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Abstract— The non-contact 3D sensing technology, though
achieved many success in a variety of applications, needs an
automation system to expand its applications to automotive in-
dustries for 3D shape inspection. The reason is the difficulty for
an operator to find an optimal solution by the manual control
of sensor viewpoints. The problem of this industrial application
is the capability for the sensing system to simultaneously
satisfy all requirements of competence, efficiency, and cost. A
robot-aided 3D sensing system can provide such a solution.
A CAD-guided robot view planner can automatically generate
viewpoints. Measurement accuracy can be satisfied in a certain
range. However, the unpredictable image noises still need to
be compensated for better measurement performance. In this
paper, a feedback planning system is designed and applied to
the CAD-guided robot sensor planning system. The feedback
controller can automatically evaluate the accuracy of obtained
point clouds and generate new viewpoints. This feedback-based
inspection system had been successfully implemented in filling
holes of a point cloud, caused by shadows and light reflections.
Such a system had been implemented on an ABB industrial
robot for a 3D measurement of an automotive glass and a pillar.
This paper introduces the developed planning system and our
current results.

I. INTRODUCTION

The automotive industry has been seeking a rapid 3D

shape measurement system for dimensional inspection. To-

day, many commercial 3D sensors and systems are available.

However, there are still ”barriers” to the adoption of 3D-

based machine vision systems in the automotive industry:

“Cost, Complexity, Reliability, Data Confidence, and Skilled

Labors (for maintenance and support)”; and the “primary

drivers for the end-user to use 3D vision are the need to lower

costs and improve quality through automation”, according

to Nello Zuech’s report with several industrial professionals

in 2007. [1]. Basically, for non-contact measurement, it

is difficult for a human operator to move the robot for

a satisfied measurement performance. Robot planning and

control may provide a solution: a robot sensor planner can

enhance the measurement quality and efficiency. Therefore,

view planning has been an active research area in robot

automation and becomes more important in the area of 3D

surface measurement and inspection.

Previous research on automatic view planning for visual

inspection can be found in [2] and [3]. Most of previous

works focused on planning a laser scanner because white
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light area sensors were generally bulky and heavy to be

mounted on a robot. Chen and Li developed white-light

area sensor planning using model-based view planning ap-

proach [4]. Though the projector is fixed, Chen developed

an equivalent sensing model to couple the constraints of a

pair of cameras mounted on a robot hand. This approach

gives a comprehensive analysis of the planning constraints,

but the illumination condition is not integrated because the

projector is fixed. Indeed, illumination problem is a serious

problem for white-light area sensor. Generally, white-light

area sensors can only measure a lambertian/diffuse surface. A

shiny surface, caused by specular reflection, still needs a pre-

treatment such as a powder spray before 3D measurement.

Besides, the shape complexity generates occlusion problem

that appears shadows on the part surface. To solve these

signal dynamic range problem, Qian proposed a novel sensor

planning approach based on spherical mapping, geometrical

reasoning, and an iterative optimization strategy [5]. Qian’s

approach, has an advantage to avoid the illumination problem

in planning stage. Another approach, proposed by Impoco

et. al in 2004, is to compensate the problem by adding

additional viewpoints through clustering unseen directions

[6]. Impoco’s method is more practical, and the computation

of additional viewpoints based on the measured point cloud

is straight forward. Besides, the additional viewpoints can

be used to improve the measurement performance. Although

the robot path may not be efficient, it is tolerable for an

industrial application.

Intensity noise is often a random noise in the process

of counting photon energy for each pixel. This type of

noise mainly depends on the image grabbing system and

can be reduced using filtering techniques. Another type of

error from the image is the quantization error [7][8], which

is unavoidable in many vision systems. Therefore, a high

resolution camera is usually required for better accuracy.

Besides, with a same camera, a proper viewpoint can also be

used to reduce this quantization error [9]. Third, the surface

property of light reflection is a problem particularly when

a projector is involved in a vision system. Because various

materials have different reflection properties, the projected

patterns may not be clearly recorded. For example, in a low

contrast region of an image, error is often increased because

the edge of projected fringes becomes easy to be noised.

Feedback-based view planning method is a possible solu-

tion to solve those problems. A prototype 3D area sensor had

been developed previously [10], this paper specially focus

on the measurement optimization through view planning

method. The measured point clouds and collected images

can be used to identify problem regions and estimate new
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viewpoints to cover that. The principle of this feedback-based

view planning system is: two measurements are conducted on

a part surface, the variations of the measured shape are ana-

lyzed such that new viewpoints can be generated to improve

the measurement accuracy. Particularly, when a low contrast

area is detected, a new viewpoint can then be generated to

cover that part of surface. Although the processing time of

this feedback-based system is much longer than a CAD-

guided view planning system, the measurement accuracy

will be improved, which is indeed required for industrial

applications.
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Fig. 1. A feedback-based robot sensor planning system for rapid 3D shape
inspection

A dynamic view planning system and the specific feedback

controller is shown in Figure 1. The goal of this dynamic

planning process is not only to build an automatic inspection

system, but also improve the measurement quality.

II. CAD-GUIDE ROBOT PLANNING

A CAD-guided area sensor planner is developed to es-

timate a preset of robot viewpoints. Five constraints are

usually need to be considered: visibility, field of view,

resolution, point density, and depth of focus. Different from

planning a single camera, constraints of both camera and

projector have to be satisfied. As shown in Figure 2, V is

the vector of sensor viewing norm, Vavg is defined by the

average norm of a patch of surface. C1,C2 are vectors of

camera viewing normal constraints, and P1,P2 are vectors of

projection normal constraints. S1,S2 are vectors of surface

normal constraints that are limited by C1,P1 and C2,P2. This

constraint ensures that this patch surface can be illuminated

by projector and images of this patch surface can be taken

by camera. Threshold angles of θ1 and θ2 are used to

define visibility constraints and angle θtri represents the angle

between any single triangle and the surface average norm,

as shown in Eqn. (2).

θ1 = arccos(
S1 ·Vavg

‖S1‖‖Vavg‖ ) (1)

θ2 = arccos(
S2 ·Vavg

‖S2‖‖Vavg‖ )

θtri = arccos(
Vtri ·Vavg

‖Vtri‖‖Vavg‖ )

|θtri| <
{
|θ1|, sign(θtri) = sign(θ1)
|θ2|, sign(θtri) = sign(θ2)

(2)

The given CAD model is first tesselated into triangles. Then,
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Fig. 2. Deriving visibility constraints of an area senor

based on the normals and areas of triangles, a clustering

algorithm was used to separate all triangles into a set of

smooth patches.

The other constraints are described as follows:

1) Field of view determines the size of maximum in-

spection area. It is usually a rectangular field. In the

developed Area sensor planner, it was determined by

the standoff and camera viewing angles.

2) Resolution defines the entity’s minimal dimension to

be mapped onto one camera pixel.

3) Point density is a constraint determined by the field of

view and the resolution of the projector, which is a new

constraint developed for the automated Area sensor

planning system. Point density constraint ensures that

enough points can be measured for certain area of

surfaces.

4) Focus constraint defines the farthest measurement dis-

tance and the nearest measurement distance from a

viewpoint.

A bounding box method is developed to integrate all

constraints of both a camera and a projector for searching

viewpoints. Illustrated in Figure 3, a candidate patch is

concluded in a bounding box, the width and the length of

the box specify the field of view and the height of the box

specifies the farthest and nearest focus distances. A viewpoint

can be estimated on the center line that passes through the

bounding box.

min−→
P

N

∑
i=1

F(Ci1,Ci2, ...,Ci5 ∈ Rc | Pi1,Pi2, ...,Pi5 ∈ Rp) (3)

III. FEEDBACK ROBOT PLANNING

A. Measurement error analysis

A gray coded line shifting (GCLS) method had been

applied to our 3D area sensor [10]. Precisely determining

the boundary of strips is a critical issue for a successful 3D
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Fig. 3. Integration of planning constraints using a bounding box method

shape measurement. To calculate the depth from one surface

point to a pre-calibrated reference, edges of strips have to be

calculated in sub-pixel resolution. If not, quantization error

will be added into measurement results. As shown in Figure

4, the edge of a stripe can arbitrarily fall in any place between

an image pixel n and its next pixel n+1.
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Fig. 4. Image quantization error in edge detection
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Fig. 5. Edge detection using interpolation strategy

To estimate the location of the stripe in sub-pixel accuracy,

an edge detection method is used, as shown in Figure 5:

using another image with opposite intensity stripes, A, B,

C, and D represents four intensity values that will be used

to calculate X, the location of a stripe boundary. Sub-pixel

accuracy can be achieved with this interpolation calculation.

The estimation of X may have error because of image

noises, but it is bounded in one pixel. On a view surface

that has a norm parallel to the viewing direction, resolution

is often defined by the size of a piece surface projected

onto one pixel. This resolution is a constraint widely used in

many view planning system. For a freeform surface, it may

contain many small patches, norms of each small patch will

be vary so that the resolution of each patch is quite different.

Average norm of all small patches, can be used to determines

a viewpoint for those patches. This method only satisfies

the global resolution constraint. However, for a small patch

under that viewpoint, the angel between the surface norm and

the viewing direction may exceed the threshold such that the

resolution constraint cannot be satisfied. Hence, the one pixel

error bound will be increased and the measurement uncer-

tainty will not be tolerant. For surface shape inspection, this

small area needs a new viewpoint to satisfy the measurement

constraints.

In another aspect, measurement uncertainty can also be

generated in low contrast images. Considering intensity

noises, stripes in a high contrast area will be more robust than

stripes in a low contrast area, which makes feedback robot

planning strategy critical in solving this type of problem.

B. Mathematic model of the feedback-based inspection pro-
cess

This feedback system has a CAD-guided sensor planner

that can initially setup a set of viewpoints in the open-loop. A

feedback controller was designed to add a set of viewpoints

recursively according to the quality of the obtained point

clouds. The diagram of the whole feedback-based inspection

system can be seen in Figure 6. The purpose of the feedback

controller is to improve the measurement accuracy.
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Fig. 6. Block diagram of a feedback-based dynamic shape inspection
system

C. The control model of the feedback planning system

The dynamic sensor planner need various inputs such as

CAD model and point cloud information. According to each

type of input, viewpoints will be generated and be added into

a robot path. Except the area sensing model, the dynamic

sensor planner has three more inputs: 1) CAD model, 2)

task constraints, and 3) feedback information.

CAD model M is usually a group of triangles tessellated

from part surfaces. Mathematically, it can be represented by:

M = {Ti|Ti =< (Xi1,Yi1,Zi1),(Xi2,Yi2,Zi2), (4)

(Xi3,Yi3,Zi3) >, i = 1...n}
Task constraints TC is a set of measurement requirements,

which integrate the requirements for CAD-based planning

strategy and feedback-based planning strategy:

TC = { f ov,S,ρ, fd ,η ,Σ,σ} (5)

where the field of view f ov is defined by the length L and

width W of a rectangle area; S is the standoff distance of an

area sensor; ρ represents the image resolution; fd represents

the focus distance which contains two values: nearest focus

distance, and farthest focus distance; η represents visibility

of the area sensor, determined by three vectors: projection

4383



vectors
−→
PV , camera viewing vector

−→
CV , and surface norm

vector
−→
SV . A piece of surface is visible if the following

equation is satisfied:⎧⎨
⎩

arccos(
−→
PV ·−→SV

||−→PV ·−→SV || ) < θth1

arccos(
−→
CV ·−→SV

||−→CV ·−→SV || ) < θth2

(6)

where θth1 ensures that the encoded patterns can be projected

onto the surface and θth2 ensures that this piece of surface can

be “seen” by camera. Σ represents the area of holes generated

by shadows or light specular reflections. Stripes are totally

lost in this part of area and the number of correspondent

pixels are counted to determine the size of holes; σ is the

standard deviation of measurement variations, calculated on

same surfaces within two measurements. Ideally, the shape

of those two point clouds should be identical. However,

image quantization error and poor surface reflection property

will increase the measurement uncertainties. Then, stand

deviation of the differences of two measurements can be

used to show how the two point clouds are vary from each

other. If σ is larger than a predetermined threshold, another

viewpoint then need to be set for this area.
Feedback information contains the analysis results of the

measured point clouds, which is generally an inaccuracy map

IA, described in Equation 7, pi represents a 3D point in a

region which has quite different shape between two mea-

surements, ka represents the number of points in this region,

and σth is a threshold value predefined as the requirement of

measurement accuracy.

IA = {pi(xai,yai,zai)|i = 1,2...ka,sigma > sigmath} (7)

Measurement error usually is not evenly distributed over a

point cloud [10]. For a single surface point, the measurement

accuracy is related to the sensor viewpoint. The accuracy

map IA can effectively show the differences between the

measurements on two viewpoints.
Viewpoints are the output of this dynamic sensor planner.

A viewpoint includes a location p and a viewing vector v.

As shown in Equation 9, V0 represents the initial set of

viewpoints generated from CAD model, Vk represents the

sets of viewpoints estimated in feedback, k represents the

iteration times.

V0 = {Ψ0i = (pi,vi), pi ∈ R3,vi ∈ R3} (8)

Vk = {Ψki = (pki,vki), pki ∈ R3,vki ∈ R3}
V = (

n⋃
k=1

Vk)
⋃

V0

The developed dynamic sensor planner also has two func-

tions:

1) Initial viewpoint configuration f0: An initial viewpoint

configuration is a process to estimate viewpoints based

on the given CAD model of a part. Function f0

represents a bounding box algorithm developed to find

a viewpoint set V0 from CAD model M.

f0 : M �→V0 (9)

2) Feedback-based viewpoint configuration gk: gk is a

projection from a defect map IA to new viewpoints.

gk : IA �→Vk (10)

The viewpoint evaluator Λ is a function, which makes a

decision about if the quality of a point cloud Pc satisfies the

measurement requirement. If not, defect map IA will be fed

back to the dynamic sensor planner to update set V .

Λ : V �→ IA (11)

where viewpoint set V is the input to Λ. Figure 7 illustrates
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Fig. 7. Block diagram of the feedback controller, viewpoint evaluator Λ

the detail structure of this function. Two point clouds will

be measured sequentially. Differences between those two

point clouds will be input to the error evaluator. Meanwhile,

an image processor is designed to identify the area with

intolerant shape differences. Symbol uk and vk are used for

system stability analysis and will be described next. A logic

switch signal K is the output signal of Λ. Q is a cost function

that determine the area of inaccurate points. If Q is less than

a threshold Eth, the switch k will be closed and the iteration

process will be stopped, the current point cloud can then be

sent out for comparison with its CAD model M.

The mathematic models of a point cloud Pc, a point cloud

generator Γ and an error map generator Δ, shown in Figure

6 have been introduced in details in [11].

Equation (12) describes the model of the dynamic view

planning process in a state space: V and Pc are state

variables, M and TC are inputs, and error map E is the output

of the system:⎧⎨
⎩

V .= f0(M,TC)∪gk(IA)
Pc .= Γ(V )
E = Δ(M,Pc)

(12)

where
.= indicates that V and Pc are accumulated results

from iterations. As shown in Figure 6, given a CAD model

M and a set of task constraints TC, a group of viewpoints

V0 will be initialized first, a point cloud Pc is then generated

according to V0. Initially, V is equal to V0. Two functions Γ
and Λ are then going to be executed based on this viewpoint

set V . As described previously, Γ is an execution to obtain

point clouds Pc from set V . Meanwhile, function Λ evaluates

the current viewpoint by detecting regions of inaccurate

points. If necessary, a group of new viewpoints can then

be generated through function gk.

IV. EXPERIMENTAL IMPLEMENTATION AND RESULTS

A 3D area sensor is developed and attached to an ABB

robot in our laboratory, the system can be seen in Figure 8.
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Fig. 8. Robot-aided Automatic 3D Rapid Surface Inspection System

The 3D area sensor is made by a LED-based DLP projector

and a CCD camera. The weight is about five pounds, include

the aluminum shield. The LED projector use a rechargeable

battery as power source that can be continuously used for

four hours. Both the camera and the projector are connected

to a computer, which has a Matrox 1394 frame grabber, robot

planning software, robot control software, and 3D measure-

ment and inspection software installed. A part pillar (model

number m32510) is provided by FORD Motor Company for

experimental trials. The projected stripes and the point cloud

on that view point is shown in Figure 9. Figure 10 displays

all 16 point clouds measured over the part surface. A color

coded map, also called error map, can be seen in Figure 11.

The distribution of the color represents the shape variation

between the profile of the real part surface and the desired

shape, its CAD model.

Fig. 9. Stripes and the correspondent point cloud from another view

The developed robot sensing system is also extended to

rapid windshield dimensional inspection for the automotive

glass industry. Because the worldwide competition, car mak-

Fig. 10. Point clouds measured on each viewpoint

�

Fig. 11. The developed error map of pillar, m32510

ers increase the demand on the quality of the windshield’s

3D shape. The traditional windshield bending process of the

automotive glass industry needs a rapid 3D shape evaluation

system as a feedback to the temperature control system.

Traditional CMM technique cannot provide such online mea-

surement and realtime feedback information. Non-contact

3D inspection technology then provides a solution to this

requirement. Figure 12 illustrates an example of such an

application, which is based on the robotic 3D inspection

system.

�

Fig. 12. Automatic 3D Rapid Windshield Inspection System

4385



Figure 13 shows an errormap developed using traditional

CMM technique, it usually takes two operators entire day to

setup the windshield, calibrate measurement system, measure

the surface, and then compare to the CAD model. The robotic

measurement system, using online calibration technique,

only needs three minutes to scan the whole piece surface

and about two minutes to calculate the error map. In another

aspect, the point density developed using CMM technique

is much lower than rapid 3D inspection system. It is 25mm

between each point in the sample errormap in Figure 13.

Instead, the automatic 3D rapid inspection system, can

reach to 0.2mm between each point. With this high point

density, the surface geometry property, which includes the

required 3D profile information, can be calculated directly.

As a comparison of the errormap, the developed errormap

is shown in Figure 14. Recently, our research extends to

3D shape measure of unpainted windshields. A recursive

based back-imaging method has been developed for a new

type of 3D area sensor, which is introduced in another

paper. However, the feedback robot planning method, as a

theoretical foundation, can be applied to the back-imaging

approach as well. Results will be presented in the near future.

Fig. 13. The errormap of a windshield, developed by traditional CMM
technique

V. CONCLUSIONS

In this paper, our current results on a feedback based

robot area sensing system is presented. This system is

developed for 3D shape quality control in the automotive

industry. The feedback visual controller is used to improve

the accuracy of a vision-based 3D shape measurement.

CAD-guided planning is an effective way to estimate a

group of view points for a 3D area sensor. However, image

quantization error and poor surface reflection property may

increase the measurement uncertainties, which cannot be

solved by a CAD-guided robot sensor planning system.

�

Fig. 14. The errormap of a windshield, developed by the automatic robot-
aided inspection system

Feedback planning methods are developed to optimize the

robot planner. Standard deviation between two point clouds

is used to evaluate the quality of the measured point cloud.

The point cloud obtained from this feedback system can be

output directly for shape verification. Mathematical models

of this system are developed. Experiments on an automotive

body part and a glass windshield show the effectiveness of

the designed automatic rapid surface inspection system.
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