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Abstract— In this paper, we propose a control algorithm for
stabilizing of an unmanned bicycle at zero speed by using a
nonlinear control based on an output-zeroing controller. The
simplified model of the bicycle with the balancer is derived
from Lagrangian and nonholonomic constraints with respect
to translation and rotation relative to the ground plane. We
derived a controller using a steering torque and a balancer
torque to stabilize the bicycle at zero linear velocity. The output-
zeroing controller is designed by using the angular momentum
of two-link system and by adding the effect of steering angle to
the derivative of the angular momentum. Numerical simulation
and experimental results are shown to verify the effectiveness
of the proposed control strategy.

Index Terms— Balancing Control, Output-Zeroing, Au-
tonomous Bicycle, Nonlinear System.

I. INTRODUCTION

Research on the stabilization of bicycles has gained mo-
mentum over the last decade in a number of robotic labo-
ratories around the world. Modeling and control of bicycles
became a popular topic for researchers in the latter half of
the last century. The bicycle literature is comprehensively
reviewed from a control theory perspective in [1], which also
describes interesting bicycle-related experiments. But almost
all of those papers are focusing on modeling and stabilizing
the bicycle with the steering handlebar and the rear wheel.
Getz [2] studied feedback control law for nonlinear, nonholo-
nomic, nonminimum phase model of a two-wheeled bicycle
with non-zero rear-wheel velocity. Defoort [3] proposed an
innovative robust control strategy based on second order
sliding mode control (SMC) for the stabilization of an
autonomous bicycle. Yi [4] presented a trajectory tracking
and balancing control for an autonomous motorcycle using
only steering handlebar. Dynamic models of the motorcycle
were developed from an existing modeling approach [2],
modified by adding the bicycle caster angle, and the model
can capture the steering effect on the vehicle tracking and
balancing. In [5], the simplified dynamic model of a bicycle
with a balancer was modeled by using Lagrange dynamic
equations. Simulation study has been carried out to show
the effectiveness of the proposed model. Yamakita [8], [9]
utilized an input-output linearization method to design a
trajectory tracking controller for an automatic bicycle. The
control methods are designed independently for trajectory
tracking and balancing. The proposed algorithm for that
problem used an output function which is defined by an
angular momentum and the new state function is controlled
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to zero. In [7], an autonomous bicycle designed and balanced
based on output-zeroing controller by using only a balancer
to stabilize the bicycle. The performance of this controller
was not so good when the mass of the bicycle is increased.
Recently, Hwang [6] proposed a controller namely variable
structure under-actuated control to balance an electrical
bicycle. The balancing control was designed based on a
steering handlebar and a balancer and it cannot track a given
trajectory.
In this paper, we extended our balancing control from [7] by
using both a steering handlebar and a balancer to stabilize the
bicycle and we can enlarge the initial position of the bicycle.
In order to see the effectiveness of the proposed control, we
conduct some simulations and experiments by comparing the
bicycle stabilization with only balancer, with only steering
handlebar and with both. This paper is composed of six
sections. In section II, we present a simplified dynamic model
of the bicycle with the balancer. In section III, we discuss
control system design for stabilizing the bicycle. Numerical
simulation and experimental results are presented in section
IV and V respectively. The conclusions are summarized in
section VI.

II. BICYCLE DYNAMICS

In this paper, we use the simplified bicycle models that was
developed in [5] and [7]. A detailed model of a bicycle is
complex since the system has many degrees of freedom and
the motions have constraints. The coordinate system used to
analyze the bicycle is defined in Fig. 1. The details of the
bicycle assumptions are presented in [5]. The bicycle and
the balancer parameters were identified from an experimental
setup and it is shown in Table I. The key parameters are:

• β Balancer angle
• ψ Steering shaft angle
• α Roll angle
• θ Yaw angle
• φ Front wheel direction angle
• vr Rear wheel longitudinal velocity
• v⊥ Lateral velocity

In order to simplify calculation the dynamic model of the
bicycle, we used the trajectory curvature σ as the virtual
steering angle.

σ =
tanφ
b

.

We consider the generalized velocities ẋ, ẏ, θ̇, α̇, β̇, and
σ̇ such that it will be convenient when we introduce the
constraints. The generalized velocities of the bicycle with
the balancer are partitioned as ṙ = [α̇, vr, β̇, σ̇]T
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TABLE I

THE BICYCLE AND CONTROL PARAMETERS

Parameter descriptions Parameters Value
Bicycle mass m 45 kg

Height of the bicycle center of mass h 0.45 m
Distance between ground and balancer l1 0.81 m

Bicycle wheelbase b 1.06 m
Distance between rear wheel and COG c 0.5 m

Bicycle head angle η 65◦
Bicycle trail Δ 0.1 m

Moment inertia of steering mechanism Js 0.35 kgm2

Balancer mass mb 13.2 kg
Height of the balancer center of mass hb 0.29 m

Moment inertia of balancer Ib 0.22 kgm2
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Fig. 1. Coordinate system of the bicycle with the balancer.

and ṡ = [θ̇, v⊥]T . In these velocity coordinates, the
nonholonomic constraints associated with the front and the
rear wheels which are assumed to roll without slipping, are
expressed simply by ṡ+A(r, s)ṙ = 0 or

[
θ̇
v⊥

]
+

[
0 −σ 0 0
0 0 0 0

] [
α̇ vr β̇ σ̇

]T
= 0. (1)

From [5], we can obtain the bicycle dynamics with nonholo-
nomic constraints as

Mq̈ = K +Bu, or⎡
⎢⎢⎣
M11 M12 M13 0
M21 M22 0 0
M31 0 M33 0
0 0 0 M44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

α̈
v̇r

β̈
σ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
K1

K2

K3

K4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

⎡
⎣ Fr

τb
τσ

⎤
⎦ ,

(2)

where
Fr is the reaction force at the rear wheel,
τb is the balancer torque input,

τσ is the steering torque input, and

M11 = Ib +mh2 +mb(h2
b + l21) + 2hbl1mb cos(β),

M12 = M21 = −chmσ cosα,
M13 = M31 = Ib + hbmb(hb + l1 cosβ),
M22 = m(c2σ2 + (1 + hσ sinα)2) +

mb(1 + l1σ sinα+ hbσ sin(α+ β))2,
M33 = Ib + h2

bmb,

M44 =
Jsb

2

sin2 η(1 + b2σ2)2
,

K1 = cmgΔσ sin η cosα+ hm(g sinα+ vr(σvr(1 +
hσ sinα) + cσ̇) cosα) +mb(g(l1 sinα+
hb sin(α+ β)) + σv2

r(l1(1 + l1σ sinα) cosα+
hb(1 + hbσ sin(α+ β)) cos(α+ β) +
hbl1σ sin(2α+ β)) + hbl1β̇(2α̇+ β̇) sinβ),

K2 = −m(h(cσα̇2 + vrσ̇(1 + hσ sinα)) sinα+
σvr(2hα̇(1 + hσ sinα) cosα+ c2σ̇)
−2chα̇σ̇ cosα) −mb(2hbσvr((β̇ + α̇)(1
+hbσ sin(α+ β)) + l1σβ̇ sinα) cos(α+ β)
+σvrσ̇((l1 sinα+ hb sin(α+ β))2)
+hbvrσ̇ sin(α+ β) + l1vrσ̇ sinα+ 2l1σvrα̇((1
+l1σ sinα) cosα+ hbσ sin(α+ β))),

K3 = hbmb(−l1α̇2 sinβ + g sin(α+ β) +
v2

rσ cos(α+ β)(1 + σ(l1 sinα+ hb sin(α+ β))),

K4 = cΔgm sin η sinα+
2b4Jsσσ̇

3

sin2 η(1 + b2σ2)3
.

In order to fix the balancer joint or handle joint, we introduce
a nonholonomic constraint for the joints and it is represented
as

Jq̈ = 0. (3)

where J is a constraint Jacobi matrix which is switched
according to the joint situations. The equation of motion
become [

M JT

J 0

] [
q̈
λ

]
=

[
Bu+K

0

]
. (4)

where λ is the corresponding Lagrange multiplier.

III. CONTROL ALGORITHM

The basic idea is that an output function is defined so that
the relative degree from input to the output becomes 3 and
the zero dynamics becomes stable. Then, the output-zeroing
controller is designed. In this case, a new state is defined
then the new output function is easily determined since the
angular momentum is integrable for 2 D.O.F. system.

A. Model of two-link system

By projecting the motion of the balancer on X−Z plane,
the system can be considered as a two-link system. In the
two-link model, the bicycle body and steering handlebar
consist of the first link and the balancer is considered as
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the second link. The control torque for the system is only
applied to the second joint of the balancer. We can find the
angular momentum L from the first row of equation (2) as

L = M11α̇+M13β̇

= (d1 + d3 + 2d2 cosβ) α̇+ (d3 + d2 cosβ) β̇,
(5)

where

d1 = mh2 +mbl
2
1, d2 = mbl1hb,

d3 = mbh
2
b + Ib.

and it can be easily shown that the time derivative of L just
contains a gravity term and it is calculated as

L̇ = e1σ cosα+ e2 sinα+ e3 sin (α+ β), (6)

where

e1 = cmgΔsin η, e2 = g(mh+mbl1),
e3 = gmbhb.

In (6), we can see that it contains a term σ which means
that the steering actions affect to the momentum. Using the
angular momentum expressed in (5), a new function p is
defined to satisfy the following:

L = (d1 + d3 + 2d2 cosβ) ṗ. (7)

From the equation above, p can be determined as

p = α+
∫ β

β0

d3 + d2 cosβ
d1 + d3 + 2d2 cosβ

dβ − C

= α+ w(β), (8)

where C is an integral constant and is determined as p = 0
when the system is at the upright position. Using L and
p, a new coordinate function q = (p, L, β, β̇, σ, σ̇) can be
represented as

⎡
⎢⎢⎢⎢⎢⎢⎣

ṗ

L̇

β̇

β̈
σ̇
σ̈

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

L/H(β)
G(p, β, σ)

β̇
0
σ̇
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

[
ub

uσ

]
, (9)

where

H(β) := d1 + d3 + 2d2 cosβ,
G(p, β, σ) := e1σ cos(p− w(β)) + e2 sin(p− w(β))

+e3 sin(p− w(β) − β).

and ub, uσ are new inputs defined as ub := β̈, uσ := σ̈
respectively.

B. Output-zeroing controller

For the system (9), an output function y is defined as

y = L+ a1p, (10)

where a1 > 0 is a design parameter and it is controlled zero
since

y = 0 → ṗ = (−a1/H)p and L̇ = a1ṗ.

this zero dynamics is stable. Since L and p have relative
degree 3 to the control input, we can easily determine
a control input which attains the dynamics of the output
function. By taking a derivative of L, we have

y(3) = L(3) + a1p
(3), (11)

L̈ =
dG

dt
=
∂G

∂p

L

H
+
∂G

∂β
β̇ +

∂G

∂σ
σ̇, (12)

L(3) =
d

dt

(
∂G

∂p

L

H

)
+
d

dt

(
∂G

∂β

)
β̇ +

∂G

∂β
ub (13)

+
d

dt

(
∂G

∂σ

)
σ̇ +

∂G

∂σ
uσ,

p̈ =
G

H
− (∂H/∂β)L

H2
β̇, (14)

p(3) =
d

dt

(
G

H

)
− d

dt

(
(∂H/∂β)L

H2

)
β̇ (15)

− (∂H/∂β)L
H2

ub.

We can determine control inputs which attains the dynamics
of the output function as

y(3) + a2ÿ + a3ẏ + a4y = 0, (16)

and y converges to zero asymptotically if a2 > 0, a3 > 0,
a4 > 0 are determined appropriately (other robust stabilizing
controls of y can be also used).
By rearranging the equations from (11) to (16) and we can
put it in the form

A1ub +A2uσ = B, (17)

where

A1 =
∂G

∂β
− a1

(∂H/∂β)L
H2

,

A2 =
∂G

∂σ
,

B = − d

dt

(
∂G

∂p

L

H

)
− d

dt

(
∂G

∂β

)
β̇ − d

dt

(
∂G

∂σ

)
σ̇

−a1
d

dt

(
G

H

)
+ a1

d

dt

(
(∂H/∂β)L

H2

)
β̇ − a2ÿ

−a3ẏ − a4y.

From (17), we can get[
ub

uσ

]
=

[
A1

A2

]
B

A2
1 +A2

2

. (18)
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To simplify the control input, we linearize the parameters
A1 and A2 by assuming α and β are small. We can get the
parameters A1 and A2 as

Ã1 = A1|α�0,β�0 = −e1( d3 + d2

d1 + 2d2 + d3
) (19)

+e2(
d1 + d2

d1 + 2d2 + d3
),

Ã2 = A2|α�0,β�0 = e3. (20)

Thus, Ã1 and Ã2 are constants then the final control law are[
ub

uσ

]
=

[
Ã1

Ã2

]
B

Ã2
1 + Ã2

2

. (21)

We can find the relationship between ub and uσ as

ub

uσ
=
Ã1

Ã2

. (22)

To scale the two control inputs, we introduce γ to be
weighting gain and we can get

ub

uσ
= γ

Ã1

Ã2

. (23)

where γ > 0. Of course, we can determine (ub, uσ) to
consider an optimal control with the equation (17).

IV. NUMERICAL SIMULATION

The simulation is conducted on an Intel Core 2 Duo,
2.2GHz, 2GB RAM computer, and all simulations were per-
formed in MATLAB using an adaptive step-size Runge-Kutta
integrator, ode45. In order to explain the effectiveness of the
proposed method, several numerical simulations are shown
where the parameters of bicycle and control parameters are
shown in Table I and Table II. The parameters of the bicycle
were identified from an experimental setup. The limitation
of control input for the balancer is set to 100[Nm] and for
the steering is set to 40[Nm]. To show the validity of the

TABLE II

THE CONTROL PARAMETERS

Parameters Values Parameters Values
a1 120 a2 50
a3 80 a4 80

proposed control for bicycle stabilization at zero velocity, we
perform three types of simulation to compare the response
of the bicycle stability.

A. Stabilizing the bicycle with only a balancer

In this simulation, we fixed the steering shaft and back-
wheel from the dynamic equation (4) by using the constraint
Jacobi matrix J and we set J = [0 1 0 1]. The control
input for the balancer is required and we set the scale gain
to γ = 2. The initial angle of the bicycle and balancer are
set to α0 = 5◦ and β0 = 0◦. Fig.2 shows the angles of α, β
and σ versus t. Fig.3 shows the control input of τb and τσ
versus t. The maximum torque for the balancer is 71[Nm].
From this simulation result, we can see that the bicycle can
be stabilized with only a balancer by using the proposed
method.
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Fig. 2. Roll angle α, Balancer angle β and Steering angle σ with γ = 2
and α0 = 5◦.
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Fig. 3. The control input for balancer τb and steering τσ .

B. Stabilizing the bicycle with only steering handlebar

In this simulation, we fixed the balancer from the dynamic
equation (4) and we set J = [0 0 1 0]. In this case, the control
input for the steering is needed and we set the scale gain to
γ = 0.1. The initial angle of the bicycle and balancer are
set to α0 = 5◦ and β0 = 0◦. Fig.4 shows the angles of α,
β and σ versus t. Fig.5 shows the control input of τb and
τσ versus t. The maximum torque for the steering torque is
34[Nm] that is required for stabilization the bicycle. From
these figures, we can see that the bicycle can be stabilized
with only a steering by using the proposed method.

C. Stabilizing the bicycle with balancer and steering han-
dlebar

From the two previous simulation results, The proposed
method can stabilize the bike system by using only balancer
or steering, but the performance of the balancing systems
were not so good and the maximum of initial bicycle roll
angle is αmax = 7◦. In order to improve the performance
of the bike system and to enlarge the initial roll angle, we
used the balancer and steering handlebar to stabilize the
bike system. The dynamic equation (2) is used to perform
this simulation. The both control input for the balancer and
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Fig. 4. Roll angle α, Balancer angle β and Steering angle σ with γ = 0.1
and α0 = 5◦.
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Fig. 5. The control input for balancer τb and steering τσ .

steering are required and we set the scale gain to γ = 2.
The initial angle of the bicycle and balancer are set to
α0 = 5◦ and β0 = 0◦. In Fig.6 and 7, it can be seen that the
state converges to the upright position. From this simulation
results, we clearly saw that the cooperation between the
balancer and the steering gave a better performance. The
maximum of the bicycle roll angle can enlarge up to αmax =
15◦.

V. EXPERIMENTAL RESULTS

In order to see the validity of the proposed method, some
experiments using a real system was conducted. Fig. 8 shows
the real system of the bicycle and Fig. 9 shows the hardware
system of the bicycle. The base system is a commercial
available electric motor bicycle named ‘Passol’ produced by
Yamaha co.ltd. We attached a balancer which can move in a
lateral plane and can keep the balance of the bicycle system.
One motor is attached to the top of the handle for steering
control. An IMU sensor is also attached to the bicycle.
This sensor detects roll angle α and roll angular velocity
α̇. For a realization of real-time control, XPC Target is
employed in the control system as an operating system. The
sampling rate of the controller is 2[ms]. In order to see the
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Fig. 6. Roll angle α, Balancer angle β and Steering angle σ with γ = 2
and α0 = 5◦.
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Fig. 7. The control input for balancer τb and steering τσ .

performance of the proposed control method, stability of the
bike system with the output-zeroing controller were checked
by keeping the system in upright position for more than
30[min]. Due to limitation of the memory for data logger,
we can get experiments data for duration less than 5[min].
Figure 10 shows the experimental results of the balancing
system with only the balancer. In this case, we set γ = 2
for controlling the bike system and the we fixed the steering
handlebar by PI controller. With the real bicycle, the steering
handlebar can not move over 40◦ and the bicycle trail is only
0.1m. Thus, we can not successfully stabilized the bicycle
with only the steering handlebar. Figure 11 and 12 show
the experimental results of the balancing system with both
balancer and steering with different scale gain. If the scale
gain is large, the effect of the control input for steering is
small. From these figures, it can be seen that the proposed
method can work very well.

VI. CONCLUSIONS

In this paper, we presented a new proposed control method
for stabilizing a bicycle with both balancer and steering.
From simulation results of balancing bicycle with a steering
handlebar and a balancer, it was shown that a novel proposed
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Fig. 8. Bicycle with a Balancer Hardware.
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Fig. 9. Bicycle with a Balancer Hardware Scheme.

control has better performance than balancing control of a
bicycle with only a balancer or only a steering. The proposed
method also has been confirmed by the experimental results
and it was shown that this controller can work very well.
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Fig. 11. Roll angle, Balancer angle and Steering angle with γ = 2.
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