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 Abstract - This paper presents the objective metric study 

on Design Of Experiments (DOE)-based robotic force control 

parameter optimization in transmission torque converter 

assembly. Based on a real-world assembly production process, 

investigation and analysis are performed on the optimization 

metrics of assembly cycle time mean (MEAN), its mean plus 

three times of standard deviation (MEAN+3*STDEV), and 

First Time Through (FTT) rate. Simulations have been 

conducted to illustrate and explain the findings in the 

parameter optimization practice. Practical metric criteria have 

been proposed and discussed. An on-pendant robotic assembly 

parameter optimization tool with the objective metric concept 

is introduced. And automatic parameter optimization or on-

line robot learning feature is also mentioned in terms of the 

objective metrics for the particular robot assembly parameter 

optimization tasks.  Finally conclusions are drawn and 

discussion and further investigation is proposed. 

 

 Index Terms – Industrial robot, force control, Design of 

Experiments, parameter optimization. 

 

I.  INTRODUCTION AND BACKGROUND 

 Robot force control has been increasingly used in 

assembly and machining processes in both automotive and 

general industries. This recent advance in industrial robot 

control gives a “touch” sensing to industrial robots and 

permits an entire new class of robot behaviors and 

applications.  The new robot behaviors are possible due to 

the incorporation of force sensor, sometimes combined with 

vision, into the robot control system. Industrial robot 

applications have been now expanded into processes with 

contact forces such as tight-fitting assembly and machining 

since the contact force with the environment can be 

controlled. The force control robot technology enables 

robotic automation applications that mate parts together 

such as gear meshing, spline insertion, clutch hub assembly, 

surface grinding following complex curved geometry and so 

on. Cited papers [1], [2], and [3] dealt with force control 

technology and applications in more detail.   

On the other hand, robot force control introduced 

complexity and uncertainty to the robot programming, 

control parameter setting up, and manufacturing process 

cycle time. The force-controlled robot behaves differently 

for different contact force conditions resulting from the 

manufacturing variations of the assembled parts, fixture and 

environment disturbances on the manufacturing floor. One 

of the most recognizable behavior differences from position-

controlled robot is that the robot motion cycle time is no 

longer a predetermined value in force control. Normally, it 

will be distributed in a statistical manner for robotic 

assembly processes. And the mean and standard deviation of 

the assembly cycle time and FTT rate become the 

measurement and the optimization objectives of a force-

controlled robot assembly system. Since the statistical 

nature of the assembly task and DOE’s increasing 

popularity in manufacturing quality control, DOE has been 

used in the robot assembly parameter optimization. The 

cited paper [3] gives overview on use of DOE method in 

torque converter assembly parameter optimization. 

MEAN+3*STDEV was proposed to be used as an objective 

metric for a group of 10 replicates/trials for each DOE 

design. Cited paper [4] introduces an on-pendent robotic 

assembly parameter optimization tool based on DOE with 

optimization metrics of cycle time MEAN, 

MEAN+3*STDEV and First Time Through success rate 

(FTT). This section will briefly describe the basics of robot 

force control, robotic torque assembly and parameter 

optimization. Section II of this paper will focus on objective 

metric study for DOE-based robotic force control parameter 

optimization in transmission torque converter assembly. 

Based on a real-world assembly production process, 

investigation and analysis have been performed on the 

optimization metrics of MEAN, MEAN+3*STDEV, and 

FTT rate. MATLAB simulations have been conducted to 

illustrate and explain the findings in the parameter 

optimization practice. Conclusions will be drawn and 

analyzed and further investigation is proposed and discussed 

in Section III. 

 

A. Robot Force Control and Torque Converter Assembly 

 Force control has been a feature on ABB Robotics’ 

standard products. The feature was included in two separate 

options: Force Control Assembly and Force Control 

Machining. The hardware is identical and tightly integrated 

into ABB IRC5 controller, which includes a force sensor, 

axis computer board and cables. 6-D force signals (3 forces 

and 3 moments) from the force sensor through a PCM A/D 

card as shown in Figure 1. Figure 2 gives a simplified 

control diagram of the robot force control. The difference 

between commanded and measured force values, divided by 
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the Damping Factor (DF) and smoothed by a Low Pass 

Filter (LPF), is used as additional feedback in the velocity 

control loop. Active search pattern can be designed and 

input to the control system through Vreference (velocity 

reference). DF and LPF can be tuned for specific robotic 

system and different assembly applications. Through 

velocity reference input, active search can be performed 

through different patterns or combinations of the patterns 

such as linear, circular, spiral, and rotational. Same as 

position control, the force control features can be 

programmed by using standard ABB robot programming 

language, RAPID. Reference the cited [8] - Robotics 

Application Manual – Force Control for Assembly for 

detail. 

 
 

Fig. 1. The force control hardware components 

 

 
Fig. 2. The simplified force control diagram 

 

       
Fig. 3. The first robotic torque converter assembly prototype 

 

A joint effort between Ford AMTD and ABB Corporate 

Research Center (CRC) was made to target the complicated 

robotic torque converter assembly issues several years ago. 

The first force control torque converter assembly prototype 

was built and demoed in CRC Lab. Figure 3 shows the first 

robotic torque converter assembly unit developed at CRC in 

2003. Thereafter, with close collaboration among Ford and 

ABB Robotics and Corporate Research Center, the robotic 

torque assembly cells have been successfully installed in 

multiple production lines with different types and models at 

Ford and Chrysler. The force control feature has been 

symmetrically integrated into ABB’s latest robot controller 

IRC5. 

 

B. Assembly Parameter Optimization 

 The robotic torque converter assembly cell operates in a 

continuously-running production line. Similar to other 

automatic production lines, a certain throughput is designed 

and maintained in order to have smooth production. So the 

robotic torque converter assembly process not only has to 

perform the assembly successfully, but also has to finish the 

assembly within certain amount of time which depends on 

the production throughput and the line buffer size. Since the 

assembly time is statistically distributed, mean plus three 

times of standard deviation is a proper measurement to meet 

the throughput for most of the assembly cases. A DOE is 

used in robotic torque converter assembly parameter 

optimization. There are dozens of parameters involved in 

the force control based assembly process and 7 to 10 of 

them are often varied to achieve optimal goals or objective 

metrics. The typical DOE-based parameter optimization 

steps normally are 1) using various types of fractional 

factorial experiments to identify the most influential 

parameters; 2) using full factorial experiments to find the 

optimal parameter set; and 3) verifying the optimized 

parameter set through running a number of experiments and 

checking on the distribution of the objective metrics. The 

optimized parameter number and the number (level) of 

values for each parameter can be varied widely based on the 

sensitivity of the optimization goals to the parameter 

change, the available number of tested parts and the cost of 

the experiment.  

 At early stage of the optimization work, the 

experiments were designed off-line by use of MINITAB on 

a PC and programmed into robot motion program such as 

RAPID. The robot program runs on the actual or close to 

actual production environment and the result data is 

collected. The data file is then taken off from the robot 

controller and imported into MINITAB for analysis. Cited 

paper [3] describes the optimization process in more detail. 

This process is often needed to be done for several 

iterations. There are several professionals needed to be 

collaborated in performing this optimization task, including 

a manufacturing quality control expert to analyze the 

assembly process and design proper DOE experiment, a 

robot programming to code the designed into robot 

program, an operator to execute the program, and then the 

quality control person takes over the data and analyzes it 

and designs a new experiment – the optimization cycle is 

Robot Arm IRC5 Controller 

Sensor and 

accessories 
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started again. To simplify the optimization process, improve 

the efficiency and make the optimization process down to 

the manufacturing floor, an on-pendant robotic assembly 

optimization tool has been developed.  

  Cited paper [4] presents a prototype of the on-pendant 

assembly optimization software package. In this software 

package, the robotic assembly process (using torque 

converter assembly as a development platform but the tool 

can be used for various assembly processes of other types) 

has been firstly parameterized into operator-understandable 

terms and parameters such as starting point, assembly stage, 

insertion distance, timeout limit, max number of trials, 

searching force, rotation speed, rotation angle, force 

amplitude, force (sine wave) period and so on. A robot 

program module is written to convert the process related 

parameters into robot force control parameters and 

corresponding robot motions to perform a particular 

assembly task. Then, a DOE design and analysis function 

have been simplified specifically for the robotic assembly 

applications and coded into a C# library to realize the DOE 

design and analysis on the touch-screen robot teach pendant 

- FlexPendant. Finally, a graphical user interface (GUI) was 

developed using early version of ScreenMaker teach 

pendant GUI design and programming software. The GUI 

provides interface to setup, execute and analyze the 

parameter optimization process at a single point on the robot 

teach pendant. With some basic training, a robot operator 

could be able to perform the optimization without a quality 

control expert and expensive commercial statistics analysis 

software such as MINITAB and the optimization time could 

be significantly reduced.  Figure 4 shows the on-pendant 

assembly optimization development lab test setup with a 

FlexPendant on the lower-left corner; Figure 5 gives the 

main page of the latest development of the on-pendant 

optimization tool; Figure 6 shows a typical Pareto plot from 

a screening process; Figure 7 is a typical result from a 3- 

parameter with 3-level optimization. The three parameters 

are Circular Speed, Search Force Amplitude and Period in Z 

direction; and Figure 8 shows a typical assembly cycle time 

distribution plot. 

 

 
Fig. 4. The parameter optimization tool development lab setup 

 

 
Fig. 5.  Main page of the latest GUI 

 

 
Fig. 6. A typical Pareto plot from screening process 

 

 
Fig. 7. A typical optimization result page 
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Fig. 8. A typical assembly time distribution plot 

 

 No matter if using an off-line designed DOE method or 

using the on-pendant assembly optimization tool, an 

understanding of the fundamentals of the DOE-based 

optimization, the characteristics of the assembly process, 

and the robot force control functionality is the core 

knowledge or expertise needed in effectively conducting the 

robotic assembly and pushing the automation system toward 

its optimal performance. Authors of this paper have gone 

through the torque converter robotic assembly optimization 

process along with many other robotic assembly 

applications. From the experience, we gain some 

understanding or knowledge on the objective metrics that 

could be used and the ways they may be used in the 

optimization process. The following section gives a detail 

description on this topic. MATLAB simulation is used to 

illustrate and help in explaining the intuitive concepts in a 

statistical manner.  

II. OBJECTIVE METRICS FOR ROBOTIC TORQUE CONVERTER 

ASSEMBLY 

 Running DOE in the midst of production often requires 

truncating the cycle time to a reasonable limit so that the 

station does not become a bottleneck for the continuously-

running production line during the parameter optimization 

process.  If the MEAN+3*STDEV of assembly cycle time is 

lower than the cycle time limit, almost none of the 

population will be artificially truncated by the cycle time 

limit. However as the MEAN increases, or as the 

MEAN+3*STDEV becomes larger than the cycle time limit, 

more of the population will be truncated by the limit and the 

histogram of the distribution will tend to pile up at the cycle 

time limit value. This phenomena can be illustrated in 

Figure 9. 

 

Mean = 4 

Stdev = 2.5 

Limit = 10 s 

Mean = 6 

Stdev = 2.5 

Limit = 10 s 

 
Mean = 8 

Stdev = 2.5 

Limit = 10 s 
Fig. 9.   The histograms of a population at various  

input means of 4, 6, and 8 sec. 

   

 As the population of MEAN shifts right towards the 

cycle time limit (10 seconds), an increasing fraction of the 

population will be timeout at the cycle time limit.  These 

units represent a loss to FTT for the production station. 

Using a mathematical model (Normal distributed with a 

varying MEAN and fixed STDEV) with an input population 

standard deviation of 2.5, it can be seen on Figure 9, if the 

cycle time limit is 10 seconds, when the MEAN equals the 

cycle time limit of 10s, 50% of the population will be over 

10 seconds. When the population MEAN-(3*STDEV) 

approaches the cycle time limit plus its 3*STDEV, nearly 

100% of the population will experience a station timeout as 

we would expect. 

 
Fig. 10.   The effect on FTT as the population input MEAN increases.   

The cycle time limit here is 10s. 

 

 In previous torque converter assembly DOE work [4], 

we successfully applied the optimization metric of the 

MEAN+3*STDEV which is an estimate of maximum the 

cycle time at relatively high FTT rate > 90%.  However, 

when there is a significant FTT loss due to hitting the cycle 

time limit, the MEAN and STDEV signals become 

corrupted by the truncated distribution, making this 

optimization metric less meaningful.  We postulate that if 

there is significant degradation of the MEAN and STDEV 

signals for populations due to station timeouts, it will be 

advantageous to use a pass/fail metric in lieu of 

MEAN+(3*STDEV) metric. Using a MATLAB 

mathematical model with a fixed standard deviation of 

STDEV=2.5, and 300 samples (N=300), and varying the 

population input MEAN values from 0 to 17 seconds, we 

can calculate the effects of MEAN, STDEV and 

MEAN+3*STDEV and on the DOE optimization metrics. 

The following subsections analyze and discuss the truncated 

distribution effect on different objective metrics. 

 

A. Truncated Distribution Effect on the MEAN 

 Fig. 11 shows the MEANs for the normal sample 

population and the truncated sample population diverge as 

the MEAN value approaches the cycle time limit. The 

MEAN values for the normal and truncated populations 
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remain to be similar until the MEAN value reaches 

approximately the cycle time limit minus one (1) STDEV.  

After that, the MEAN value loses its effectiveness as an 

optimization metric. See Figure 11 below for reference. 

 

 
Fig. 11.  Effect on the MEAN values for a normal population  

and a population truncated at 10s. 

 

B. Truncated Distribution Effect on the STDEV 

 From Figure 12, we see that the STDEV for the normal 

and truncated populations are similar at beginning and start 

diverging when the MEAN approaches the cycle time limit. 

At the cycle time limit, since no cycle times over the limit 

are possible, half of the population will be truncated and the 

STDEV is much smaller than the one from normal 

population. The STDEV is misleading to be used as an 

optimization metric.  

 

 
Fig. 12.  Effect on the STDEV values for a normal population  

and a population truncated at 10s. 

 

C. Truncated Distribution Effect on the MEAN+3*STDEV 

 The MEAN+3*STDEV was successfully used in earlier 

work as the optimization metric for DOE's that tuned the 

robot parameters for optimal performance at high FTT rate.  

However, from Figure 13, you can see that the normal 

population and the truncated populations diverge too as the 

MEAN approaches the cycle time limit, and the 

MEAN+3*STDEV also becomes ineffective to be used as 

an optimization metric. This scenario is understandable 

since MEAN+3*STDEV is the combination of the MEAN 

and STDEV. 

 
Fig. 13.  Effect on the MEAN+3*STDEV values for a normal population  

and a population truncated at 10s. 

 

D. Effect of Number of Replicates to the Objective Metrics 

 When STDEV is used with MEAN as the objective 

metric, same experiment needs to be executed repeatedly to 

get a reasonable STDEV. The reliability of the STDEV 

value depends on the level of stability of the manufacturing 

system and the number of the replicates. For robotic torque 

converter assembly, Ten (10) is the number that we believed 

to be a proper considering the experiment cost and 

optimization result benefit. Some times, less repeated tests 

have to be taken because of the availability of the test parts 

and execution time constrain. With the decreasing of the 

number of replicates, the quality of the STDEV declines. 

Experience tells that five (5) is the minimum number that 

calculated STDEV value can be reasonably used as part of 

the objective metrics. 

  

E. Recovery from the Truncated Experimental Data 

 When the FTT rate is not too low (between 75% and 90 

%), theoretically, the truncated experimental data could be 

recovered for being used in DOE analysis. Let’s use a data 

set with MEAN = 8 sec, a STDEV = 2.5, cycle time limit is 

10, and FTT rate is 78.2% as an example to illustrate the 

recovery process. From MATLAB simulation, we can know 

that the “actual” MEAN calculated from the truncated data 

set will be 7.7 and the STDEV calculated will be 2.04. The 

steps to recover the data could be that, firstly, to recover the 

mean from the truncated data.  With the assumption of that 

the experimental data is  Gaussian distributed, the recovery 

steps are 1) remove the data values which are less than 

cumulative probability distribution which is 100% -

78.8%=21.2%; 2) remove the data values which are greater 

than 78.8% from the frequency number in the last internal 
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of the distribution plot; 3) average the data values after the 

removal to get the new MEAN; then 4) remove the data 

values which are greater than the new MEAN from the 

original data set and 5) calculate the new STDEV 

 

  
using of “half” of the data set in the un-truncated side (left 

side). In the example, the recovered MEAN from the 

truncated data is 8.0052 and recovered STEDV is 2.472. 

They are very close to the values used in the simulation. 

Figure 14 gives the simulation plot for the data recovery 

process.  

 

 
Fig. 14. Truncated data recovery simulation plots: a) Distribution plot from 

nu-truncated simulation data; b) Distribution plot from truncated simulation 

data; c) the data plot after removal of the data values smaller and greater 

than the critical cumulative probability distribution; and 4) the distribution 

plot of the recovered data (left half). 

 

 Then the recovered MEAN and STDEV can be used in 

the DOE analysis. Notice that there may be a lot more than 

ten (10) replicates needed in this recovery process. The 

more of the replicates are, the more reliable the recovered 

data is. 
 

III. DISCUSSION AND CONCLUSION  

 This paper introduces force control-based robotic torque 

converter assembly and parameter optimizations. 

Collaborative effort between Ford and ABB in DOE-based 

assembly parameter optimization is presented and 

discussed. The objective metrics used in the parameter 

optimization are studied and some new objective metrics 

that could be used in different scenarios have been 

proposed, analyzed and discussed based on real-world 

manufacturing experience. From the investigation, the 

following data processing guidelines can be concluded: 

 

1) MEAN+3*STDEV can be used as an objective 

metric in robotic torque converter assembly 

parameter optimization when its FTT rate is above 

90% and the number of replicates is greater than 

five (5); 

2) FTT rate can be used as a optimization metric when 

it is lower then 90% where MEAN+3*STDEV is 

altered by truncated distributions; 

3) MEAN is a better metric to be used in the DOE-

based optimization if the number of the replicates is 

less than five (5) and FTT rate is greater than 90%; 

4) Recovery of the truncated data set is possible if the 

FTT rate is greater than 75%. And the recovered 

data set can be used in the optimization but larger 

number of replicates is needed to make the 

recovery possible and meaningful. 

 

 Further investigations in this area are identified as 

1) Use of real-world manufacturing data to further 

verify the objective mastics and the proposed data 

recovery method;  2) Applying the objective metrics to 

the on-line parameter optimization or robot learning. 

The on-line automatic optimization or learning is 

demanded and useful when more and more robotic 

assembly systems are installed and while the resource 

of quality control and assembly optimization experts 

and service budget are limited. Another advantage of 

on-line automatic optimization is that the parts 

manufacturing variation can be compensated 

dynamically and the robotic assembly process can be 

continuously improved; 3) Discover the strategy to 

recover the truncated data in real-world assembly 

production process. From the mathematics point of 

view the number of replicates may need to be 

dynamically increased based on the FTT rate in order to 

accurate recovery on mean and standard deviation of 

truncated data.  
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