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Abstract— This paper deals with a discret-time control ap-
proach, proposed for the control of a five-link, four-actuator
planar biped walker. The approach is based on the choice
of a particular class of walk configurations that enables a
full state controllability avoiding the need to use Poincaré-like
argumentation in the proof of motion’s reproducibility (stability
of limit cycles). Simulation results attest the efficiency of the
proposed control approach.

I. INTRODUCTION

In last the decades, the robotics community has shown
increasing interest in the area of legged walking robots [14],
[1]. An excellent database of biped walking robots built all
over the world can be found in [1]. One of the serious
reasons for exploring the use of walking robots relies in the
fact that they can co-exist and collaborate with their creators
without any costly modification to the environment created
for humans.
Currently, many research groups over the world are working
on biped robots, either on optimization of leg and foot
trajectory, stable walking control, or hardware design. The
main thrust of current research on biped control includes
many proposed control approaches, such as passivity based
control [16], robust sliding mode control [3], impedance
control [12], nonlinear predictive control [4], optimal control
[8], Lyapunov based control [5] computed torque control
[2], tracking control [15], intuitive control [13], intelligent
learning control [11], and neural network control [10].

From a control point of view, the major interest of biped
robots comes from the following difficulties that are inherent
to control of such systems:

1) biped robots have generally high degrees of freedom
mechanical structure, therefore many links and joints
are to be coordinated to achieve walking gaits,

2) dynamics of biped robots includes high nonlinearities,
3) their hybrid nature resulting from impacts with the

ground producing discontinuities (jumps) in the gener-
alized velocities,

4) another interesting point is under-actuation. Biped
walking robots may be under-actuated (case of our
robot Rabbit) that is the number of actuators is fewer
than the number of degrees of freedom (d.o.f),

5) the variable structure resulting from the switching
between different walking phases.

In this paper a new control strategy is proposed to control
a five-link, four-actuator biped walking robot. The directly
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controlled d.o.f are the absolute angular positions of the
lower-limbs of the robot Xc = (π−q31, π−q32, q41, q42)T ,
whereas the indirectly controlled d.o.f is the position of
the torso defined by Xnc = q1 (unactuated coordinate). The
main idea consists in the choice of particular configurations,
for which the dynamics of the system is linearized. Then
a discret-time feedback is proposed to control the whole
system to produce stable cyclic walking gaits.
This paper is organized as follows. The first section is this
introduction. In section II, the biped robot prototype is
described, and its dynamical model is discussed. Section
III is devoted to the unactuated coordinate dynamics.
The proposed control strategy is detailed in section IV.
Numerical simulations are given in section V to illustrate
the efficiency of the proposed control strategy. Finally,
concluding remarks are drawn in section VI.

II. ROBOT DESCRIPTION AND DYNAMICS

Illustrated by the schematic view on figure 1, RABBIT has
two legs and a torso. It has the original specificity enabling
both walking and running gaits [6]. Thanks to a guidance
device, the robot is laterally stabilized, then its motions can
be considered in the sagittal plane.
The mechanical structure of the robot is illustrated on figure
2 showing its generalized coordinates and control inputs. The

Fig. 1. Schematic view of the
biped RABBIT

Fig. 2. RABBIT’s mechanical
structure

use of Lagrange formulation [17] enables the computation
of the nonlinear dynamic model of the robot moving in the
sagittal plane without contact with the ground:

M(q)q̈+N(q, q̇)q̇+G(q) = Su (1)

where M(q) ∈ R7×7 is the inertia matrix, N(q, q̇) ∈ R7×7 is
the matrix of the centrifugal and Coriolis forces, G(q) ∈ R7
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is the vector of gravitational forces, u ∈ R4 is the vector
of control inputs, S ∈ R7×4 is a torque distribution matrix,
q =

(
q31 q41 q32 q42 q1 x y

)T ∈ R7 is the vector
of generalized coordinates of the robot (cf. figure 2). The
walking cycle of the biped can be decomposed into three
walking phases, namely the swing phase (or single support
phase), the impact phase and the double support phase. In
the case of this study the double support phase is assumed
to be instantaneous as in [7], [4] and others. The control
of the biped robot on the whole walking cycle needs the
computation of its dynamic model on the different walking
phases. This is the subject of forthcoming sections.

A. The swing phase model

The dynamic model describing the biped robot in the swing
phase is given by the following:{

M(q)q̈+N(q, q̇)q̇+G(q) = Su+ JT
1 (q)λ

J1(q)q̈+ ∂ 2Φ1
∂q2 q̇2 = 0

(2)

where λ is the Lagrange multipliers of the contact forces,
Φ1(q) is the function of the contact constraints, and J1(q) is
their Jacobian matrix.

B. The impact phase model

Under the assumption that the swing foot and the ground are
rigid bodies, the end of the swing phase is characterized by
a collision between the swing foot and the ground [18]. The
application of the non-regular mechanics laws enables us to
deduce the dynamic model of the rigid impact that happens
between the swing-leg foot and the ground [9]:

q̇+ =

[
I−M−1JT

2

(
J2M−1JT

2

)−1
J2

]
q̇− = D(q)q̇−

λ =−

[(
J2M−1JT

2
)−1J2

]
q̇−

(3)

It gives q̇+ and λ as functions of the pre-impact positions
q− and velocities q̇−. This dynamics may be expressed as:(

q+

q̇+

)
= ∆(q)

(
q−

q̇−

)
(4)

where the matrix ∆(q) includes also the relabeling of the legs
(i.e the stance leg becomes a swing leg and vice versa).

III. DYNAMICS OF THE TORSO
Let us consider the dynamic model (1) of the robot. Extracted
from it, the dynamics of the torso is given by:(1

4
m1l2

1 + I1

)
q̈1 =

1
2

m1l1 cos(q1)ẍ+

1
2

m1l1 sin(q1)(ÿ+g)−u1−u2

(5)

where u1 and u2 are the control inputs of articulations q31
and q32 respectively, whose dynamics is given by:

M1(q)
(

q̈31
q̈32

)
+M2(q)

(
q̈41
q̈42

)
+M3(q)

(
ẍ
ÿ

)
+

+N̄1,3(q, q̇)q̇+ Ḡ1,3(q) = C(q)
(

λn
λt

)
+
(

u1
u2

) (6)

with M1 :=
(

m11 m13
m31 m33

)
∈ R2 ; M2 :=

(
m12 m14
m32 m34

)
∈ R2

M3 :=
(

m16 m17
m36 m37

)
∈ R2 ; C(q) :=

(
JT

1 (1,1) JT
1 (1,2)

JT
1 (3,1) JT

1 (3,2)

)
now if we restrict ourselves to trajectories for which:
• the following angles:

|π−q31| ; |π−q32| ; q41 ; q42

|π− (q32 +q42)| ; |π− (q31 +q41)|
(7)

can be considered as ’small angles’,
• the amplitudes of the time derivatives of the angles

are of the same order of magnitude of the angles
themselves,

then it is clear that equation (6) can be greatly simplified by
keeping only the first order terms to obtain:

M1

(
q̈31
q̈32

)
+M2

(
q̈41
q̈42

)
+M3

(
ẍ
ÿ

)
+G0

π−q31
π−q32

q41
q42

=

C(q)
(

λn
λt

)
+
(

u1
u2

) (8)

Note that matrices M1, M2 and M3 are now constant
matrices, there is no more Coriolis term and the gravity
term is affine in the directly controlled variables q31,q41,q32
and q42 with G0 := [Diag(−g34,−g34) Diag(g4,g4)], and
g34 := g

2

(
m3l3 +m4(2l3 + l4)

)
; g4 = g

2 m4l4
To go further, the approximate expressions of λn and λt have
to be investigated. For that, let us have a look on the x and
y equations. Under the above assumptions, the equations for
x and y can be written in the following simplified form:

mẍ = λt −
( g34

g
g34
g

g4
g

g4
g
)q̈31

q̈32
q̈41
q̈42

+(
1
2

m1 l1)q̈1 (9)

mÿ = −m g+λn (10)

using equations (9)-(10) to express C(q)
(

λn
λt

)
appearing in

(8), leads after some manipulations to:

M1

(
q̈31
q̈32

)
+M2

(
q̈41
q̈42

)
−G2

q̈31
q̈32
q̈41
q̈42

+
(

M3−M4

)(ẍ
ÿ

)
+

(
G0−C1

)π−q31
π−q32

q41
q42

−( 1
2 m1l1(l3 + l4)

0

)
q̈1 =

(
u1
u2

)
(11)

Now using geometric arguments (first order approximation)
to write ẍ and ÿ under swing phase conditions gives:(

ẍ
ÿ

)
≈

(
−(l3 + l4) −l4

0 0

)(
q̈31
q̈41

)
(12)

that gives when injected in (11):

[
M∗3 +

(
M1 M2

)
−G2

]q̈31
q̈32
q̈41
q̈42

+
(

G0−C1

)π−q31
π−q32

q41
q42

−
(

1
2 m1l1(l3 + l4)

0

)
q̈1 =

(
u1
u2

) (13)
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with M∗3 :=
(

M3−M4

)(−(l3 + l4) 0 −l4 0
0 0 0 0

)
Now, equation (13) may be written in terms of Xc (introduced
in section I) and Ẍc as follows:[

M∗3 +
(
M1 M2

)
−G2

](−I 0
0 I

)
Ẍc +

(
G0−C1

)
Xc

−
( 1

2 m1l1(l3 + l4)
0

)
q̈1 =

(
u1
u2

)
(14)

where I in (14) represents the identity matrix in R2×2.
Finally, by using (14), one may write u1 + u2 in terms of
Xc and its second derivative as:

u1 +u2 = L∗0Xc +L∗2Ẍc−
1
2

m1l1(l3 + l4)q̈1 (15)

where

L∗0 =
(
1 1

)(
G0−C1

)
; L∗2 =

(
1 1

)[
M∗3 +

(
M1 M2

)
−G2

](−I 0
0 I

)
(16)

This finally gives when used in (5), keeping only first order
terms:(1

4
m1l2

1 +
1
2

m1l1(l3 + l4)+ I1

)
q̈1 =

1
2

m1l1ẍ+
1
2

m1l1gq1− (L∗0Xc +L∗2Ẍc) (17)

According to (12), ẍ can be written as:

ẍ =
(
−(l3 + l4) 0 −l4 0

)(−I 0
0 I

)
Ẍc =: DẌc (18)

therefore,

q̈1 =
1
2 m1l1g

d
q1−

L∗0
d

Xc +
1
2 m1l1D−L∗2

d
Ẍc (19)

where d = 1
4 m1l2

1 + 1
2 m1l1(l3 + l4)+ I1. (19) writes:

q̈1 = aq1−L0Xc +L2Ẍc (20)

A. Generation of reference trajectories for Xc

The reference trajectories of Xc on the time interval [t0, t f ]
are completely parameterized by the boundary conditions
Xc(t0) , Ẋc(t0) , Xc(t f ) , Ẋc(t f ). For instance, the reference
trajectories on each of the scalar variables q31, q32, q41 and
q42 is the unique 3rd order polynomial satisfying the four
boundary conditions. This can be written in a compact form
as follows:

Xc(t) = Φ(t)ΨX (21)

X =
(
Xc(t0) Ẋc(t0) Xc(t f ) Ẋc(t f )

)T ∈ R16(22)

Φ(t) :=

ϕ(t) 0 0 0
0 ϕ(t) 0 0
0 0 ϕ(t) 0
0 0 0 ϕ(t)

 ∈ R4×16

ϕ(t) =
(
1 t t2/2 t3/6

)
Ψ =

Φ(t0)
Φ̇(t0)
Φ(t f )
Φ̇(t f )


−1

∈ R16×16

B. Evolution of unactuated coordinate under perfect tracking

Let us assume that the reference trajectories on Xc defined
above are perfectly tracked. This is not really a restrictive
assumption since Xc is totally controlled by the four control
inputs u∈R4. The only obstacle upon such a perfect tracking
comes from either saturations or insufficient contact forces.
However, the class of small angles trajectories clearly dis-
poses of such problems. For the time being, let us concentrate
on what happens to the torso’s angle under perfect tracking.
Injecting (21) in (20) gives:

q̈1 = aq1−
(

L0Φ(t)+L2Φ̈(t)
)

ΨX (23)

Let us define the state of the torso by Θ := (q1 q̇1)T , using
(23), one may write:

Θ̇(t) =
(

0 1
a 0

)
Θ(t)+

(
01×16

−
(

L0Φ(t)+L2Φ̈(t)
)

Ψ

)
X

=: AΘ(t)+B(t)X (24)

Therefore, one clearly has:

Θ(t f ) = Ā(t0, t f )Θ(t0)+ B̄(t0, t f )X (25)

Ā(t0, t f ) = Ā(0, t f − t0) := exp[A(t f − t0)] (26)

B̄(t0, t f ) = B̄(0, t f − t0) :=
∫ t f

t0
exp(A(t f − τ))B(τ)dτ (27)

C. Recall on impact’s dynamics

In this section, the principle of the impact dynamics used
in the forthcoming developments is recalled. For that, con-
sider first the expressions of the feet cartesian coordinates
xpi(q),ypi(q). Let us then define Ji(q) (for i ∈ {1,2}) as
follows:

Ji(q) :=
∂

∂q

(
ypi(q)
xpi(q)

)
∈ R2×7 (28)

Let us define also (for i ∈ {1,2}) the Lagrange multipliers

relative to the contact forces by λi =
(

λni
λti

)
(λni : relative

to the normal force of the foot i, and λti : relative to its
tangential force). The single impact dynamics can then be
given by:

M(q)(q̇+− q̇−) = JT
2 (q)λ2 (29)

J2(q)q̇+ = 0 (30)
J1(q)q̇+ ≥ 0 (31)
Λ(µ0)λ2 ≥ 0 (32)

X Equation (30) states that the formerly swing leg is
becoming the new support one, without rebound nor
slip at impact.

X Inequality (31) states that the formerly stance leg is now
leaving the ground.

X Inequality (32) guarantees the classical non penetration
and non slipping conditions at the contact point.
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X The matrix Λ(µ0) used in the last inequality is given by

Λ(µ0) :=

 1 0
µ0 1
µ0 −1

 ∈ R3×2 (33)

The solution of (29)-(30) is given by (3). Let:

Q1(q) :=

[
I−M−1JT

2

(
J2M−1JT

2

)−1
J2

]

Q2(q) =

[(
J2M−1JT

2
)−1J2

]
Q3(q) = J1(q)Q1(q)
Q4(q) = Λ(µ0)Q2(q)

then the single support impact constraints resume to:

q̇+ = Q1(q)q̇− (34)
Q3(q)q̇− ≥ 0 (35)
Q4(q)q̇− ≥ 0 (36)

Note that (35)-(36) insure a well-defined single support-type
impact, while equation (34) gives the velocities post-impact
function of positions and velocities pre-impact.

IV. FEEDBACK DEFINITION

The starting point of the proposed feedback is the torso’s
dynamic (20). Since Xc ∈ R4 is completely controllable via
existing actuators, one may legitimately discuss on the basis
of the following 10-dimensional controllable system

q̈1 = aq1−L0Xc +L2v (37)
Ẍc = v (38)

In the following, the choice of the alternative control v ∈R4

will be explained. Equations (37)-(38) can be easily put in a
state-space form:

Ż = AZ +Bv (39)

Z :=

q1
Xc
q̇1
Ẋc

 ∈ R10 ; A :=

0 0 1 0
0 0 0 I
a −L0 0 0
0 0 0 0

 ; B :=

 0
0

L2
I

 (40)

where the 0 elements in (40) are null matrices of suitable
dimensions and I is the identity matrix in R4×4. Since (39)
is completely controllable, the only thing to do is to define a
final state Z(t f ) that is to be reached at t = t f together with
a transient quadratic cost function to be minimized.
Consider the following notations:

Z =
(

Z1
Z2

)
; Z1 :=

(
q1
Xc

)
∈ R5 ; Z2 :=

(
q̇1
Ẋc

)
∈ R5 (41)

Let q = K(Z1) be the function that gives q under swing
phase assumption on the feet 1, let us also define K

′
(Z1) :=

∂K
∂Z1

(Z1). Finally for all q ∈ R7, Πiq refers to the ith com-

ponent of q. The final state Z f = (Z f
1

T
Z f

2
T
)T is therefore

defined as follows:

1) First, the position vector Z f
1 is a priori given. it

must reflect the desired mean velocity of the walk.
Furthermore, it must respect the basic ”small angle”
assumption. All the following rules aim to define Z f

2 .
2) The torso’s angular velocity just after the impact must

be 0: [
Π5Q1

(
K(Z f

1 )
)

K
′
(Z f

1 )

]
Z f

2 = 0 (42)

3) The horizontal hip’s velocity ẋ just after the impact
must be equal to vr, this can be written as follows:[

Π6Q1

(
K(Z f

1 )
)

K
′
(Z f

1 )

]
Z f

2 = vr (43)

4) The vertical hip’s velocity ẏ just after the impact must
be equal to 0, this can be written as follows[

Π7Q1

(
K(Z f

1 )
)

K
′
(Z f

1 )

]
Z f

2 = 0 (44)

5) The vertical velocity of the free foot just before
the impact must be equal to some vp < 0 while its
horizontal velocity must be 0, that is:[

J2

(
K(Z f

1 )
)

K
′
(Z f

1 )

]
Z f

2 =
(

vp
0

)
(45)

6) The impact inequalities (35)-(36) must be satisfied:[
Q3

(
K(Z f

1 )
)

K
′
(Z f

1 )

]
Z f

2 ≥ 0 (46)[
Q4

(
K(Z f

1 )
)

K
′
(Z f

1 )

]
Z f

2 ≥ 0 (47)

7) The final constraint concerns the contact conditions on
the trajectory joining the final state Z f . To express
this condition, note that under the ”small angles”
assumption, equations (9)-(10) together with (18) can
be invoked to argue that λn ≥ 0 is obviously satisfied
and that the condition |λt | ≤ µ0λn resumes to:

−αµ0mg≤ D̄v≤ αµ0mg (48)

where

D̄ =
[(

g34
g

g34
g

g4
g

g4
g

)(−I 0
0 I

)
−m D

]
(49)

α ∈]0,1[ is a security margin. Note that (48) is a
saturation condition on the control v of the system (39)
under interest.

These constraints can be summarized in:

Aeq(Z
f
1 )Z f

2 = beq(vr,vp) ; Aineq(Z
f
1 )Z f

2 ≥ 0 ; Asv≤ bs (50)
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Aeq(Z
f
1 ) :=


Π5Q1

(
K(Z f

1 )
)

K
′
(Z f

1 )

Π6Q1

(
K(Z f

1 )
)

K
′
(Z f

1 )

Π7Q1

(
K(Z f

1 )
)

K
′
(Z f

1 )

J2

(
K(Z f

1 )
)

 ∈ R5×5 ; bs = α µ0 m g
(

1
1

)

beq(vr ,vp) :=


0
vr

0
vp

0

 ; Aineq(Z
f
1 ) :=

Q3

(
K(Z f

1 )
)

K
′
(Z f

1 )

Q4

(
K(Z f

1 )
)

K
′
(Z f

1 )

 ; As :=
(

D̄
−D̄

)

Therefore, the desired final state Z f is now uniquely
determined by the choice of Z f

1 as follows

Ẑ(Z f
1 ) :=

(
Z f

1
Ẑ f

2 (Z f
1 ,vr,vp)

)
(51)

where Ẑ f
2 is solution of the following linearly constrained

quadratic optimization problem:

Ẑ f
2 (Z f

1 ,vr ,vp) := Arg min
Z f

2 ∈Z

{
‖ Aeq(Z

f
1 )Z f

2 −beq(vr ,vp) ‖2 under Aineq(Z
f
1 )Z f

2 ≥ 0

}
(52)

where Z ⊂R5 is the set of admissible values reflecting the
”small angles” assumption.
With the final state Z f in hand, the problem is now to
define a state feedback to be applied during the step over
the interval [0, t f ] so that Z(t f ) = Z f . For, let us give some
useful notations

• Assume that a discret-time scheme is used with a
sampling time of τ > 0.

• Let Φi and Ψi be the i-steps discrete transition matrices
for the linear system (39), namely

Z(iτ) = ΦiZ(0)+Ψiṽ ; ṽ ∈ R4×i (53)

• The walking step duration t f is a multiple of the
sampling time τ , namely t f = N · τ .

Since a finite time response is required (for Z to reach Z f ),
time-varying feedback control is necessary. For that, let k ∈
{0,1, . . . ,N− 1} represent the discrete time counter during
the walking step time-interval. Therefore, at each sampling
instant k ∈ {0,1, . . . ,N− 1} one has to solve the following
linearly constrained quadratic problem:

v̂(k,Z(k),Z f ) := Arg min
ṽ∈R4(N−k)

∥∥∥∥∥ΨN−k ṽ+ΦN−kZ(i)−Z f

∥∥∥∥∥
2

(54)

under Ãsṽ≤ b̃s

Ãs :=


As 0 . . . 0 0
0 As 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . 0 As

 ∈ R2(N−k)×4(N−k)

b̃s :=

bs
...

bs

 ∈ R2(N−k)

V. NUMERICAL SIMULATIONS
The objective of this simulation scenario is the appli-

cation of the proposed strategy to control the biped robot
RABBIT for a dynamic walking gait starting from rest. The
walking-step duration is t f = 1.2 sec, the desired foot pre-
impact velocity is vp = −0.07m/sec. Initial condition on
the unactuated coordinate is (q1, q̇1)0 = (0,6◦), the sampling
time is τ = 0.05 sec, and the mean walking velocity is
vr = −0.132 m/sec. The obtained simulation results are
plotted in figures 3-7. Figure 3 displays the evolution of the
articular positions and velocities of the robot’s femurs versus
time. Figure 4 depicts the evolution of the articular positions
and velocities of the robot’s tibias versus time. From these
figures concerning the actuated coordinates (direct controlled
variables) of the robot, it can be seen clearly the convergence
to a cyclic walking gait. The evolution of the unactuated
coordinate is plotted in figure 5 which represents the articular
position and velocity of the torso versus time, where it
can also be seen the convergence a cyclic trajectory. Figure
6 shows the evolution of the y-cartesian hip’s trajectories
versus time. The control inputs, are depicted in figure 7,
showing the torques to be generated by the actuators.

VI. CONCLUSION
In this paper a discret-time control strategy is proposed to
control a five-link four-actuator biped walking robot. The
proposed control strategy consists in a choice of a partic-
ular configurations that enables a full state controllability
avoiding the need to use Poincaré-like argumentation in the
proof of convergence to stable cyclic walking gaits. The
basic idea relies in considering small angles, which enables
us to express the dynamics of the indirectly controlled
variable (unactuated coordinate) as linear function of the
directly controlled variables (actuated coordinates) and their
derivatives. Then a discrete-time feedback is proposed to
control the whole system in the aim to reproduce a cyclic
waling gait. A demonstration movie accompanying the paper
shows the obtained walking gait.
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Fig. 5. Evolution of the torso’s (unactuated coordinate) position and
velocity versus time
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Fig. 6. Evolution of the hip’s y-cartesian position and velocity
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