are calculated in order
to test consistency. Feature extractors that cause inconsistent
estimates should be rejected. However, since EKF-SLAM
has an inherent problem with inconsistency [8], it may
become necessary to relax this rule. After rejecting based
on consistency testing, the accumulated uncertainty metric is
applied and used to rank feature extractors from the lowest
to the highest uncertainty, using the same trajectory.

VI. EXPERIMENTAL STUDY

A. Setup
An ActivMedia Pioneer P3-AT mobile robot was used

to record data for offline processing. A Dragonfly IEEE-
1394 camera from Point Grey Research captures images
at a resolution of 640×480 pixels using Bayer encoding.
Images are Bayer decoded by downsampling, resulting in
a final image size of 320×240 pixels. Odometry data from
the robot is recorded at the same time an image is captured.
Taking advantage of the structured nature of the environment,
ground truth is generated with a ceiling tracker that uses the
regular grid of ceiling tiles to calculate robot pose, as detailed
[17]. The hardware setup is shown in Fig. 2.

The dataset is generated by driving the robot on the second
floor of the Computing Science Centre at the University of
Alberta. This environment represents a typical institutional
foyer setting, shown in Fig. 3. Data is recorded after every
40 mm translation or 4◦ rotation, whichever is encountered
first. A C-shaped path is taken by the robot, as shown in
Fig. 4. It is designed such that during the last leg of the
path the robot re-observes the initial part of the environment.
Although this is not loop closure in the sense of returning to
the starting position, it is a type of closure since the initial
features are visible. This is important as loop closure is a
key test of a SLAM system, since it is only through re-
observing previous features that pose covariance is reduced.

Fig. 2. ActivMedia Pioneer P3-AT with Point Grey Research Dragonfly
IEEE-1394 cameras. One camera points to the left of the robot and is used
for SLAM observations, while the other camera points upward and is used
for tracking the ceiling to generate a ground truth robot path.

Fig. 3. Robot in experimental environment. The setting is an elevator foyer
in the Computing Science Centre at the University of Alberta.

Additionally, this path configuration allows for the evaluation
of feature extractors when a scale change occurs, as the robot
observes the same space at varying depth.

The SLAM system described above is used to process the
recorded data. The three feature extractors described earlier
were used in the SLAM system: SIFT with a 128 element
descriptor, Harris with an 11×11 image patch descriptor, and
KLT with an 11×11 image patch descriptor.

Data from five trials was captured (Trials 1–5), where
the trial number corresponds to the scale-change depth d
in metres shown in Fig. 4. Fifty Monte Carlo runs were
performed for every trial using each feature extractor, and
the average NEES, uncertainty, and accumulated uncertainty
at each time step were calculated. We show the results from
Trials 1, 3, and 5 in Figs. 5, 6, and 7, respectively. Trials 2
and 4 exhibit the same trend and are described in [17].

B. Consistency Testing Results
Consistency is measured by examining the average NEES

plots for each trial, as shown in Figs. 5–7. Given that the
robot pose state is of size nx = 3 and the number of runs
in each trial is Nr = 50, the NEES consistency interval is
[2.36, 3.72] using a typical value of α = 0.05. This interval
is shown as dashed lines on the NEES plots.

Examining the three plots, it is seen that with all three fea-
ture extractors the robot pose average NEES remains within
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Fig. 5. Results from Trial 1. Left: Average NEES values using the three different feature extractors. Dashed lines indicate the 95% confidence bounds
that demarcate the region in which the estimate is considered consistent, and the ¦ on the time axis indicates when the robot was able to re-observe the
initial section of the environment. Initially the system is conservatively inconsistent due to uncertainty added to account for the ground truth collection, and
reaches the consistent region briefly before finishing conservatively inconsistent. Right: Average accumulated uncertainty with final 1σ standard deviation
intervals. The standard deviation intervals overlap and little difference is seen between extractors. The change in slope around t = 135 corresponds to the
robot re-observing the initial section of the environment.
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Fig. 6. Results from Trial 3. Left: Average NEES values using the three different feature extractors, with 95% confidence bounds and ¦ marking the
time of initial environment re-observation. Initially the system is conservatively inconsistent, then passes through the consistency region, with optimistic
inconsistency beginning shortly after the first corner in the robot path between t = 140 and t = 160. Although the system recovers somewhat, it remains
inconsistent at termination with all three extractors. Right: Average accumulated uncertainty with 1σ standard deviation intervals. The intervals either
overlap or are very close, and little difference is seen between extractors. The change in slope around t = 215 corresponds to the robot re-observing the
initial section of the environment.
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Fig. 7. Results from Trial 5. Left: Average NEES values using the three different feature extractors, with 95% confidence bounds and ¦ marking the
time of initial environment re-observation. Initially the system is conservatively inconsistent, then passes through the consistency region, with optimistic
inconsistency again beginning shortly after the first corner in the robot path around t = 160. The system appears to diverge in all cases. Right: Average
accumulated uncertainty with 1σ standard deviation intervals. The intervals either overlap or are very close, and little difference is seen between extractors.
The change in slope around t = 280 corresponds to the robot re-observing the initial section of the environment.

or below the consistency region during Trial 1, rises above
the consistency region to become optimistically inconsistent
in Trial 3, and finishes well above the consistency region
in Trial 5. Ideally, values should remain within the consis-
tency bounds, although we will consider a conservatively
inconsistent estimate acceptable in this paper since the error
between robot pose and ground truth is still explained by the
estimated covariance. All trials initially exhibit conservative
inconsistency due in part to uncertainty added to the robot
pose covariance to account for measurement error in the
ground truth estimation. In all trials, there is little difference
between performance with the three extractors, with the
NEES in all cases following the same trend, so it seems
there is no advantage to choosing a particular extractor in
terms of consistency.

According to the methodology defined above, we should
reject all the extractors in Trials 3 and 5. However, since
all extractors are affected similarly by inconsistency, we will
still compute and compare the accumulated uncertainty. In-

consistency in EKF-SLAM systems is a known problem that
stems from, among other factors, the required linearization
of non-linear models [8], [18] and is not easily avoidable.
Finding useful solutions to EKF inconsistency is still an open
problem. In light of this, it is reasonable that the longer Trials
diverge further from the average NEES bounds.

C. Accumulated Uncertainty Results
It is seen from Figs. 5–7 that in many cases the average

accumulated uncertainty with one extractor will lie within
one standard deviation of another, and vice versa. For all
other cases, the average accumulated uncertainty of all
extractors lie within the same order of magnitude, often
within a small multiple of the standard deviation of each
other. While this does not imply statistical insignificance, it
is a strong indication that SLAM performance does not vary
much with different extractors.

If a ranking of performance with respect to extractor
choice based on accumulated uncertainty is desired, SIFT
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yields the lowest average accumulated uncertainty in four of
five cases, although the standard deviation for SIFT often
overlaps that of other extractors. In the four cases Harris is
the second-lowest three times, with KLT second-lowest once.

In all cases, because average accumulated uncertainty
results are not significantly different and the average NEES
curves follow the same trend with different extractors we
conclude that these results show that any of the three
extractors may be used to perform visual SLAM in similar
close-range indoor environments. This implies that other
requirements such as speed or rotational invariance should
be considered when choosing a feature extractor.

VII. CONCLUSION

This paper has presented two main contributions: a method
for comparing the performance of a SLAM system using
several different feature extractors, and an experimental study
using this methodology with three extractors commonly
used in visual SLAM. The methodology consists of two
parts: testing consistency using the average NEES values
to determine if estimates are compatible with ground truth,
and creating a ranking of the feature extractors that result
in consistent estimates using the novel average accumulated
uncertainty metric.

From the results obtained, it was seen that over time
the SLAM system becomes optimistically inconsistent. This
agrees with the simulation carried out by others and is mostly
a result of the EKF linearization step, rather than feature
extractor choice. However, the average NEES curves using
different extractors follow the same trend with only a small
offset in magnitude, showing that the consistency of the
system is largely independent of feature extractor choice.
Although the inconsistency should cause the rejection of
all the feature extractors, further analysis was performed
since all feature extractors were affected equally without any
advantage. No significant difference was found between dif-
ferent feature extractors in terms of accumulated uncertainty.

We speculate that a contributing factor was the gating
performed on measured feature points before the observation
step. Rejecting measurements that have large innovation with
respect to innovation covariance greatly reduces the number
of mismatches resulting from the feature matching step,
which allows a poor feature extractor to perform as well as a
good feature extractor, acting to equalize performance. It ap-
pears instead that the choice is “lost in the noise” among the
multitude of parameters and choices involved in designing
and calibrating the components of a visual SLAM system. As
such, the system as a whole must be analyzed to determine
optimal choices and settings to maximize performance.

These points lead to the final conclusion that the choice of
feature extractor is not critical, so other criteria or constraints
in a particular situation may dictate feature extractor choice.
As with any experimental study, it was not possible to test
every possible option and parameter set, and as such it is
difficult to determine how well the results generalize to other
situations. However, we believe similar systems operating in
similar environments will yield the same results.

We conclude by suggesting that the metric of accumulated
uncertainty could be an interesting tool for quantitatively
comparing SLAM results. Future work may include using
this metric to examine the effect of other parameter choices
on SLAM performance.
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