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Abstract— When grasping an object, a robot must identify
the available forms of interaction with that object. Each of
these forms of interaction, a grasp affordance, describes one
canonical option for placing the hand and fingers with respect
to the object as an agent prepares to grasp it. The affordance
does not represent a single hand posture, but an entire manifold
within a space that describes hand position/orientation and
finger configuration. Our challenges are 1) how to represent
this manifold in as compact a manner as possible, and 2) how to
extract these affordance representations given a set of example
grasps as demonstrated by a human teacher.

In this paper, we approach the problem of representation
by capturing all instances of a canonical grasp using a joint
probability density function (PDF) in a hand posture space.
The PDF captures in an object-centered coordinate frame a
combination of hand orientation, grasp centroid position and
offset from hand to centroid. The set of canonical grasps is then
represented using a mixture distribution model. We address
the problem of learning the model parameters from a set of
example grasps using a clustering approach based on expec-
tation maximization. Our experiments show that the learned
canonical grasps correspond to the functionally different ways
that the object may be grasped. In addition, by including the
grasp centroid/hand relationship within the learned model, we
eliminate this as a hard-coded parameter and the resulting
approach is capable of separating different grasp types, even
when the different types involve similar hand postures.

I. INTRODUCTION

Manipulating one’s world in very flexible ways is a skill

that is shared only by a small number of species. Humans are

particularly skilled at applying their manipulation abilities

in novel situations using a range of effectors, from hands

and other parts of the body, to tools. How can robots

come to organize and learn knowledge representations for

solving grasping and manipulation problems in unstructured

environments? J. J. Gibson [9], [10] suggests that these rep-

resentations should be partitioned into what can be done with

particular objects and why an object should be manipulated in

a certain way. The first of these, which Gibson terms object

affordances, captures the details of what can be done with

the object by the agent. The latter captures information about

how individual manipulation skills are to be put together in

order to solve a specific task. The task-neutral affordance

representation is important in that it can provide an agent

with a menu of actions or activities that are possible with

a given object – whether the current task is well known or

not.
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In this paper, we examine the grasp affordance question.

For a given object, we would like to compactly represent

the feasible set of grasps that can be used with that object.

These representations should be sufficient to enable a robot

to execute the grasp, recognize the use of the grasp as made

by other agents and even form a plan for how the grasp could

subsequently be used in a task. For example, a cup might be

grasped somewhere around its circumference using a ball

type grasp, or a cereal box might be grasped along its thin

side, to enable pouring, using the finger tips in opposition to

the thumb.

Shape primitive approaches address this problem of associ-

ating objects with possible grasps by decomposing an object

into a collection of volumetric primitives such as cylinders,

rectangular prisms, spheres and cones (e.g., [1], [13]). Each

primitive is associated a priori with a set of possible hand

postures that can be used to grasp the component. Candidate

grasps are then pruned based on a variety geometric and

grasp quality constraints.

Visual feature approaches directly map identifiable visual

features to particular hand postures (e.g., [11], [14]). Coelho

et al. [3] and Piater et al. [15] explicitly learn the relation-

ship between specific visual features and successful hand

postures. In their work, the hand postures are discovered

through a haptic exploration process. Hence, the resulting

representations are rooted in the agent’s own experiences

with the objects.

Manifold approaches describe the feasible set of grasps

in terms of a set of points within a space that captures

hand position/orientation relative to the object and finger

configuration (e.g., [16], [6]). De Granville et al. describe

these manifolds using a mixture probability density function

approach, in which each PDF is a joint PDF over hand posi-

tion, orientation, and (in some cases) finger configuration [5],

[4]. Because a nontrivial degree of hand position variation

can be seen with small changes in finger configuration, but

with little to no change in the location of contacts, the joint

PDF captures the position of a grasp centroid rather than

the hand explicitly. The grasp centroid is assumed to be

at a constant offset from the hand location. De Granville

et al. have shown that the parameters for an appropriate

mixture distribution can be learned from a large set of grasps

demonstrated by a human teacher, and that individual PDFs

correspond roughly to the functional ways that the object

may be grasped.

While the approach of de Granville can work well in some

contexts, the relative position of the contacts and the hand

can vary dramatically depending on the choice of grasp.

For example, a cup might be grasped with fingertips in a
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precision grasp or enclosed in a power grasp. In this paper,

we address this problem by allowing a an offset from the

hand to the grasp centroid to be selected by the algorithm

on a grasp-by-grasp basis. We show that the estimation of

this grasp centroid offset can be performed as part of the

expectation maximization (EM) algorithm [7] that is used to

estimate the mixture PDF parameters. This eliminates a hard-

coded parameter that can result in some poor-performing

models. Furthermore, we show experimentally that by adding

these extra degrees of freedom to the models, the learning

algorithm is capable of separating different grasp types, even

when the different types involve similar hand postures.

II. METHODS

The set of hand postures that correspond to feasible grasps

of a particular object can be described as a manifold in

hand posture and finger configuration space. Our challenges

are 1) to generally represent these manifolds in as compact

a manner as possible such that the representation makes

explicit the functionally different ways that an object can

be grasped and 2) to construct such a representation for a

specific object given a set of examples of grasping it.

Consider grasping a cylindrical object from the side using

a precision type grasp (e.g., as if to drink from a cup).

Fig. 1a shows such a grasp, where the location of the hand

is described in the object coordinate frame as Obx, and

the orientation of the hand is described as Ob
H R. Given all

possible approach directions, the set of hand positions forms

a ring around the object. The question is: how do we model

this set of solutions in as simple a manner as possible?

One possibility is to model the location of a grasp reference

point instead of the hand location directly. In Fig. 1a, this

grasp reference point, Oby, is modeled as a fixed translation

from the hand, HS1. If this translation (or offset) is selected

appropriately, the set of grasp reference points that results

from all possible approach directions forms a compact set in

Cartesian space at the center of the object. In contrast, when

the object is grasped using a power (or palmar) grasp, the

set of hand positions also forms a ring around the object, but

at a smaller radius (Fig. 1b). By selecting an appropriately

scaled translation, HS2, the set of grasp reference points also

forms a compact set, which we refer to as the grasp centroid.

Because the grasp reference points form a compact set, it is

convenient to describe this set using a Gaussian distribution.

We approach the general problem of representing the set

of hand configurations by using a joint probability density

function (PDF) over the grasp reference points and hand

orientations (we do not explicitly treat finger configuration

in this paper). We capture multiple canonical grasps (e.g.,

the precision and power grasps of Fig. 1) using a mixture

model of the joint PDFs. Given a set of example grasps, we

can treat the learning problem as one of clustering in which

the parameters of the PDFs are learned at the same time as

individual samples are clustered into the component PDFs.

We employ expectation maximization (EM) to perform this

clustering process [7].

(a) (b)

Fig. 1. Precision (a) and power (b) grasps, for example, have different
offset vectors (HSj ) from the the hand (Obx) to the grasp reference point

(Oby). The offset is expressed in the hand coordinate frame.

In practice, the grasp reference point is frequently con-

tained within the contact points of the hand with the object,

though in some cases it could be at some other displacement.

For example, when grasping around the outside of a large

disc, the grasp affordance centroid might be at the center of

the disc, even if the fingers do not reach the center.

A. A PDF Representation of Grasp Affordances

Each demonstrated grasp posture i consists of the hand’s

position Obxi ∈ R
3 and rotation Ob

H Ri ∈ SO(3), both in

the coordinate frame of the object. Given a set of sample

postures representing valid grasps of the object, we desire

to cluster these samples using a weighted mixture model of

PDFs. The mixture PDF, h, representing the likelihood of a

hand posture given that the agent is grasping the object, is

given by:

h(Obxi,
Ob
H Ri|Φ) =

M
∑

j=1

wjgj(
Obxi,

Ob
H Ri|θj), (1)

where Φ is the full set of parameters, M is the total number

of clusters, wj is the weight of cluster j, gj is the likelihood

of the posture given cluster j, and θj is the parameter set

of cluster j. Also,
∑M

j=1
wj = 1, where each wj can be

interpreted as being the probability of a sample falling within

cluster j.

Following de Granville et al., the PDF of each cluster is

described as a joint PDF in both position and orientation. We

assume that these two components are independent given the

cluster:

gj(
Obxi,

Ob
H Ri|θj) = p(Obxi,

Ob
H Ri|θpj)fj(

Ob
H Ri|θfj), (2)

where p(.) describes the position likelihood and fj(.) de-

scribes the likelihood of the orientation. The distribution

parameters are split into position and orientation components

θpj and θfj . Each fj is one of two possible distributions in

orientation space (and hence each is indexed by j).

The two types of distributions capture orientations in a unit

quaternion space [12], [5], [4]. Dimroth-Watson distributions

are Gaussian-like in their shape and are described by a

“mean” rotation and a degree of allowable variation around

this mean. Girdle distributions assign maximum likelihood

to all rotations about some fixed, but arbitrary, axis. This

likelihood drops as rotation deviates from this set. We refer

the reader to de Granville et al. for more details [5], [4].
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We model the distribution of grasp reference points by

a multivariate Gaussian. However, we need to allow each

cluster to have a unique offset from the hand to the grasp

centroid. Therefore,

p(Obxi,
Ob
H Ri|

Obµj , Vj ,
HSj) =

1

(2π)3/2|Vj |1/2
exp

(

−
1

2
δT
ijV

−1

j δij

)

, (3)

where Obµj ∈ R
3 is the grasp centroid mean in the object’s

coordinate frame and Vj ∈ R
3×3 a covariance matrix, HSj ∈

R
3 is the offset from hand to grasp centroid in the hand’s

coordinate frame, and δij is the vector from the cluster mean

to the grasp reference point sample:

δij = Ob
H Ri

HSj + Obxi −
Obµj . (4)

B. Parameter Estimation

Given N sample hand postures, we use expectation maxi-

mization (EM) to find the parameters for a set of clusters

defined by Eq. (1) and the probability αij that sample i
belongs to cluster j. Sample membership estimation is the

expectation step, and cluster parameter estimation is the

maximization step. Here, we derive the effect of the offset

parameter HSj on the parameter estimation process.

The EM approach selects parameters to maximize the

expected log-likelihood (ELL) of the joint event for all

samples i and hidden variables. ELL is given by:

ELL =

N
∑

i=1

M
∑

j=1

αij log
(

wjgj(
Obxi,

Ob
H R|θj)

)

, (5)

where
∑M

j=1
αij = 1 for each sample i. The total number of

clusters M is fixed for each use of EM. More specifically,

a certain number of Dimroth-Watson and girdle clusters are

specified in advance.

Focusing on the offset parameter HSj for a particular

cluster, substituting Eq. (2) into the above and simplifying

yields:

max
HSj

ELL = max
HSj

N
∑

i=1

αijδ
T
ijV

−1δij . (6)

We find the maximum likelihood estimate for HSj by taking

the derivative of ELL with respect to HSj and setting to 0:

0 =

N
∑

i=1

αij
Ob
H RT

i V −1

j

(

Ob
H Ri

HSj + Obxi −
Obµj

)

,

which yields the solution:

H Ŝj =

(

N
∑

i=1

αij

(

Ob
H RT

i V −1

j
Ob
H Ri

)

)−1

N
∑

i=1

αij
Ob
H RT

i V −1

j (Obµj −
Obxi). (7)

Similar derivations exist for the other parameters. These

are roughly equivalent to standard maximum likelihood pa-

rameter estimates for the Gaussian distribution except that

the position of the hand is replaced with the position of the

grasp centroid:

Obµ̂j =

∑N
i=1

αij

(

Ob
H Ri

HSj + Obxi

)

∑N
i=1

αij

, and (8)

V̂j =

∑N
i=1

αijδijδ
T
ij

∑N
i=1

αij

. (9)

Note that the update rules for some parameters (including the

offset) depend on the values of other parameters. We update

all distribution parameters in parallel.

The update rule for cluster weight is the same as for other

mixture-of-PDF approaches, and the rules for the orientation

component of each cluster are unchanged from prior work

by de Granville et al. [5].

C. Model Selection

EM is a gradient ascent method used here for maximizing

ELL in order to discover estimates for distribution parameters

and the probability of samples belonging to particular clus-

ters. For our domain, many local optima exist, with results

varying greatly depending on initial conditions. To address

this issue, we perform many attempts of EM from different

randomly-selected initial conditions. Rather than select the

best global result by highest ELL, we instead employ metrics

designed also to limit model complexity.

A metric that is very similar to ELL, but which purposely

avoids rewarding overlapping clusters, is the completed log

likelihood (CLL):

CLL =

N
∑

i=1

M
∑

j=1

α̂ij log
(

wjgj(
Obxi,

Ob
H Ri|θj)

)

, (10)

where α̂ij is 1 if cluster j is the highest likelihood cluster for

sample i and 0 otherwise. That is, due to α̂ij , each sample’s

likelihood counts only for its best-fitting cluster.

Furthermore, we explicitly want to punish mixture models

with excessive numbers of clusters. Fewer clusters means

a smaller number of identified grasps on which to apply

other algorithms. Therefore, to punish more complex mixture

models, we employ the Integrated Completed Likelihood

(ICL) metric [2]:

ICL = −2 CLL + ζν log(N), (11)

where ζ determines the magnitude of the complexity punish-

ment and ν is the number of degrees of freedom (parameters)

in the PDF model. By this measure, more complicated

distributions are punished more than simpler ones. In a sense,

each distribution has to pay for its complexity by providing

a sufficient fit. Unlike CLL, lower ICL is better.

Of all EM attempts performed from different initial con-

ditions, the retained model is that with the best ICL as

calculated on a separate set of validation samples. Also, we

do not know a priori how many clusters are appropriate for

a given object. Following de Granville et al., we try mixture

models with different numbers of clusters and different

combinations of Dimroth-Watson and girdle distributions.
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The model among the combinations with the best ICL on

a second validation data set is selected as the final solution

for the data set.

III. EXPERIMENTS

We evaluate the capabilities and performance of our algo-

rithm using a few objects (a hammer handle, a spray bottle, a

plate, and a spoon), each of which can be grasped in several

ways. In particular, we compare our algorithm with that of

de Granville et al., which assumes a fixed offset from the

hand coordinate frame to the grasp centroid.

A. Data Collection

When demonstrating grasp postures, we need to measure

the hand position and orientation relative to the object. To

do this, we attached Polhemus FASTRAK sensors to each,

giving the position and orientation of each in the global

coordinate frame. From these, the relative measures could be

calculated. Typically, the teacher used the non-instrumented

hand to hold the object to enable quick demonstration of

many grasp poses around the object. Also, for the fixed offset

experiments, we estimated the offset by taking a mean of

samples while directly handling the sensor using a variety

of grasp types.

For our experiments, we used ICL punishment factor

ζ = 4. In practice, we had seen this choice to reduce model

complexity while not leading to excessively simplified and

degenerate solutions.

For each object, a human teacher demonstrated a certain

number of grasp postures. We performed 30 independent

experiments with each data set. For each experiment, we

randomly subsampled from this total. Specifically, we chose

1000 training samples for EM, 250 different validation

samples for evaluating multiple EM attempts by ICL, 250

additional validation samples for comparing the results of

different numbers and types of clusters (again, by ICL),

and 250 independent test samples for the evaluation of the

resulting models by CLL.

In all experiments, every possible combination of

Dimroth-Watson and girdle clusters was attempted up to a

limit of B clusters, chosen in each case to be somewhat

greater than the number of clusters expected (with the

intent of avoiding ceiling effects). For each combination of

clusters, 60 attempts from different starting conditions were

performed, each with 20 EM steps. These numbers were

chosen based on exploratory experiments.

B. Performance Measures

Because our data set is an unlabeled set of example grasps,

there is no innate correct answer. Therefore, when assessing

experimental results, we are concerned with whether the

clusters match our expectations. That is, for each cluster

found, is it expected or extraneous? Further, are any expected

clusters missing? We are also interested in the overall quality

of fit of clusters to the test data. Therefore, when comparing

results here, we emphasize the following measures:

(a) (b) (c)

Fig. 2. Hammer handle (a) used for precision and power grasps. An
example of approximately expected results is shown from top (b) and side
(c). The point clouds show the measured hand positions. Offset from the
hand points are ellipsoids representing the 3D Gaussians that capture the
grasp centroids for each cluster. The orientation component of each cluster
is a girdle distribution, as indicated by the visible rings. The inner ring is
for power grasps, and the outer ring is for precision grasps.

• True positive rate (TPR) describes how many expected

clusters are found. TPR = TP/(TP+FN), where TP
is the number of true positive identifications (expected

clusters found in the results) and FN is the number of

false negatives (expected but not found).

• Precision (PRC) describes how many resulting clusters

are expected. PRC = TP/(TP + FP ), where FP
is the number of false positive identifications (found

clusters that are not expected, often due to unwanted

splits of expected clusters).

• CLL measures the quality of fit for samples against the

learned model.

TPR and PRC are subjective metrics. However, they are

evaluated with respect to a set of expectations that are

determined before the grasps are demonstrated. On the other

hand, CLL is an objective metric of model quality.

C. Hammer Handle

As a simple example for discovering grasp offset, we

demonstrated precision and power grasps around a hammer

handle. Similar handles or other rotationally symmetric grasp

options exist for various objects. Thus, this experiment

represented a fundamental case to test the basic applicability

of our method. Because of the clearly distinct offsets and

many different approach directions, we expected the use of

variable offsets to outperform the use of a fixed offset.

This data set included 2000 samples, 1000 for each grasp

type. We limited the maximum number of clusters to B = 5
for this experiment. An example of the expected results is

shown in Fig. 2. Specifically, true positives, false positives,

and false negatives (as defined above) are judged in relation

to these expected results.

Our proposed algorithm, with learned offsets, consistently

found at least one ring for each grasp type. One example

solution is shown in Fig. 4a, in which there was a clear

separation between the clusters corresponding to the preci-

sion (red) and power grasps (blue). In contrast, when the

fixed offset was used, the fit to the data was poor, as shown

in Fig. 4b. In particular, in order to represent the interior

points, one cluster (green) expands dramatically in the lateral

directions. This case was classified as a false positive because

much of the space supposedly available for a grasp reference

point would result in a failed grasp.
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Fig. 3. TPR, PRC and CLL for each object and algorithm. Error bars show
standard deviation of the respective measure.

Our new algorithm, with learned offsets, consistently

found at least one ring for each grasp type. In 29 of 30

experiments, the algorithm discovered the expected solution

of one inner and one outer ring. Only one case resulted in

three rings, with the inner power grasp split into two clusters,

one higher up the handle than the other. Specific results for

TPR, PRC, and CLL are shown in Fig. 3. In contrast, the

fixed offset approach consistently performed poorly on the

data set; in some cases, it identified only a single cluster with

a wide variance. Mean CLL for using learned offsets was

about 15% greater than for using a fixed offset. In addition,

the TPR and PRC scores were more than twice that of the

fixed offset case. According to a two-sample t-test, all three

of these differences are statistically significant (p < 0.0001).

D. Spray Bottle

To cover a more complicated example, though still with

different expected offsets, we demonstrated grasps around a

spray bottle as seen in Fig. 5. The grasps included a power

grasp of the neck with the finger on the trigger (shown in

magenta) as well as a precision grasp of the neck (red). In

addition to these two grasps, we also demonstrated grasping

the top from both sides (gray and brown) including some

placing of the fingertips under the head and also grasping

the base from both the front and back (blue and green).

Because of the different grasp types, we expected the use of

variable offsets to outperform the use of a fixed offset despite

the added complexity. In all, we demonstrated 6 grasps. In

the full data set, we had 1000 samples for each grasp. We

allowed a maximum of B = 10 clusters.

Fig. 6 shows typical solutions for both the learned and

fixed offset approaches. Of particular note, the fixed offset

case more often required two clusters (magenta and orange)

in order to capture the case of holding the spray bottle with

the finger on the trigger. Note also that the center of these

clusters is offset by a few centimeters (across all trials, mean

x = −4.3cm for fixed as opposed to mean x = −2.9cm for

learned). Both approaches frequently allocated two clusters

to one of the grasps from above (shown as gray). This

(a) (b)

Fig. 5. Spray bottle (a) and example of approximately expected results (b).
As for the expected hammer handle results, this result shows the basis for
judgment of true positives, false positives, and false negatives. In this case,
all expected clusters use a Dimroth-Watson distribution for their orientation
component. The lines from hand point clouds to grasp centroid Gaussian
means show the offset for each cluster.

happened because of the wide spatial distribution of the hand

locations for this grasp.

Overall, the use of fixed offsets did not perform as

poorly as for the hammer handle, despite different offsets

having been demonstrated. The use of variable offsets usually

resulted in 5 true positives, while using fixed offset usually

resulted in finding all 6, but with an increased number of

false positives (as reflected in the PRC score). The mean

CLL for the fixed offset case was about 3.5% more than

that for the variable offset, a difference that was significantly

different (two-sample t-test, p < 0.0001). However, the use

of variable offsets had a PRC score of about 7.5% more

than that for use of a fixed offset, again with a statistically

significant difference (p < 0.01)

The small difference in performance between the two

algorithms was due largely to the fact that only Dimroth-

Watson (single orientation) distributions were necessary to

explain the data. Because there was very little variation in

orientation between the samples in each cluster, there was

little difference in the variance of the spatial distribution be-

tween the hand and grasp reference points. In contrast, with

the hammer handle case, because the variation in rotation

was substantial (i.e., from all possible approach directions),

the variance in the spatial distribution between hand and

grasp reference points was very different. Consequently, we

see a significant advantage to the proposed approach for the

hammer handle, but not the spray bottle.

E. Plate and Spoon

In addition to the hammer handle and spray bottle, we

compared the techniques on two more objects: a paper

plate and a plastic spoon. These additional cases provided

an opportunity to see if the pattern of results would be

consistent. Without going into as much detail as above,

the expected grasps for the plate were both rotationally

symmetrical, and the expected grasps for the spoon were

unidirectional. We held the plate around the rim and also

rested it on the palm of the hand, with 1250 sample poses
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(a) (b)

Fig. 4. Representative examples of hammer handle clusters for variable offset (a) and fixed offset (b). The wider Gaussian distribution in (b) was counted
as a false positive.

Fig. 6. Representative exam-
ples of spray bottle clusters for
variable offset (a) and fixed off-
set (b). The variable offset re-
sults shown here were consid-
ered to have 5 true positives and
1 false positive (the additional
grasp from above). The fixed
offset results shown here were
considered to have 6 true pos-
itives and 1 false positive (the
additional grasp for trigger use).

(a) (b)

(a) (b)

Fig. 7. Paper plate (a) and plastic spoon (b).

for each grasp type. We held the spoon in three fashions:

from the side as if to feed oneself, from behind as if to feed

another person, and from the tip of the handle as if to stir

the contents of a tall container. We included 1500 samples of

each grasp type for the spoon. When performing clustering

for both the plate and the spoon, we allowed a maximum of

B = 10 clusters. Figs. 7 and 8 show the objects and sample

results.

As for the hammer handle, using a variable offset for the

plate resulted in higher CLL and PRC than with a fixed

offset, although by only about 11% and 5%, respectively.

Still, both improvements were statistically significant (two-

sample t-test, p < 0.001). Some differences exist from the

hammer handle case; the two rings of hand positions were

not concentric, and very different types of grasps were used.

Also, the grasp centroid for the grasp around the rim was

not enclosed by the fingers.

As for the spray bottle, using a variable offset for the

spoon resulted in lower CLL (by about 2.5%) and higher

PRC (by about 8.5%), again statistically significant results

(p < 0.015). In addition, the clusters were in different

places for each case. The variable offset placed the reference

points nearer to the hand, while the fixed offset placed

the reference points closer to the spoon handle. For both

the plate and spoon, there were many false positives. For

the plate, this seemed to be a side effect from the sensor

cord being in the way of proper grasp demonstration. This

yielded a substantially different distribution of samples for

one approach orientation for the side of the plate. For the

spoon, these false positives were likely due to the high
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(a) (b)

(c) (d)

Fig. 8. Representative models learned for the plate (a and b) and spoon (c
and d); for variable offset models (a and c) and fixed offset models (b and
d). For the plate, the green upper ring corresponds to grasps around the rim,
and the lower magenta ring corresponds to the plate resting on the palm
of the hand. The extraneous clusters (usually unidirectional) seem to be a
side effect from the sensor cord obstructing consistent grasp demonstration.
For the spoon, only three clusters were expected. The side grasp (green and
magenta) and tip grasp (orange, red, and brown) consisted of hand points
more to the left of the handle. The grasp from behind (blue and gray), as
demonstrated in panel c, consisted of hand points to the right of the handle.
The sensor location, in the cup of the spoon, is at the origin.

rotational variance around a small object that was not large

enough to qualify for a girdle distribution.

IV. DISCUSSION

In this paper, we propose an approach that allows an

agent to observe a set of example grasps of an object made

by a teacher and to construct a compact representation of

the canonical grasps that may be made with the object.

The object models are represented as mixture probability

distributions defined in a hand posture space. In particular,

by including a model parameter that describes the offset

from hand to a center tool point, the algorithm is capable of

distinguishing some functionally different grasps that involve

different sets of contacts, even when there is not a dramatic

difference in the pose of the hand across these grasps.

In using this approach in a complete system, several

additional steps are necessary. First, although the learned af-

fordance representation maps directly onto a reach controller

that would enable a robot to move its hand into proximity

with the object, we anticipate that haptic feedback would

be used to further refine the grasp (e.g., [3]). Second, the

proposed method is not limited to using data derived from

a human teacher. Instead, a robot could produce experience

that is specific to its own morphology (e.g., [8]).

Third, we are interested in making the connection between

the visual representation of an object and these learned grasp

affordances. Such a connection could be made in one of

two ways. A learned visual representation could be used

to recognize the identity and pose of a specific object.

The pose would provide a coordinate frame onto which to

hang the affordance representation, which, in turn, could

provide reach goal locations. Alternatively, the learned visual

representations could recognize more general components of

objects. Each of these components would then be associated

with their own affordance representation. Such an approach

would enable a robot to approach a novel object, recognize

its components and immediately have access to a set of

candidate reach/grasp actions.
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