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Abstract— Motion vision can be used to determine world
structure from a video sequence. In harvester machine au-
tomation, the potential is that trees could be measured from
a distance. Based on the measurements, tree cutting could
be optimized and harvester automation increased, resulting
in higher resource utilization efficiency. However, a natural
environment poses challenges to any computer vision task. This
paper presents computer vision algorithms that are applied to a
forest environment. The results show that dense optical flow can
be computed from a real-world forest data accurately enough as
to enable instantaneous dense structure estimates of the visible
image scene.

I. INTRODUCTION

According to a long-term vision, forest harvester machine
operation could be both automatized and optimized using
advanced measurement technology. Essential tree parameters
like trunk dimensions, shape and branches could be measured
while approaching a tree to be felled. The possibility of
measuring the tree before it has been felled is a novel one.
Presently, the mechanical measurements performed in the
harvester head are obtained too late for true cut-location
optimization.

The work presented in this paper is a part of a project
that aims to evaluate and compare different sensory options
for a harvester. This paper concentrates on the motion vision
approach. Two main benefits of motion vision based structure
estimation are: the requirement of only one camera (com-
bined with some absolute distance measurement for fixing
scale) and small discrepancy between consequent images.
Small discrepancies in image data are advantageous for
optical flow computation but on the other hand increase
noise in depth reconstruction. Other sensory options such
as stereo vision and laser scanners are part of the project but
not discussed here. Instead, this paper proposes a structure
from motion estimation procedure that is intended to work
outdoors and produce high resolution dense depth estimates
from image pair data.

Optical flow has been under extensive study for decades,
resulting into several families of optical flow computation
methods. In the following, focus in on dense optical flow
estimates. Objective evaluation of the different methods has
been attempted [1], [2] but has also proven to be difficult.
For example in this work, the aim is to measure trees, in
which case average error over the whole image is secondary
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to the error near critical object boundaries. Fleet and Jepson
propose a phase correlation method in [3] that achieved good
results in the benchmark [1] but for the price of relatively
low estimate density. Promising enhancements have been
suggested to phase correlation image registration [4], [5] but
to the author’s knowledge, these have not been integrated
to the dense optical flow estimation task. Alvarez et al
suggest in [6] a method claiming improved results against the
benchmark competition but comparison with e.g. [3] is left
out due to the restriction to 100% dense maps. A later work
by Alvarez et al proposes a method utilizing symmetry in
optical flow [7], attempting to address the occlusion problem
but primarily achieving only detection of occlusion.

This article, however, pursues an application specific so-
lution to the task by using a block matching i.e. correla-
tion approach. The work is continuation to the works of
Anandan in [8], and Singh, in [9]. Essential differences and
task-specific improvements to the above have been done.
Common features include hierarchical pyramid processing,
window correlation and integer block search. However, in
this work, no explicit smoothing is performed to obtain sharp
object boundaries. No pyramid overlapping as in [8] is re-
quired either due to the use of adaptive filtering. The method
in this paper differs from the above also in the addition of
both sub-pixel refinement and filtering, implemented inside
the hierarchy. This will allow the benefits of the both im-
provements to propagate within the hierarchical processing,
answering to the challenges of the pursued application. In
addition, block cropping is explicitly presented to allow for
using the full image resolution in computation. Algorithm
parameters have also been adjusted according to empirical
in-site experiment data to suit the application needs. Main
aim of this work was to evaluate if motion vision structure
estimation could be applied to a real world measurement
task in a challenging forest environment, where the main
challenges supposedly relate to the optical flow calculation.

Structure from motion can be pursued in various different
ways. A central problem is determining the motion, or
change in pose for the camera. When both optical flow
information and the pose change are known, a linear tri-
angulation procedure can be utilized. Kalman filtering ap-
proach is popular in the literature, e.g. [10]. For images
in the megapixel range, such approach would hardly be
possible to implement in real-time. A more speed oriented
integrative approach is given in [11] but the amount of
high frequency noise in the camera motion makes continuity
assuming filtering approaches infeasible. Instead, instanta-
neous independent motion estimation is required. Linearized
formulations for the problem have been attempted in [12],
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[13] but their precision was found insufficient. Later in this
paper, a straightforward solution is presented to obtain a
reasonable base estimate for motion without unnecessarily
compromising quality.

II. MEASUREMENT PLATFORM AND SETUP

Video data was collected using a Honda all terrain vehicle
(ATV). The ATV carries batteries, a computer and the
cameras attached to a camera stereo stand. While the data
collection was performed with a stereo camera system, data
from only one camera was used in this work as explained
in the introduction. Fig. 1 shows the ATV sensor platform
setup.

Fig. 1. Honda all terrain vehicle (ATV) sensor platform. (a) Cameras are
attached to a PC computer on board the ATV. (b) Honda ATV operated by
a researcher.

A. Video Hardware

Video hardware used in the tests consisted of an industrial
monochrome firewire camera, product name Basler Scout,
with a wide angle lens manufactured by Tamron to provide
with a sufficiently large field of view (72◦ in vertical ori-
entation) to allow measuring a tree from a distance. There
were several criteria behind the choices. First, the ability
to output uncompressed video data to avoid compression
artifacts. Second, a relatively high resolution to facilitate
measurement precision, i.e., 1.4 MP (megapixel) images.
Third, a sufficient frame rate to ensure that relative changes
between video frames are not too large, the Scout giving
17.4 fps at maximum.

B. Video Data Collection

The data used in this paper was collected by driving
approaches toward trees from approximately 5 meters with a
Honda ATV and recording the approach to a video sequence.
Due to uneven ground and the ATV itself, the sequences
contain a high amount of uncontrolled camera motion. Later
experiments have verified that data obtained from a real
harvester head behaves more smoothly.

C. Test Location and Conditions

The data collection was performed in a forest in Vantaa,
Finland. The forest had a low density of trees, predominantly
pines, with a low amount of undergrowth. The pines were of
relatively the same age and had little branches on the lower
parts of the trunks.

Conditions on the day of the data collection experiment
were challenging due to half-cloudy conditions and moderate
wind. Problematically high dynamic range of illumination
results from the intensity variation between bright sunlight
and cloud shadows. The wind on the other hand causes the
forest to move (including shadow movement), violating the
usual rigidity assumption.

III. PROBLEM FRAMEWORK

In this work, there are three main variable groups of
interest relating to motion vision. Two of these are objective
properties of the world: the motion parameters and the
scene structure parameters. The third is an artificial, more
ambiguous variable group – optical flow – that describes
apparent visual motion in the image sequence.

The camera model used in this paper is the perspective
projection model. Fig. 2 illustrates the camera coordinate
system. Throughout this paper, in image pair data, the frame
is fixed to the first (preceding) image corresponding camera
frame.
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Fig. 2. The center of the virtual image plane is denoted by c. X , Y , and
Z are the respective x-,y-,and z-coordinates of the scene point. p̂x and p̂y

are the coordinates of the projected point p̂. The camera points toward the
positive z-axis.

Because perspective projection model fails to accurately
represent a true mapping taking place in the camera optics,
the camera was additionally calibrated against typical radial
and tangential distortions.

Camera motion is represented using an Euler angles rota-
tion matrix formalism, expressing a precise discrete transfor-
mation in an equation, (assuming ∆t = 1 for convenience),

p2 = Rαy,αz,αx(p1 + t), (1)

where p1 is a scene point before motion and p2 is the same
point location after the motion. The translation motion t
and the rotational motion represented by the rotation ma-
trix Rαy,αz,αx

define the motion parameters. The sampling
period ∆t can be chosen arbitrarily because time dimension
is irrelevant in this task - only the acquired change in pose
matters, regardless of the time needed for the pose change.
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IV. AN ADVANCED BLOCK MATCHING
ALGORITHM FOR OPTICAL FLOW

Optical flow is a (dense) estimate of the true projected
motion field. In this paper, a motion field (and consequently
optical flow) represents discrete motion.

The overall algorithm work flow is presented below:
1) Preprocessing.
2) Hierarchical search loop.

a) Integer search.
b) Sub-pixel refinement.
c) Active pixel shifting (adaptive filtering).
d) Hierarchy propagation.

The algorithm takes an image pair as its input. The image
pair consists of a source image that represents the present
and a target image that represents the future. First, an image
pyramid is constructed for both of the images. Then, the
algorithm works hierarchically with integer search, sub-pixel
refinement and filtering procedures at each pyramid level.

A. HIERARCHICAL APPROACH

In a hierarchical approach, an image pyramid is first
constructed from each full-resolution image. The pyramid
is a multi-resolution representation of the original image
[14]. A factor of 2 is used in this work for decimation and
resampling. Using factor 2 is both mathematically convenient
and efficient and thus commonly used in the literature.

Hierarchical processing starts from the pyramid top, from
the most coarse hierarchy level and proceeds downward,
one layer at a time. Parameters involved in the search are
the integer search range r and the block dimensions m
and n. Based on empirical experimentation, block dimension
values between 3 and 5 provide the best compromise between
noise and sharpness. In forest where vertical edges are
predominant, taller than wide blocks are preferred. At the
highest pyramid layer, the search range has to be calculated
so that it matches the maximum detectable motion desired
for the task. For the subsequent pyramid levels, the range can
be kept small, typically from 2 to 4. Any obtained results –
and errors – in the hierarchical processing will propagate
and spread during the pyramid processing but the severity
of error propagation is greatly diminished with a filtering
process introduced later in this paper.

B. INTEGER FULL SEARCH

Integer pixel search is a motion estimation search process
that tries to find the best integer-precision candidate match
between blocks from two images. An image block is a
windowed rectangular-shaped area of its parent image.

The search process evaluates how well two blocks, a fixed
source block from the source image and a varying-position
block from the target image, match. The match “goodness” is
evaluated with an error-metric that is minimized by the best
match. The error metric used in this work is the normalized
mean square error

EMSE =
1
N

N∑
i

(x1
i − x2

i )
2, (2)

where vectors x1, x2 are composed of image block data, and
N is the length of these vectors. Normalization is used to
ensure that match errors between different sized blocks are
comparable.

A limited-range full-search is implemented to emphasize
the quality of the search results. Alternatively, a heuristic
search pattern could be utilized but doing so would sacrifice
matching quality. The higher computational cost of running
a full search can be compensated with parallel computing.

C. IMAGE BORDERS

When block matching happens in the “center” areas of an
image, the image borders can be safely ignored. Close to
the image borders, however, there are several issues. First,
the block area should not overlap the image area. Second,
the blocks need to share the same dimensions. Third, the
correct motion may be directed outside of the image borders.
Trivially restricting the computation to the image center is
not feasible, especially with hierarchical processing as that
would loose a significant part of the image data.

A solution to the first two problems, and a partial solution
to the third consists of three phases. First, the source image
block is cropped to image borders. Second, the shifted target
block is additionally cropped against the image borders - this
is the final target block. Third, the target block is reverse-
shifted back and again cropped against the image borders
- this is the final source block. The last step is required to
ensure identical block sizes. Additionally, when the width or
the height of a block is cropped to less than 2, matching
is aborted. A more detailed visual representation of the
cropping procedure is available at [15].

D. SUB-PIXEL REFINEMENT

In order to attain sub-pixel precision with block matching,
image block interpolation is necessary. Linear interpolation
is used to limit computational cost. For example, bicubic
interpolation could also be used with the cost of more com-
putation time. In this interpolation task, scale, orientation,
and shape are maintained, only translation occurs. Thus,
image block interpolation can be performed with only four
weighted matrix additions [15].

The sub-pixel heuristic search refines the integer preci-
sion results. Different sub-pixel candidate translations are
explored heuristically with the help of predictors to restrict
computational cost. The used sub-pixel precision was 1/16
– probably pushing the limit of the obtainable information
in the image data.

An outline of the proposed sub-pixel precision refinement
search is presented below.

1) Consider 6 predictors at the search space. Compute
the error values for each and select the minimum
error predictor. 5 of the predictors are fixed spatial
predictors covering coarsely the search space and one
is a continuity predictor that uses the location of the
previously calculated (neighboring) location.
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2) Perform an optimized simple gradient descent search
from the selected predictor. Stop the search if a stop
condition is fulfilled while performing the search.

3) Return the sub-pixel block translation at the stop
location as the optimum sub-pixel refinement to the
integer search result.

Predictors are heuristic guesses for search locations that
are used to improve efficiency and quality of e.g. motion es-
timation algorithms [17]. Effectively, they restrict the amount
of error evaluations required by the gradient search by giving
a good starting location.

E. ADAPTIVE FILTERING

This far, block matching results have been associated
with the block center pixel. However, shifting the associated
pixel can provide benefits by avoiding overlapping object
boundaries, i.e. occlusion areas. Ong and Spann use a more
basic block shifting procedure in [18] but the filtering process
used in this work is specifically implemented to benefit from
the existing dense flow field.

It is assumed that both dense optical flow and correspond-
ing match error measures exist. Consequently, all the off-
center shifted correlations are present in the computed optical
flow. This observation allows for implementing an optimal
block shifting algorithm that works as a post-processing filter
for the earlier acquired optical flow field, with little additional
computational cost.

In the following, a three-criteria adaptive filter is proposed.
A minimum (2) error yielding shift is searched from the
candidate shifts that pass the criteria for the whole image
area. The three parameters implementing the criteria are:

1) Relative error threshold, tr
The relative error threshold defines the minimum rel-
ative improvement that has to be obtained by a shift
– if the relative change in error values is below the
threshold, no filtering will be done.

2) Minimum error threshold, tm
The minimum error threshold defines the minimum
allowed error for the initial flow – if the error value is
below the threshold, no shifting will be done.

3) Flow magnitude change threshold, tc
The flow magnitude change threshold defines the min-
imum required change in the flow vectors for the shift
to be performed – if the norm of the change is less
than the threshold, no shift will be performed.

The implemented optical flow computation uses this fil-
tering at the end of each hierarchy level. Consequently, the
benefits propagate with the hierarchical processing, greatly
reducing the effects of false block matches. The use of the
block match error measure (2) in the shift algorithm has
some shortfalls. The match error metric biases low-texture
areas, giving them smaller error values. To compensate for
the weakness, simple thresholding is used in the main integer
search algorithm to abort the search in blocks that are either
too dark or bright, i.e., trivially containing low texture.

V. MOTION ANALYSIS AND STRUCTURE FROM
MOTION

This section presents a straightforward approach to using
the acquired dense optical flow field for constructing an
instantaneous 3D structure estimate of the visible image
area, i.e., a depth map. First, camera’s relative pose change
between images is estimated. Second, the relative pose
information and the optical flow are used to compute a dense
depth map.

A. CAMERA RELATIVE POSE ESTIMATION

Although the aim is to compute a dense structure estimate,
sparse data set can be used for estimating motion. The
benefits of using only partial data for the motion estimation
are numerous, most importantly: computation is much lighter
and quality of the data can be selectively controlled. In this
paper, sparse sets of points have been selected manually at
this stage of algorithm development, but several automatic
methods exist and yet an additional automatic method is
under development for the problem but has not yet been
thoroughly tested. Shi and Tomasi propose a method for
finding good features to track in [19] and Lowe implements
an automatic method for extracting scale-invariant keypoints
in [20]. However, these methods are not specifically designed
to predict quality of a dense optical flow field that is used in
this work because the methods implement their own feature
matching and tracking algorithms. For this reason, more
work would be required to integrate one of these methods
to this work. Thus, a more simple solution specific to this
problem might be easier to achieve and this work is still in
progress.

Pose estimation in this work was done using numerical
optimization for several reasons. Due to the problem non-
linearity, no closed form solution exists. Several approxi-
mated solutions from the literature such as [13] or iterative
application of [21] with triangulation have been attempted
but the results have proven unsatisfactory with respect to the
precision requirements of this work. Numerical optimization,
on the other hand, can be performed without approximations.
However, proper care should be executed with respect to
the typical problems such as local minima and unguaranteed
convergence. Fortunately, advanced optimization algorithms
are well-researched and readily available for use.

A flow fit error measure was used in the optimization
as the function to be minimized. The flow error measure
calculates the difference between expected motion field and
the measured optical flow. First, the input data points p̂i

are back-projected out from the image plane by using depth
information Zi and transformed according to (1)

pi = Rωy,ωz,ωx([xiZi, yiZi, Zi]T + t).

The transformed points are then projected to the image plane
p̂i = pi/piz, by dividing the vector with its z-axis coordinate
value. The motion field ∆p̂i is simply the difference ∆p̂i =
[p̂ix, p̂

i
y]T − [xi, yi]T .
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Because an optical flow field approximates the motion
field, an error measure

Ef-fit =
N∑
i=1

(
|ui −∆p̂ix|+ |vi −∆p̂iy|

)
(3)

can be defined, where u is the x-direction optical flow and
v is the y-direction optical flow.

In addition, a scale regularization term was used to address
the inherent scale invariance in a monocular vision system.
Regularization can be performed by fixing the translation
vector’s norm to unity against a squared penalty

Enorm = (
√

t2x + t2y + t2z − 1)2. (4)

In the final optimization process, sum of Ef-fit and Enorm is
minimized.

B. STRUCTURE FROM MOTION

Once both the optical flow and the relative camera motion
are known, the structure can be solved linearly. The following
presents a “direct” solution to the problem.

In the direct approach, the coordinate system is fixed to
camera coordinates of the source image. Two points, p1

and p2, represent the object location with respect to two
viewpoints. The principle of the direct approach is that p2

can be represented in two ways using p1: first in the image
plane, where p̂2 is p̂1 added with the motion field m estimate
(optical flow)

p2 = Z2p̂2 = Z2p̂1 + [u, v, 0]T .

On the other hand,

p2 = R(p1 + t) = R(Z1p̂1 + t)

according to (1). Eliminating p2, denoting z = [Z1, Z2]T

and reshaping results in[
−Rp̂1 p̂1 + [u, v, 0]T

]
z = Rt.

The above is an overdetermined linear system of equa-
tions. Denoting the left side matrix of the above equation as
A, and applying a pseudoinverse solution to minimize the
squared error results in the depths, assuming rank 2 in matrix
A

z = (ATA)−1ATRt. (5)

VI. RESULTS

Fig. 3 shows an example visualization of an obtained
optical flow field. The figure shows that several tree shapes
are clearly distinct in both the component fields. This is
a good result in itself as far as the difficult problem of
object segmentation could be solved based on this data.
In addition, the figure shows some typical errors found in
optical flow results. The noisy areas in the top region of the
image correspond to areas of uniform open sky where plain
block-matching will fail. Some other noise in the results can
be explained by the moving shadows in the data and other
similar assumption violations. All in all, the dense optical
flow field is smooth and the object borders are relatively

sharp, even in the full resolution pixel detail level (which is
not visible from the reduced size images). At this stage, the
computation takes far too much time for real-time application
but on the other hand no optimizations have been performed
nor has the inherent parallel computation potential been
utilized.

Fig. 3. Dense optical flow field. (a) y-axis direction component as an
intensity plot. (b) x-axis direction component as an intensity plot. A middle
gray color corresponds to zero optical flow, bright color to a high positive
optical flow component, and dark black color to a large negative optical
flow.

Fig. 4. Depth map corresponding to an image pair. The brighter the color,
the more distant the image location is. Due to the scale invariance, the depth
map information is relative.

Motion estimation with numerical optimization proved
to be robust without data-specific parameter tuning. Error
minimization converged in all test data cases and the results
were sensible. The calculated motion estimates were used
to compute dense depth maps for the image pair data. One
example depth map that was obtained is presented in Fig. 4.
Because the depth estimate relies strongly on the optical flow,
the results reflect the quality of the optical flow estimates –
assuming that the motion estimation succeeded. The relative
depth map alone does not allow absolute measurements to
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be performed but it demonstrates that the general 3D forest
structure can be reconstructed from an image pair using the
methods presented in this paper. In general, the instantaneous
structure reconstructions work well if the motion in the
image pair provides with sufficient depth information through
translational motion. In the cases where the translational
motion was insufficient, the depth estimation naturally fails.
In this sense, the instantaneous representations are only a
starting point for building integrated 3D reconstructions that
complement the information from different time instants.

Evaluation of results at this point of the work is unfortu-
nately primarily qualitative. No ground truth optical flow is
yet available from the forest scenes due to the lack of sensors
capable of both measuring very small movements with high
precision and the lack of full 3D scans of the forest. For
motion estimation, affordable inertial measurement units are
not sufficient for direct estimation of ground truth motion.
Similarly, existing 3D laser scans from the approaches are
under work and their resolution is very limited due to the
low measurement times allowed. In the future, results from
the parallel measurement techniques will be utilized to give
a much more quantitative evaluation of the strengths and
weaknesses in each approach. However, at this time the
results do encourage further effort in the motion vision
approach.

VII. CONCLUSIONS

This paper has presented a sequence of methods that
produce a structure estimate of a forest scene based on two
consequent video frames. The combined results from the
tasks of determining optical flow, estimating discrete motion
between image frames and constructing a full depth map of
the visible scene have proved promising.

Lots of room for further work remains in all the sub-
methods. Optical flow computation suffers in large areas of
non-trivially low texture information. The computational cost
of the calculation is high and parallel implementation should
be pursued in the future. The motion estimation presented
here is not sufficient for end application use. Automatic point
selection will have to be incorporated to the method sequence
and the motion estimation should preferably be changed
to a RANSAC scheme based approach that should prove
higher quality and robustness without the inconvenience of
the numerical optimization.

On the whole, the results this paper have presented a solid
basis for additional research. The approached tree trunk is
clearly segmented from the background and other trees. In
addition, more distant objects in the forest environment can
be identified from the derived depth maps. From an image
object segmentation point of view alone, the results are good,
providing a possible solution to a generally very difficult
computer vision problem. Many difficulties with using com-
puter vision in natural conditions have been answered. In
essence, the results have proved that it is reasonable to apply
motion vision analysis to video data taken in uncontrolled
and challenging forest conditions.
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