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Abstract— Tracking of the upper human body is one of the 
most interesting and challenging research fields in computer 
vision and comprises an important component used in gesture 
recognition applications. In this paper a probabilistic approach 
towards arm and hand tracking is presented. We propose the 
use of a kinematics model together with a segmentation of the 
parameter space to cope with the space dimensionality 
problem. Moreover, the combination of particle filters with 
hidden Markov models enables the simultaneous tracking of 
several hypotheses for the body orientation and the 
configuration of each of the arms.   

I. INTRODUCTION 

ISION  based detection and tracking of human body 
parts is a difficult goal with particular importance and a 

large number of application areas such as human-robot 
interaction, video surveillance, virtual environments and 
medical diagnosis. Among the above, an application with 
particular interest is hand gesture recognition which is also 
the target application behind this work. 

Arm and hand tracking approaches for gesture recognition 
can be classified into two different families, depending on 
whether they involve tracking on the image plane or the 
human body pose space. Some of the most successful 
approaches of the first family detect hands as image blobs 
that share a specific characteristic, like skin color [10, 22], in 
each frame and temporally match blobs that occur in 
neighboring locations across frames. Hand shape can also be 
useful for the detection of the hand in sequential image 
frames either by using shape context descriptors [19, 20, 21]  
or through hand contour extraction and matching. The latter 
mainly uses real-time edge detection and similarity matching 
techniques for the generation of hand hypotheses [2, 4, 8, 9, 
11, 13] or deformable contours, namely snakes [3]. 
Expanding this, hand detection and tracking can be enhanced 
by combining hand shape with other blob features, such as 
orientation and motion [27]. 

The second family of approaches (pose space approaches) 
can be further classified depending on whether they use a 
specific model or not. Non model-based approaches (e.g. 
[20]) commonly use training data to learn associations of 
training examples with corresponding known poses or learn 
specific mappings from observable image features to human 
pose space [21, 24]. Model-based (or generative) approaches 
perform tracking directly on the hidden pose space by 
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generating measurement predictions according to a specific 
model and by comparing them with actual observed features 
with respect to specific error functions. Although model-
based approaches are generally assumed to be more accurate 
than non model-based ones, they are usually more 
computationally expensive due to the large number of 
parameters that have to be tracked. 

Different models require different image features to 
construct feature-model correspondences. Point and line 
features are employed in kinematic hand models to recover 
angles formed at the joints of the hand [7, 12, 15, 19]. Hand 
postures are then estimated, provided that the 
correspondences between the 3D model and the observed 
image features are well established. 

Depending on the application at hand, various models 
have been proposed to detect the kinematics of the human 
body and/or arm/hand. For example Rehg and Kanade in [5] 
and Stenger et al. [23] use a full hand model with 27 
Degrees of Freedom (DoFs), while Gavrila and Davis [8] 
use a total of 30 DoFs to model both the body and the arms. 
Simpler modeling can also come in hand. Goncalves et al. 
[6] model the arm with 7 DoFs while McCormick and Isard 
[17] represent user’s hand as an articulated rigid object. 

Some of the most successful tracking methods are the 
probabilistic ones. Kalman Filter is a widely used technique 
for hand pose estimation and tracking. For example, in 
Stenger et al. [18, 23], an unscented Kalman Filter is used in 
order to minimize the geometric error of the estimated hand 
model pose. 

However, approaches based on Kalman Filters are limited 
by the unimodal nature of Gaussian densities which cannot 
be used to simultaneously track different solutions. An 
alternative method that has been used for model-based 
tracking is particle filtering [1]. Although particle filters 
offer significant advantages, including the ability to 
simultaneously track multiple solutions, the number of 
required particles increases dramatically with the number of 
tracked parameters increasing the computational cost and, 
thus, reducing performance. Therefore, a variety of 
techniques are often utilized to reduce the number of 
particles. For example, McCormick and Isard [17] adapt the 
partitioned sampling technique proposed in [16], to the 
problem of tracking articulated objects. In this way, they 
cope with the dimensionality problem by dividing the 
parameter space into M ‘partitions’ and then searching 
within each parameter partition separately.  

In this work, we present a probabilistic model-based 
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method for tracking human arms using stereo visual input. 
For modeling the human arm we have employed a model 
similar to the one presented in [26], which uses 9 DoFs in 
total for modeling both hands (4 DoFs for each arm and one 
DoF for the orientation of the human torso). Moreover, in 
order to reduce the complexity of the problem and to meet 
the increased computational requirements of the task at 
hand, we split the model space into three different partitions 
and perform tracking separately in each of them. More 
specifically, we employ a Hidden Markov Model (HMM) to 
track the orientation of the human torso in the 1D space of 
all possible orientations and two different sets of particles to 
track the four DoFs associated with each of the two hands 
using a particle filtering approach.  

The proposed approach is perfectly suited to the problem 
examined here, where the track of each arm is assumed to be 
statistically independent from the track of the other arm 
given the orientation of the torso. The orientation of the 
torso is assumed to be independent of the arm, although its 
exact value is required to realize a useful observation model. 
Our approach has been extensively tested on various datasets 
and the results were very promising. 

II. APPROACH OVERVIEW 

The proposed methodology is depicted in the diagram of 
Fig. 1. Initially, skin-color blobs are extracted on both input 
2D images and the depth of the blobs centroid, is estimated 
using triangulation. Knowing the 3D location of the 
extracted blobs, those corresponding to human heads are 
easily separated from those corresponding to hands by using 
simple heuristics, while the size of arm limbs can be 
estimated proportionally to the height by utilization of 
anthropometric measures. 

 
Fig. 1.  Block diagram of the proposed tracking methodology.  

 
Based on the extracted proportions, a 4 DoF kinematic 

model is assumed for each arm and both arms are assumed 

to be mounted on a rigid human body located on the ground 
plane at the locations constrained by the 3D coordinates of 
the head. The orientation of the human body, i.e. its 
orientation φ around the vertical axis (see Fig. 2) is assumed 
to be unknown. 

In reality, the targeted problem is a 9 parameters 
estimation problem. These parameters generate a set of 
possible solutions which are propagated over time with the 
use of human body dynamics. However, tracking in a 9D 
space requires an excessively large number of particles 
which cannot be handled by a single tracker. To cope with 
this issue, i.e. dimensionality reduction, the parameter space 
is fragmented into three sub-spaces; a 1D parameter space 
for body orientation angle and two 4D spaces, one for each 
hand. 

Body orientation angle φ is appropriately quantized (50 
quantization levels) and tracked over time by means of an 
HMM. For every possible solution, a separate particle filter 
tracker is employed for each arm, as shown in Fig. 1. The 
result of each particle filter is used to estimate the 
observation probability, which is subsequently employed to 
update the HMM.  

In the following sections more details regarding each of 
the above described modules are given. 

III. SKIN-COLOR DETECTION 

As already mentioned, the first step of the proposed 
approach is to detect skin-colored areas within the input 
images. For this purpose we use a technique similar to the 
one in [22]. Initially, the foreground area of the image is 
extracted, as described in [14]. Then, foreground pixels are 
characterized according to their probability to depict human 
skin and then grouped together into blobs using hysteresis 
thresholding and connected components labeling. 

The probability that a pixel depicts a skin-colored area, 
given its observed color c, is computed according to the 
Bayes rule as:  

( | ) ( | ) ( ) / ( )P s c P c s P s P c ,       (1) 

where P(s) and P(c) are the prior probabilities of skin pixels 
and pixels having color c respectively. Color c is assumed to 
be a 2D variable encoding the U and V components of the 
YUV color space. P(c|s) is the prior probability of observing 
color c for skin colored regions. All three components in the 
right side of the above equation are computed offline during 
training. 

After probabilities have been assigned to each image 
pixel, hysteresis thresholding and connected components 
labeling is used to extract solid skin color blobs. Finally, size 
filtering is also applied in order to ensure that small, isolated 
blobs are eliminated.  

IV. KINEMATIC MODEL 

The proposed model is depicted in Fig. 2. According to 
this model, as already mentioned, the whole human body is 
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assumed to be rigid with only one unknown degree of 
freedom: the orientation φ.  

The human arms are assumed to be attached to the human 
body at fixed locations corresponding to the shoulders. Both 
arms are modeled by a 4 DoF kinematic model, similar to 
the one presented in [26]. Angles θ1 to θ3 represent the 3 
DoFs of the shoulder and θ4 that of the elbow. L1 and L2 are 
the lengths of the upper arm and the forearm, respectively.  

The length of the limbs can be calculated proportionally to 
the observed human’s (actor’s) height. To preserve 
simplicity, we assume that during initialization the head is 
the topmost detected skin color blob. Since the input is 
provided by a stereo pair, its 3D location, and therefore the 
height, can be estimated by triangulation. Having estimated 
the height of the actor in the scene, the anthropometric 
measurements presented in [25], are used to calculate the 
lengths L1 and L2. 
 

 
Fig. 2.  Arm’s Kinematic model 

 
TABLE 1 

DENAVIT-HARTENBERG PARAMETERS 

i αι-1[deg] ai-1[m] di[m] θi[deg] 
1 90 0 0 θ1-90 
2 -90 0 0 θ2+90 
3 90 0 L1 θ3+90 
4 -90 0 0 θ4-90 
5 0 L2 0 0 

 
The location in space for each joint is calculated with 

respect to the base joint, namely the shoulder.  In general, 
the transformation from joint 1iP  with coordinates 

1 1 1[ ]T
i i ix y z     to joint iP  with coordinates [ ]T

i i ix y z   is 

given by:  

1
1

i
i i iP T P

  , (2) 
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1 1
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i i
i i i
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is the transformation matrix, 1i
i R
 is the rotation matrix and 

1i
i t
  is the translation vector.   

By using the Denavit-Hartenberg parameterization (see 
Table 1), the rotation matrix and the translation vector which 
transform joint i-1 into joint i can be expressed as: 

1
1 1 1

1 1 1

cos( ) sin( ) 0

sin( ) cos( ) cos( )cos( ) sin( )

sin( )sin( ) cos( )sin( ) cos( )

i i
i

i i i i i i

i i i i i

R

 
    
    


  

  

 
   
  

 (4) 

and 
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. (5) 

For non sequential joints, the corresponding 
transformation is given by the product of all intermediate 
transformations as: 

0 0 1 1
1 2

N
N NT T T T  . (6) 

Therefore, for example, the elbow and the hand locations are 
computed with respect to the shoulder, by applying 
transformations 0

3T and 0
5T respectively. 

V. ARM HYPOTHESIS TRACKING 

The above-defined kinematic equations along with the 
camera perspective transformations are used in order to 
project hypotheses from the hidden parameter space onto the 
observation space and, therefore, evaluate each of the 
hypotheses. More specifically, the kinematic equations are 
used to transform the rotations of the human body and the 
angles of the arm joints to the 3D coordinates of each joint 
(shoulder, elbow and hand) while the camera projection 
transformations transform the resulting 3D coordinates to 
image coordinates. 

As stated previously, arm hypotheses are being tracked by 
independent sets of particles. A particle filter is a sequential 
sampling method for approximating an unknown distribution 
(that of the hidden parameters) using the observed features. 
The belief of the filter is expressed as a set of samples, 
namely the particles, distributed in the whole state-space. 
The denser the particles in a certain region of the state-space 
are, the higher the confidence of the corresponding 
hypothesis is. 

To generate and maintain the particles, the 
Sampling/Importance Resampling (SIR) algorithm, 
introduced by Rubin [1], is utilized. According to SIR, 
instead of sampling the true distribution 1 2( | , ,..., )k kP y y y  

(where k  represents the estimated configuration for the 

time instant k and 1 2, ,..., ky y y  are the observations up to 

that time), samples are drawn from the so-called proposal 
distribution 1 2( | , ,..., )k ky y y  . To compensate with this 

difference, each sample m is also assigned a weight mw

which is computed according to the Importance Sampling 
Principle: 
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1 2

1 2

( | , ,..., )

( | , ,..., )
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By choosing the proposal distribution to be the transition 
prior 1( | )m m

k kP   , the weights can be computed as: 

1 2
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, (8)

       

which corresponds to the likelihood of the observations for 
the particle m at time instant k. 

To avoid degenerate situations in which large number of 
samples have weights close to zero, after a few iterations, 
SIR also includes a resampling step which ensures that 
unlikely samples are replaced with more likely ones. 

 In our implementation, the likelihood ( | )k kP y   of each 

particle is determined from the back-projection errors of the 
elbow and the hand with reference to the centroids of the 
detected skin color blobs – assuming that only one actor 
exists in the scene at any time and since head is determined, 
the rest of the blobs are expected to be hands.  

 

 
Fig. 3.  (a) Projections of intermediate points (small black circles) onto the 
foreground image. (b) Shoulders are forced to lie close to the foreground 
edge. 

 
More specifically, the likelihood ( | )m

k kP y   of particle m 

is computed as the product of two components: 

1 2( | )m m m
k kP y p p   . (9) 

The purpose of the first component 1
mp is to assign larger 

likelihoods to particles with end points close to the detected 
hand blobs. For this purpose, the first component is 
computed according to the distance of its hand projected 
coordinates from the closest skin color blob. Therefore, for a 
particle m, the first weight component is calculated as: 

2

1 2
1 ,

1

1 ( , )
m

m
cm cm cm b

p
d x c


  ,  (10) 

where cm is the index of  the camera, b the currently 
examined skin color blob, d the distance between the 
projected coordinates of the hand and the skin color blob 

centroid and α is a constant (0.01 in our experiments), 
expressing the steepness of the weight decrease. 

The second component 2
mp  is used to assign higher 

likelihood to particles that produce solutions that are more 
likely with respect to the projections of points belonging to 
the whole arm’s volume. This is achieved by projecting  
several points of each hypothesis onto the foreground of the 
image. By considering upper arm and forearm as rigid 
objects, one should expect that the projections of the points 
between two joints of a correctly hypothesized arm should 
lie into the foreground of the image (Fig. 3a). Therefore, 2

mp  

for the particle m is computed as: 

2 2 max( / ) /m mp n N p , (11) 

where n is the number of points that project inside the 
foreground area of the image, N is the total number of 
projected points and 2 max

mp is the normalization factor.  

After having computed the likelihood for all particles, the 
resampling step takes place. In order to enhance tracker’s 
performance, the number of particles of each tracker is 
allowed to vary according to the confidence of the filter. 
That is, we start with a large number of particles 
(approximately 2000 for each arm hypothesis). The number 
of particles is gradually reduced as the filter converges to a 
solution and becomes confident of the actual state of the 
arm. 

VI. BODY ORIENTATION TRACKING 

The above described particle filtering process is 
responsible for tracking each arm’s configuration “within” a 
body’s orientation. In other words, for each of the HMM 
states (i.e. body orientations) two sets of independent 
particle filters –one for each arm- are generated and tracked 
over time. The result of each particle filter is used to update 
the probability of the corresponding HMM state. This means 
that the weights of the particles are used to calculate the 
observation likelihood for a particular body orientation state. 
Therefore the belief of the HMM that the body orientation 
angle φ is r at time instant t+1, given all observations O1, 
O2,…,Ot+1 up to that time can be expressed as: 

1 1 2 1 1 1

1 2 1
1

( | , ,..., ) ( | )

( | , ,..., ) ( | )

t t t t

N

t t t t
k

P r O O O P O r

P k O O O P r k

  

  

   




  

   
, (12)  

where 1 1( | )t tP O r   is the likelihood of observation Ot+1 

given that the orientation is r, 1 2( | , ,..., )t tP k O O O 
 
is the 

belief of the HMM for the previous time instant and 

1( | )t tP r k   
 
is the transition probability of moving 

from rotation k to rotation r at time instant t+1. Usually the 
value of the transition probability is high for close to r 
hypotheses and steeply decreases for the distant ones. 
Finally α is a normalization factor so that all state 
probabilities sum up to 1.   
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In our implementation the likelihood is calculated as: 

1 1 ,
( | ) mt t rr w

P O r s      . (13) 

The first component,
, mr w

 , is the mean of the weights of the 

particles belonging to body orientation r and represents the 
likelihood of the observations derived from the arm 

projections, while rs is a confidence factor with respect to 

the observations derived directly from the orientation 
hypotheses. Shoulders are considered as non moveable point 
joints and their locations are univocally calculated according 
to the corresponding body orientation angle. Since shoulders 
are the outmost point of the upper body (ignoring arms), rs

ensures that the shoulder projections lie within an allowed 
area, close to the edges of the foreground area (Fig. 3b) and 
can be expressed as: 

max max min( ) / ( )r ss D d D D   , (14)  

where sd is the distance of the shoulder projection from the 

foreground edge and maxD and minD are the maximum and the 

minimum distance allowed, respectively. By imposing this 
constraint, it is guaranteed that only those hypotheses which 
represent the actual pose will obtain high confidence, 
additionally increasing the efficiency of the proposed 
tracker. 

VII. RESULTS 

The above described approach has been extensively tested 
on several real image sequences. The target of our 
experiments was to confirm the performance of the proposed 
method on simple as well as complex and ambiguous cases, 
including moving actor and simultaneous movement of both 
arms, parallel to or towards the cameras. In all examined 
cases, the tracker performed accurately, leading to very 
promising results that are presented in this section.   

The first presented example includes a static actor, 
moving one hand (Fig. 4) or both hands simultaneously (Fig. 
5). The images in the left column of these figures show the 
input image taken from one camera of the stereo pair, 
together with the projections of the most confident particles. 
On the right column, a 3D view of the solutions that 
correspond to the particles with the largest weights is 
depicted. The topmost white sphere represents the location 
of the actor’s head, while the colored spheres represent the 
location of the shoulders, the elbows and the hands. As can 
be easily observed, the tracker is converged to the actual 
pose of the actor. 

Fig. 6 depicts frames from another sequence where the 
actor is also allowed to rotate his torso. The state of the 
HMM that tracks the rotations angle φ, is also shown in the 
form of the probability histogram in the right side of the 
corresponding image. Each cell of the histogram 
corresponds to a separate rotation φ. The value within each 
cell corresponds to the likelihood probability 

1 1 2 1( | , ,..., )t tP r O O O    as computed in (12). 

More specifically, in the initial frames of the sequence 
(e.g. Fig. 6a) the confidence about the orientation φ is spread 
among a large number of possible solutions (Fig. 6b). As 
time passes, the HMM becomes more confident about the 
actual pose of the human. This is reflected in the histograms 
of the rotations angle (Fig. 6d, f) which become more 
confident about the true angle φ. 

 

 
Fig. 4. The actor raises his hand parallel to the camera. Left: Input image 
with particles projections. Right: Particles with largest weights. The white 
sphere depicts the head while the colored ones represent the shoulder, the 
elbows and the hands. 

 

 
Fig. 5. The actor waves both hands. 

 

 
Fig. 6. The actor rotates his torso (left column).The histograms of the right 
column depict the transition between possible orientation solutions.   
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Fig. 7. Arm movement towards the camera. The side view of the 
hypothesis tracking depicts the success in ambiguous cases. 

 
Finally, in the third example, the actor moves his arm 

towards the camera (Fig. 7). Since, in this work, the 3D 
position of the hand is used only implicitly, this case is 
difficult because of the ambiguities concerning the hand’s 
depth and, consequently, the actual configuration of the arm. 
Another source of ambiguity is raised from the fact that the 
apparent image foreground which is used to compute the 
second term, 2

mp , in the likelihood equation (9) appears as a 

rigid area, making the discrimination between possible 
solutions more difficult. Nevertheless, as shown in the side-
view of the hypothesized pose in the right image of Fig. 7, 
the proposed tracker was able to cope successfully with the 
above described difficulties, qualifying and tracking over 
time solutions which represent the actual configuration of 
the actor’s arm. 

VIII. DISCUSSION AND FUTURE WORK 

In this paper, a probabilistic approach towards visual arm 
tracking has been presented. In order to cope with the high 
dimensionality of the problem, the 9 parameter model space 
is decomposed into three subspaces, one 1D for the body 
orientation and two 4D subspaces, each representing the 
joint configuration of a single arm. The first is tracked by the 
use of a HMM while the latter by the use of two different 
sets of particle filters. Experimental results have 
demonstrated the effectiveness of the proposed approach in a 
variety of cases that include ambiguous situations.  As 
already mentioned, the motivation behind this work is to 
develop a tracker that will function as the core component of 
a gesture recognition system, intended for application in a 
mobile robot that operates in public places. To proceed with 
the application at hand, the work presented in this paper has 
to be enhanced in a multitude of ways, each constituting a 
direction for our future research. More specifically, 
recognizing that foreground subtraction will not be able to 
perform adequately on images taken by a moving robot, a 
first goal is to eliminate the algorithm’s dependence on 
foreground information in favor of more robust information 
like color or shape. Finally, another direction of future 
research is towards addressing situations where more than 
one actor perform on the same scene. 
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