
A Minimalist Feedback Control for Path Tracking in Cartesian Space

Antonio Sgorbissa and Renato Zaccaria

Abstract— The article proposes a new feedback control model
that allows to track a generic curve in the Cartesian Space
expressed through its implicit equation, and has minimal
requirements in terms of measurement and computation ca-
pabilities. The model measures only the distance between the
vehicle and the path, whereas it ignores the vehicle’s orientation.
In spite of this, it allows to regulate to zero both the distance
to the path and the difference between the vehicle’s orientation
and the tangent to the curve, and it is asymptotically stable.

I. INTRODUCTION

The article proposes a new feedback control model that

allows path tracking for unicycle vehicles. The problem has

a particular relevance in mobile robotics [4][5][6], since path

tracking is a fundamental prerequisite for navigation both

when the path has been planned a priori, and when it is

generated on line in order to avoid unforeseen obstacles.

Given a curve in the Cartesian Space, the control model

proposed here allows to regulate to zero a) the distance to

the path as well as b) the difference between the vehicle’s

orientation and the tangent to the curve, and it is proven

to be asymptotically stable. In addition, when compared to

other models in literature, it is “minimalist” in two senses:

• only the distance error D between the vehicle and the

path is measured and fed to the controller, whereas most

approaches require to measure both the lateral distance

from the path and the difference between the desired

and the actual orientation (Figure 1 on the left);

• the path to follow is expressed through the implicit

equation of the curve in the form f(x, y) = 0.

About the first point, remark that the distance and the

orientation errors cannot be reliably estimated through the

integration of state equations: it is assumed here that odo-

metric reconstruction is available, but it is affected by sys-

tematic and non systematic errors that make the resulting

estimate unreliable, even after a short path (which is the

case especially for cheapest robots for domestic use, e.g.,

cleaning robots). Under these circumstances, external sources

of information are usually required for the robot to localize

itself with respect to the path; unfortunately, orientation is

usually more affected by errors and more difficult to be

measured with exteroceptor sensors than position or distance.

An example is wall following: the actual distance from

the wall can be sensed through proximity sensors (i.e., sonar,

laser scanners, etc.) by considering raw measurements alone,

whereas measuring orientation requires more complex com-

putations (compasses are not sufficiently accurate). Another

A. Sgorbissa and R. Zaccaria are with DIST, Univer-
sity of Genova, Via Opera Pia 13, 16145, Genova, Italy.
Email:{sgorbiss,renato}@dist.unige.it.

Fig. 1. Left: block diagram of the system; right: Tracking a straight path.

example is GPS-based or IMU-based outdoor navigation: the

heading information returned by the GPS is accurate only

when velocity is high, whereas Inertial Measurement Units

have the problem of temporal drift, and therefore they are

not a reliable source of information in the long term. Notice

that – with a differentially driven unicycle vehicle – even

a small error in wheels encoders can produce a significant

error in orientation when moving at low speed.

The second point is important in that it allows to specify

paths in a very simple and intuitive way. Most approaches

in literature deal with “trajectory tracking” instead of path

tracking, by assuming a point that moves on the curve with

an assigned law of motion, and by dealing with the problem

of regulating the distance between the vehicle and the

moving point [4][2][8][3][7]. These approaches have been

demonstrated to be Lyapunov-stable, and they automatically

control the translational speed of the vehicle (in addition

to the rotational speed) depending on the path’s curvature.

However, they require additional computations to determine

the law of motion of the reference point. Path-tracking

approaches usually require more complex computations as

well, e.g., in order to update – every control cycle – the

configuration of a Frenet frame which moves on the path

and is used to compute feedback errors.

The approach proposed here aims at reducing the com-

putational load towards the end of being implementable

even on low-cost robots: every control cycle the distance

error D can either be directly measured through distance

sensors (if available), or it can be computed starting from

the measured robot’s position (x, y) by simply evaluating

an analytical function D(x, y) and its partial derivatives,

whose expression depends on f(x, y) (this latter case is

considered in Figure 1 on the left and in the rest of the

paper). Finally, the translational speed u1 is considered a free

variable: asymptotic stability is guaranteed by controlling

only the rotational speed. If required, the model allows to

increase/reduce the translational speed subject to actuator

saturation constraints.

Section II describes general ideas, and introduces the

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2952

case of a linear path that lies along the X-axis; Section

III consider a generic straight line; Section IV considers a

circular path; finally, Section V consider the case of a generic

curve expressed through an implicit equation in the form

f(x, y) = 0. A formal stability analysis is performed for all

cases. Experiments with a real robot are described in Section

VI; Conclusions follow.

II. STRAIGHT LINE (CASE 1)

A state vector x is defined as x ≡ [x y ϑ]T where

x, y, θ correspond, as usual, to the vehicle’s position and

orientation with respect to a Cartesian frame. The state

equations that describe the unicycle kinematics are:

ẋ1 = u1 cos x3

ẋ2 = u1 sin x3

ẋ3 = u2

(1)

where inputs u1 and u2 correspond – respectively – to the

translational and the rotational speed.

It is initially assumed that the path to follow is a line

which corresponds to the X−axis of the reference system

(Figure 1 on the right): in this case, x2 = y corresponds to

the distance to the line, and x3 = θ is the difference between

the orientation of the line (which is zero) and the orientation

of the robot. x1 = x increases as the robot moves along

the line. It can be demonstrated that, to achieve asymptotic

stability, it is sufficient to set control inputs as follows:

u1 = U1(t)
u2 = K(−x2 − ẋ2)

(2)

The underlying idea is simple. If the robot moves with

a translational speed u1, the component of u1 along x2 is

ẋ2 = u1 sin x3. This is called approaching velocity: in Figure

1 on the right, ẋ2 is negative since x3 increases counter

clockwise. The approaching velocity ẋ2 can be increased (up

to a maximum value u1) or decreased (down to a minimum

value −u1) by controlling x3, which – on its turn – requires

to operate on the rotational speed u2. In particular (2) sets

the rotational speed u2 as proportional to the difference

between a reference approaching velocity −x2 and the the

real approaching velocity ẋ2. The reference approaching

velocity has the following properties:

• when the robot lies on the path, −x2 = 0;

• when the robot is “above” the path, −x2 < 0 (the robot

needs to head downward);

• when the robot is “below” the path, −x2 > 0 (the robot

needs to head upward).

The system which results from (1) and (2) is regular and

time-invariant: the dynamics of the system depend only on

U1(t) and on initial conditions. U1(t) can have a generic

profile, given that it satisfies kinematics and dynamics con-

straints. In the following it is assumed that U1(t) = U1 is

constant.

Since x1 is never in equilibrium (the robot is required

to move along the line), the system which is checked for

stability comprises only the second and third rows in (1).

ẋ2 = U1 sinx3

ẋ3 = K(−x2 − U1 sinx3)
(3)

Equilibrium points are given by the solutions of:

0 = U1 sin x3

0 = K(−x2 − U1 sin x3)
(4)

Equilibrium points correspond to the set {(x2 = 0, x3 =
kπ)|k ∈ Z}, i.e., when the distance from the line is null

and the robot is oriented along the line. It is necessary to

demonstrate that points in the set {(x2 = 0, x3 = 2kπ)|k ∈
Z} are stable equilibrium points, whereas {(x2 = 0, x3 =
(2k + 1)π)|k ∈ Z} are not (the robot is moving along the

line but in the wrong direction). By considering – for the

moment – the only point (x2 = 0, x3 = 0), a C1 Lyapunov

function V = V (x2, x3) can be defined:

V =
Kx2

2

2
+ U1(1 − cos x3) (5)

which is locally positive definite for U1 > 0 (i.e., the vehicle

is moving forward) and V (0, 0) = 0. Its derivative with

respect to time:

V̇ = Kx2U1 sin x3 + U1 sinx3K(−x2 − U1 sin x3)
= −KU2

1 sin2 x3

(6)

is negative semidefinite, since it does not depend on x2

and hence V̇ (x2, x3) = 0 for all points in the set {(x2 =
x20, x3 = 0)|x20 ∈ ℜ}, i.e., corresponding to the x2-

axis. This is sufficient to state that the equilibrium point

(x2 = 0, x3 = 0) is locally stable. To prove asymptotic

stability, it is possible to refer to the LaSalle’s principle:

• by considering the level curves of V (x2, x3) in Figure

2 a closed region Ω1 exists which contains the origin,

such that V (x2, x3) < l for {(x2, x3) ∈ Ω1};

• V̇ (x2, x3) ≤ 0 in Ω1 since it is negative semidefinite.

The subregion E of Ω1 for which V̇ (x2, x3) = 0,

corresponds to the intersection between Ω1 and the x2-axis.

It is easy to see that the maximum invariant set M in E
contains only the origin: in fact, by considering a generic

point (x2 = x20, x3 = 0) in E, the second row in (3)

becomes:

ẋ3 = K(−x20 − U1 sin 0) (7)

i.e., it drives the system outside E unless x20 = 0. This is

sufficient to state that the origin is asymptotically stable.

An analysis in the plane of phases is shown in Figure

3: the horizontal axis corresponds to x3 (i.e., the vehicle’s

orientation), whereas the vertical axis corresponds to x2 (i.e.,

the distance to the path). Figure 3 is obtained by computing,

for each given (x2, x3), the arctangent of:

ẋ3

ẋ2
=

K(−x2 − U1 sinx3)

U1 sin x3
(8)

By inspecting the resulting vector field as well as trajec-

tories in the plane of phases, it is evident that equilibrium

2953

Fig. 2. The level curves of V (x2, x3) with U1 = 1, K = 1.

Fig. 3. Analysis in the plane of phases with U1 = 1, K = 1.

points in the set {(x2 = 0, x3 = 2kπ)|k ∈ Z} are asymp-

totically stable (only the subset {(0,−2π), (0, 0), (0, 2π)} is

shown). A similar analysis by increasing the proportional

gain has been performed as well (not shown here): with

K >> 1 the trajectories in the plane of phases tends to

equilibrium more directly, without performing the spirals in

Figure 3. However, when implementing the control law on a

real vehicle, increasing K can lead to high-frequency oscil-

lations due to finite sampling time. Therefore, a compromise

must be found.

The instability of points in the set {(x2 = 0, x3 = (2k +
1)π)|k ∈ Z}, which guarantees that the vehicle cannot head

towards the wrong direction, can be verified in Figure 3 and,

more clearly, in Figure 4 (only the subset {(0,−π), (0, π)} is

shown). A detailed analysis is not shown for sake of brevity.

Unfortunately, the control law in (2) has a problem: when

the distance to the curve (and hence the reference approach-

ing velocity) is greater than the maximum approaching veloc-

ity (whose absolute value is U1), the reference approaching

velocity cannot be achieved by controlling x3. The obvious

result is that u2 6= 0 even when the vehicle is heading

perpendicularly to the line (i.e., approaching at the maximum

achievable speed); the distance x2 still converges to zero, but

the vehicle possibly turns on itself and finally converges to an

equilibrium point {(x2 = 0, x3 = 2kπ)|k ∈ Z, k 6= 0}. This

effect is evident when considering the trajectories in Figure

3. Consider for example the trajectory than ends up in the

equilibrium point (0, 2π): if the initial distance from the path

is sufficiently high, the robot’s orientation starts from a value

Fig. 4. Analysis in the plane of phases with U1 = 1, K = 1 and saturation.

lower than −2π. The robot performs two complete loops on

itself before reaching equilibrium. In general, depending on

the initial value of x2, the number of loops that the robot

performs before reaching equilibrium can become arbitrarily

high.

To avoid this, it is sufficient to define the following C0

function fsat(x), which saturates the values of x:

fsat(x) = −U1 x ≤ −U1

fsat(x) = x −U1 < x < U1

fsat(x) = U1 U1 ≤ x
(9)

and to redefine the state equations as follows:

ẋ2 = U1 sinx3

ẋ3 = K(−fsat(x2) − U1 sin x3)
(10)

The analysis in the plane of phases is shown in Figure

4. Asymptotically stable and unstable equlibrium points are

the same as previously; however, saturation now guarantees

that the robot’s orientation x3 varies within a range of values

which depends on the initial conditions but is always within

−π and π.

III. STRAIGHT LINE (CASE 2)

These results can be extended to a generic straight line,

defined through its implicit equation:

f(x1, x2) = ax1 + bx2 + c = 0 (11)

with partial derivatives:

fx1
= ∂f(x1,x2)

∂x1

= a

fx2
= ∂f(x1,x2)

∂x2

= b
(12)

This case can be easily reduced to the previous one

through an appropriate coordinate transform. It is considered

separately only because it provides theoretical bases to better

understand more complex cases described in the following.

A distance function D(x1, x2) is required, which can be

derived from the standard formula to compute the distance

of a point from a straight line:

D(x1, x2) =
ax1 + bx2 + c√

a2 + b2
(13)

2954

The distance is taken as a signed value, which allows to

distinguish states on the right half-plane with respect to states

on the left half-plane, and to consequently assign a direction

to the line: that is, f(x1, x2) and −f(x1, x2) produce a

motion along the same line, but towards opposite directions.

The partial derivatives of D(x1, x2) are:

Dx1
= ∂D(x1,x2)

∂x1

= a√
a2+b2

Dx2
= ∂D(x1,x2)

∂x2

= b√
a2+b2

(14)

In order to guarantee stability, it is sufficient to set:

u1 = U1

u2 = K(−D(x1, x2) − d
dt

D(x1, x2))
(15)

In the following, the dependence of D and ∇D on (x1, x2)
is not explicited. The whole system can be written as:

ẋ1 = U1 cos x3

ẋ2 = U1 sinx3

ẋ3 = K(−D − d
dt

D)
(16)

Remark that x1 and x2 are never in equilibrium, and x3

tends to a constant, non-zero value. Therefore, a different

system is considered for stability, which is obtained through

the following variable substitution:

x4 = D ẋ4 = d
dt

D

x5 = x3 − tan−1 −fx1

fx2

ẋ5 = ẋ3 − d
dt

tan−1 −fx1

fx2

(17)

That is, x4 tends to zero as the distance from the line

tends to zero, whereas x5 tends to zero as x3 tends to the

orientation of the line tan−1 −fx1

fx2

. The state equations of

the new system can be written as:

ẋ4 = U1Dx1
cos x3 + U1Dx2

sin x3

ẋ5 = K(−x4 − U1Dx1
cos x3 − U1Dx2

sin x3)
(18)

In (18) there is still a dependence on x3. To eliminate such

dependence consider that that the inverse tangent is an odd

function, and hence it holds:

cos x3 = cos
(

x5 − tan−1 fx1

fx2

)

=

= cos x5 cos
(

tan−1 fx1

fx2

)

+ sin x5 sin
(

tan−1 fx1

fx2

)

=

= cos x5
fx2√

f2
x1

+f2
x2

+ sinx5
fx1√

f2
x1

+f2
x2

(19)

Analogously, it holds:

sin x3 = sin
(

x5 − tan−1 fx1

fx2

)

=

= sinx5 cos
(

tan−1 fx1

fx2

)

− cos x5 sin
(

tan−1 fx1

fx2

)

=

= sinx5
fx2√

f2
x1

+f2
x2

− cos x5
fx1√

f2
x1

+f2
x2

(20)

which yields (by substituting the values of fx1
, fx2

, Dx1
,

Dx2
defined in (12) and (14)):

ẋ4 = cos x5
U1Dx1

fx2√
f2

x1
+f2

x2

+ sin x5
U1Dx1

fx1√
f2

x1
+f2

x2

+

+sin x5
U1Dx2

fx2√
f2

x1
+f2

x2

− cos x5
U1Dx2

fx1√
f2

x1
+f2

x2

=

= U1 sinx5

(21)

The system can be finally rewritten as

ẋ4 = U1 sinx5

ẋ5 = K(−x4 − U1 sinx5)
(22)

Equation (22) have exactly the same structure as (3),

and hence it has the same stable/instable equilibrium points

{(x4 = 0, x5 = kπ)|k ∈ Z}.

IV. CIRCULAR PATH

By assuming – without loosing generality – a circumfer-

ence with center in (0, 0), the implicit equation of the curve

can be written as:

f(x1, x2) = x2
1 + x2

2 − R2 = 0 (23)

whose partial derivatives are:

fx1
= ∂f(x1,x2)

∂x1

= 2x1

fx2
= ∂f(x1,x2)

∂x2

= 2x2

(24)

where R is the radius of the circumference. The distance to

the curve can be written as:

D(x1, x2) =
√

(x2
1 + x2

2) − R (25)

whose partial derivatives are:

Dx1
= ∂D(x1,x2)

∂x1

= x1√
x2

1
+x2

2

Dx2
= ∂D(x1,x2)

∂x2

= x2√
x2

1
+x2

2

(26)

which are defined everywhere with the exception of (x1 =
0, x2 = 0). It can be demonstrated that, in order to guarantee

stability, it is sufficient to set control inputs as:

u1 = U1

u2 = K(−D − dD
dt

) + d
dt

tan−1
(

−fx1

fx2

)

(27)

The whole system turns out to be:

ẋ1 = U1 cos x3

ẋ2 = U1 sin x3

ẋ3 = K(−D − d
dt

D) + d
dt

tan−1
(

−fx1

fx2

)
(28)

Remark that the d
dt

tan−1
(

−fx1

fx2

)

term in (27) and (28)

is necessary since – when the distance to the curve is zero

and hence the proportional term is null – the rotational speed

of the robot must now be non-zero (otherwise the resulting

path tends to be a linear approximation of the desired one).

Similarly to what has been done for the straight line, two

new state variables x4 and x5 are introduced, describing –

respectively – the distance to the curve and the difference

between the heading and the tangent to the curve:

x4 = D ẋ4 = d
dt

D

x5 = x3 − tan−1 −fx1

fx2

ẋ5 = ẋ3 − d
dt

tan−1 −fx1

fx2

(29)

2955

The state equations are re-written as:

ẋ4 = U1Dx1
cos x3 + U1Dx2

sin x3

ẋ5 = K(−x4 − U1Dx1
cos x3 − U1Dx2

sin x3)
(30)

The system in (29) and (30) has exactly the same structure

as previously (the “straight line” path in (17) and (18)). One

could object that the system depends on Dx1
and Dx2

, which

– differently from the previous case – now are not constant

(26). To eliminate such dependence consider again (19) and

(20): symbolic computations return exactly the same result

of (21) and, finally, the system in (22), for which stability

and instability have been already demonstrated.

V. GENERIC CURVE

It would be of great value to extend the same results to

a generic curve in the plane, expressed through its implicit

equation f(x1, x2) = 0. However, since it is not trivial to

express the distance from a generic curve in closed form,

a different approach must be pursued. Even if it does not

represent the Euclidean distance from the curve, a possibility

is to use the function itself f(x1, x2) as the distance function

D(x1, x2), i.e.:

D(x1, x2) = f(x1, x2) (31)

When defined in this way, D(x1, x2) still has some good

properties which make it appropriate for our purpose:

• D(x1, x2) is a scalar field.

• D(x1, x2) = 0 when (x1, x2) lies on the curve;

D(x1, x2) locally increases/decreases monotonically

depending on which side of the plane (x1, x2) is located

with respect to the curve.

From (31) it derives:

Dx1
= ∂D(x1,x2)

∂x1

= fx1

Dx2
= ∂D(x1,x2)

∂x2

= fx2

(32)

In order to guarantee stability, it is possible to set:

u1 = U1

u2 = K(−‖∇f‖D − d
dt

D) + d
dt

tan−1
(

−fx1

fx2

)

(33)

by omitting to write – once again – the dependence of D and

∇f on (x1, x2). As it will be shown in the following, the

term ‖∇f‖ is now necessary to guarantee stability. As in the

case of a circumference, the rotational speed is given by a

term proportional to the distance plus a term which depends

on the curvature of the isocline in the current position.

The whole system can be expressed as:

ẋ1 = U1 cos x3

ẋ2 = U1 sinx3

ẋ3 = K(−‖∇f‖D − d
dt

D) + d
dt

tan−1
(

−fx1

fx2

)
(34)

Two new state variables (x4, x5) are introduced as in (29),

with exactly the same meaning: when x4 tends to zero, D
tends asymptotically to zero; when x5 tends to zero, the

orientation of the robot’s tends asymptotically to the tangent

to the path. The resulting state equations are:

ẋ4 = U1fx1
cos x3 + U1fx2

sinx3

ẋ5 = K(−‖∇f‖x4 − U1fx1
cos x3 − U1fx2

sin x3)
(35)

In (35) there is still dependence on x3, fx1
and fx2

, the

latter depending – on their turn – on x1 and x2. Equations

(19) and (20) allow to eliminate this dependence. However,

it now derives a different expression for ẋ4:

ẋ4 = cos x5
U1fx1

fx2√
f2

x1
+f2

x2

+ sin x5
U1fx1

fx1√
f2

x1
+f2

x2

+

+sin x5
U1fx2

fx2√
f2

x1
+f2

x2

− cos x5
U1fx2

fx1√
f2

x1
+f2

x2

=

= ‖∇f‖U1 sin x5

(36)

The system can be written as:

ẋ4 = ‖∇f‖U1 sin x5

ẋ5 = K(−‖∇f‖x4 − ‖∇f‖U1 sinx5)
(37)

The system no more depends on x3. One could object

that there is still a dependence on (x1, x2) through ‖∇f‖;

however, when analysing the system in the plane of phases,

it is necessary to compute the ratio:

ẋ5

ẋ4
=

K(−‖∇f‖x4 − ‖∇f‖U1 sin x5)

‖∇f‖U1 sin x5
(38)

By simplifying the ‖∇f‖ term both in the numerator and

in the denominator, (38) yields the same results as (8), which

have been already depicted in Figure 3; that is, the behaviour

of the system in (37) is identical to the previous cases, when

analyzed in the plane of phases. Obviously, the meaning of

x4 is different, since now x4 represents the value of f(x1, x2)
instead of the Euclidean distance to the curve. However, this

is sufficient to claim that the system is still guaranteed to

reach an Equilibrium state in which the robot’s position lies

on the path (i.e., f(x1, x2) = 0), and the robot’s heading is

tangent to the path itself.

Finally, it is convenient – as in previous cases – to saturate

the reference approaching velocity to avoid that x5 converges

to an equilibrium point different from 0.

VI. EXPERIMENTS

The model has been extensively tested both in simulation

(the MatLab Simulink environment) and on real robots:

among the others, the indoor robot Staffetta and the outdoor

robot ANSER, which – in 2006/2007 – has been performing

surveillance patrols at the Villanova D’Albenga Airport.

Simulates experiments are not shown here for sake of

brevity. Figures 5 and 6 show five different experiments

with the indoor robot Staffetta, moving at the constant

translational speed 1m/sec, along three different types of

paths: a straight line (Section III), a circle (Section IV),

and a sinusoidal profile defined through its implicit equation

(Section V). All Figures show two different plots: on the left,

the path followed by the robot in the Cartesian Space (the

scale along the two Cartesian axes is not the same); on the

right, the error, measured as the distance to the path.

2956

Fig. 5. Top: Straight line. Middle: Circle, robot starting inside. Bottom:
Circle, robot starting outside. Left: robot’s path; Right: error plot.

Figure 5 on the top shows convergence to a straight line.

The robot starts 50cm away from the path, and quickly

coverges to the line: the error at steady state is below 1cm
(Figure 5 on the top zooms on a part of the error plot). Before

approaching the line, it is possible to observe that the robot’s

trajectory tends to follow a damped sinusoidal profile around

the reference path: this was expected from the analysis in

Figure 3, since all trajectories in the plane of phases tend to

follow a spiral around the equilibrium point before reaching

it. This effect can be reduced by increasing the proportional

gain K: however, this can lead to high-frequency oscillations

and, finally, to instability.

Figure 5 in the middle and Figure 5 on the bottom show

convergence to a circle with 1m radius, starting from two

different positions inside and outside the circle. As expected,

the error at steady state is bigger in this case, even if it is

always below 5cm. This is not a surprise, by considering

that the control loop for path tracking is closed every 50ms,

which is quite a long sampling time compared with the

translational speed u1: in fact, in 50ms the robot moves of

about 5cm.

Figure 6 on the top and Figure 6 on the bottom show

convergence to a sinusoidal path. The error at steady state is

much lower in Figure 6 on the top, i.e., < 2cm, than in Fig-

ure 6 on the bottom, i.e., about 10cm. However, notice that

the two profiles have a different amplitude and frequency:

approximately, 0.6m amplitude and 10m period in the former

case, 2m amplitude and 5m period in the second case. The

second profile turns out to be quite challenging for a robot

Fig. 6. Top: Sine, ≈ 0.6m amplitude, ≈ 10m period. Bottom: Sine, ≈ 2m

amplitude, ≈ 5m period. Left: robot’s path; Right: error plot.

that moves at 1m/sec, and the measured distance error is

consequently affected.

VII. CONCLUSIONS

The article describes a novel control law for path tracking

that, in spite of its simplicity, is demonstrated to be asymp-

totically stable and to perform well in realistic conditions.

In particular, the model proves to guarantee smooth path

following even in presence of big errors in the vehicle

orientations. Finally, even if not illustrated in this article,

the model has been recently adapted to consider the case of

a vehicle that moves among obstacles with arbitrary shape,

which position is not know a priori, and possibly changes in

time. See [9] for a reference.

REFERENCES

[1] S. M. Lavalle, Planning Algorithms, Cambridge Univ Press, 2006
[2] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino. Closed Loop

Steering of Unicyle-Like Vehicles via Lyapunov Techniques. IEEE
Robotics and Automation Magazine, 1995

[3] G. Indiveri and A. Nüchter and K. Lingemann. High Speed Differential
Drive Mobile Robot Path Following Control With Bounded Wheel
Speed Commands. 2007 IEEE International Conference on Robotics
and Automation Roma, Italy, 10-14 April 2007

[4] C. Samson and K. Ait-Abderrahim, Mobile Robot Control Part 1:
Feedback Control of A Non-Holonomic Mobile Robots, Technical
Report No. 1281, INRIA, Sophia-Antipolis, France, June 1991

[5] C. Canudas de Wit, H. Khennoul, C. Samson, and O. J. Sordalen,
Nonlinear control design for mobile robots, in Recent Trends in Mobile
Robots, ser. Robotics and Automated Systems, Y. F. Zheng, Ed. World
Scientific, 1993, ch. 5, pp. 121156

[6] Z. P. Jiang and H. Nijmeijer, A recursive Technique for Tracking
Control of Nonholonomic Systems in Chained Form, IEEE Trans. on
Robotics and Automation, Vol 44, No 2, 1999, pp. 265-279

[7] M. K. Bugeja and S. G. Fabri Dual Adaptive Control for Trajectory
Tracking of Mobile Robots, 2007 IEEE International Conference on
Robotics and Automation Roma, Italy, 10-14 April 2007

[8] L. Lapierre, R. Zapata and P. Lepinay, Simultaneous Path Following
and Obstacle Avoidance Control of a Unicycle-type Robot, 2007 IEEE
International Conference on Robotics and Automation Roma, Italy,
10-14 April 2007

[9] A. Sgorbissa, A. Villa, A. Vargiu, R. Zaccaria, A Lyapunov-stable,
sensor-based model for real-time trajectory-tracking among unknown
obstacles, 2009 IEEE/RSJ International Conference on Intelligent
RObots and Systems, October 11 – 15, 2009, St. Louis, MO, USA

2957

