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Abstract— This paper focuses on the guidance of a robot
manipulator to capture a tumbling satellite and then bring it
to state of rest (detumbling). First, a coordination control for
combined system of the space robot and the target satellite,
which acts as the manipulator payload, is presented so that the
robot tracks the optimal path while regulating the attitude of
the chase vehicle to a desired value. Subsequently, two optimal
trajectories for the pre- and post-capture phases are designed.
In the pre-capturing phase, the manipulator maneuvers are
optimized by minimizing a cost function which includes the
time of travel and the weighted norms of the end-effector
velocity and acceleration, subject to the constraint that the
robot end-effector and a grapple fixture on the satellite arrive
at the rendezvous point with the same velocity. In the post-
grasping phase, the manipulator dumps the initial velocity of
the tumbling satellite in minimum time subject to the constraint
that the magnitude of the torque applied to the satellite remains
below a safe value. Simulation and experimental results are
appended.

I. INTRODUCTION

The control system of a space manipulator for on-orbit ser-

vicing of satellites usually requires two mode of operations:

capturing and detumbling [1]–[3]. In the pre-capture phase,

the manipulator arm is guided (typically with using vision

data) so as its end-effector intercepts the satellite grapple

fixture at a rendezvous point along the trajectory of the

tumbling satellite. The capture will be without impact, if

the manipulator approaches the target in such a manner that,

at the time of capture, the relative velocity between the end-

effector and the target grapple point is zero [4]. Otherwise,

the effect of impact and on a free-floating space robot has to

be taken into account [5]; an optimal trajectory planning to

minimize the impulse during contact between two bodies was

presented in [6]. After capture of an uncontrolled tumbling

satellite by a space manipulator, the satellite should be

brought to rest [7], [8]. To accomplish this goal, the space

manipulator should gently apply torques to the target satellite

for removing any relative velocity, ideally as fast as possible.

In this paper, we are dealing with problems occurring in both

pre- and post-capture of a tumbling satellite.

There are many studies on optimal trajectory planning to

guide a robotic manipulator to rendezvous and capture a non-

cooperative target satellite [9]–[12]. In the case that the target

satellite dynamics is uncertain, not only the states but also the

target’s inertial parameters and its position of center of mass

can be estimated from vision data obtained from zero motion

of a tumbling satellite [12], [13]. However, there are only
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few studies on the path planning for detumbling of a non-

cooperative satellite and non of which is optimal. In [14], the

principle of conservation of momentum was used to damp

out the chaser-target relative motion. However, there was no

control on the force and moment built up at the connection

of the chaser manipulator and the target. Impedance control

scheme for a free-floating space robot in grasping of a

tumbling target with model uncertainty is presented in [15],

however optimal path planning is not addressed in this work.

The magnitude of the interaction torque between the space

manipulator and the target must be constrained during the

detumbling operation for two main reasons: First, too much

interaction torque could cause mechanical damage to either

the target satellite or to the space manipulator. Second, a

large interaction torque may lead to actuation saturation of

the space robot’s attitude control system. This is because,

the reaction of the torque on the space robot base should be

eventually compensated for through additional momentum

generated by the actuator of its attitude control system, e.g.,

momentum/reaction wheels, in order to keep the attitude of

the base undisturbed. Moreover, it is important to dump the

initial velocity of the target as quickly as possible in order

to mitigate the risk of collision due to small but nonzero

translational drifts of the satellites. Hence, optimal planning

of the passivation maneuvers is highly desired [16].

This paper is organized as follow: Section II describes a

coordination control for the combined system of the space

robot and the target satellite so that the manipulator tracks

a prescribed motion trajectory while regulating the attitude

of its own base to a desired value. Optimal trajectory for

robotic capturing of a tumbling satellite is presented in

Section III. Section IV presents a closed-form solution for

time-optimal detumbling maneuvers of a rigid spacecraft

under the constraint that the Euclidean norm of the braking

torques is below a prescribed value. Finally, experimental

and simulation results are shown in Section V.

II. CONTROL OF THE COMBINED SYSTEM OF

MANIPULATOR AND TARGET

Fig. 1 illustrates the pre- and post-capture phases of an

on-orbit servicing operation. In the post-capture phase, the

space robot and the target satellite constitutes a single free-

flying multibody chain. The dynamic equations of the space

robot can be expressed in the form [1]

Msψ̈s + cs(ψs, ψ̇s) = u+ JTfh, (1)
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Fig. 1. The free body diagram of chaser and target satellites

where

ψ̇s =

[

νb

θ̇

]

, u =

[

fb

τm

]

.

Here, Ms is the generalized mass matrix of the space

manipulator, cs is generalized Coriolis and centrifugal force,

νT
b = [vT

b ωT
b ] is the generalized velocity of the base

consisting of the linear and angular velocities, vb and ωb,

vector θ̇ is the motion rate of the manipulator joint, vector

fh is the force and moment exerted by the manipulator hand,

vector fb is the force and moment exert on the centroid of

the base, vector τm is the manipulator joint torque and J is

the Jacobian, which takes this form

J =
[

Jb Jm

]

with Jb and Jm being the Jacobian matrices for the base and

for the manipulator arm, respectively. On the other hand, if

the target spacecraft is rigid body, then its dynamics motion

can be described by

Moν̇o + co = −ATfh (2)

where νo is the six-dimensional generalized velocity vector

consisting of the velocity of the center of mass, vo, and

the angular velocity, ωo, components, Mo is the generalized

mass matrix that can be written as
[

m13 0
0 Ic

]

and co =

[

mωo × vo

ωo × Icωo

]

with m and Ic being the mass and the inertia tensor of the

target satellite, and A can be expressed as

A =

[

13 ρ×
0 13

]

with ρ being the position vector of the target-spacecraft

contact point with respect to its center of mass. Note that the

RHS of (2) is the force and moment exert on the centroid of

the target spacecraft. Furthermore, the generalized velocities

of the manipulator hand and the target spacecraft are related

by the following

νo = Aνh. (3)

The velocity of the manipulator end-effector in the end-

effector frame is expressed as

νh = Jψ̇s = Jbνb + Jmθ̇ (4)

The time-derivative of (4) leads to

θ̈ = J−1

m ν̇h − J−1

m Jbν̇b − J−1

m (J̇mθ̇ + J̇bνb). (5)

Now we are interested in writing the equations of motion

in terms of the generalized velocities of the bases of the

chaser and target satellites, i.e., νb and νh. To this end, we

define a new velocity vector as

ψ̇ ,

[

νb

νh

]

(6)

The internal force vector fh can be eliminated from (1) and

(2) to yield the following equation

Msψ̈s + JTA−TMoAν̇h + JTA−Tco + cs = u (7)

Upon substitution of θ̈ from (5) into the corresponding

component of ψ̈s in (7) the latter equation can be written

in this form

Mψ̈ + c(ψ, ψ̇) = u, (8)

where

M , Ms

[

1 0
−J−1

m Jb J−1

m

]

+
[

0 JTA−TMoA
]

c , Ms

[

0

−J−1

m (J̇mθ̇ + J̇bνb)

]

+ JTA−Tco + cs,

in which we used the expression of the joint acceleration

from (5). Note that (8) describes the dynamic motion of the

combined chaser and target satellites in terms of their base

variables. The special case of interest is when no force is

applied to the base of the chaser satellite. In other words, the

joint motion of the manipulator arm is allowed to disturb the

base translation but not its attitude. Form a practical point

of view, it is important to keep the base attitude unchanged

as the spacecraft has to always point its antenna toward the

Earth, whereas disturbing the base translation does not pose

any significant side effect. Therefore, the generalized force

input u consists of a 3 × 1 zero vector plus the vectors of

the chaser base torque and the manipulator joint torque, i.e.,

u =

[

03×1

τ̄

]

where τ̄ ,

[

τb

τm

]

. (9)
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In view of the zero components of input vector (9), we will

derive the reduced form of the equation of motion (8) in the

following. Let us assume that

ψ̇ ,

[

vb

˙̄ψ

]

where ˙̄ψ ,

[

ωb

νh

]

is the velocity components of interest. Also, assume that the

mass matrix and the nonlinear vector in (8) are partitioned

as

M =

[

M11 M12

MT
12

M22

]

and c =

[

c1
c2

]

, (10)

so that M11 ∈ R
3×3, c1 ∈ R

3 and the dimensions of rest

of submatrices and subvectors are consistent. Then, matrix

equation (8) can be divided into two equations as:

M11v̇b +M12
˙̄ψ + c1 = 0 (11)

M̄ ¨̄ψ + c̄ = τ̄ , (12)

where M̄ and c̄ are constructed from (10) as

M̄ =M22 −MT
12
M−1

11
M12

c̄ = c2 −M12M
−1

11
c1.

Autonomous system (11) is the manifestation of the conser-

vation of linear momentum and hence it should be integrable,

i.e.,
d

dt

(

M11vb +M12ψ̄
)

= 0 (13)

which can be used to estimate the base linear velocity.

Equation (12) shows that through torque control input τ̄ ,

it is possible to simultaneously control the pose of the target

satellite and the attitude of the chaser satellite. Therefore,

the objective is to develop a coordination controller which

sends torque commands to motors of the manipulator joints

and to actuators of the attitude control system, e.g., re-

action/momentum wheels, in order to not only track the

optimal trajectories, which will be discussed in the following

sections, but also to regulate the base attitude. To achieve

this goal, we use a feedback linearization method based on

dynamic model (12). Suppose that orientation of the robot

base and hand are represented by quaternions qb and qh,

respectively. Then adopting a simple PD quaternion feed-

back [17] for the spacecraft attitude control, an appropriate

feedback linearization control torque is given by

τ̄ = τ̄ff − M̄





Kbpvec(δqb) +Kbdωb

Khpvec(δqh) +Khd(ωh − ω∗

h)
Krp(rh − r∗h) +Krd(ṙh − ṙ∗h)



 (14)

where

τ̄ff = c̄+ M̄

[

03×1

ν̇∗

h

]

is the feed forward term and all feedback gains are positive

definite. In the above, and quaternion errors are defined as

δq = q ⊗ q∗

where vec(·) returns the vector part or quaternion (·) and the

quaternion product operator ⊗ is defined as

q⊗ ,

[

qs13 − qv× qv

−qT
v qs

]

,

where qv and qs are the vector and scalar parts of the

quaternion q = col (qv, qs).

Note that ν̇∗

h and ν∗

h are obtained from the trajectory

generator as will be shown the next section. Now substituting

the control law (14) into (12) results in a set of three

uncoupled differential equations as

ω̇b +Kbdωb +Kbpvec(δqb) = 0 (15a)

(ω̇h − ω̇∗

h) +Khd(ωh − ω∗

h) +Khpvec(δqh) = 0 (15b)

(r̈h − r̈∗h) +Krd(ṙh − ṙ∗h) +Krp(rh − r∗h) = 0 (15c)

The exponential stability of the system (15c) is obvious,

while the stability proof of systems (15a) and (15b) is given

in the following analysis.

The quaternion evolves in time according to the following

differential equation

q̇b =
1

2
ωb ⊗ qb where ωb =

[

ωb

0

]

. (16)

Now, we define the following positive-definite Lyapunov

function:

V =
1

2
δqT

bv
Kpδqbv

+
1

2
‖ωb‖2. (17)

Then, it can be shown by substitution from the quaternion

propagation equation (16) that time derivative of V along

trajectory (15a) is

V̇ = −ωT
b Kdωb (18)

so that V̇ ≤ 0 for all t. Therefore, according to LaSalle’s

Global Invariant Set Theorem [18], [19], the equilibrium

point reaches where V̇ = 0, or ωb ≡ 0. Then, we have

from (15a)

Kpvec(δqb) = 0.

On the other hand it is known that two coordinate systems

coincides if, and only if, δqb = 0, where the δqb is the vector

component of the quaternion [17]. Therefore, we have global

asymptotic convergence of the orientation error. The stability

of (15b) can be proved similarly.

Therefore, we can say rh → r∗h, qh → q∗h and qb → q∗b
as t → ∞. Note that the role of feedback gains in (14) is to

compensate for a possible modelling uncertainty, otherwise

a feed forward controller as τ̄ = τ̄ff suffices to achieve the

control objective.

III. OPTIMAL MANEUVERS FOR PRE-CAPTURE PHASE

A. Path Planning

Dynamics of the rotational motion of the target satellite

can be expressed by Euler’s equation as

ω̇o = φ(ωo) + I−1

c τo (19)
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where φ(ωo) , −I−1

c (ωo×Icωo). Similar to (16), the time-

derivative of the quaternion qo representing the attitude of

the target satellite is described by

q̇o =
1

2
ωo ⊗ qo (20)

In the pre-capture phase, no external torque or force is

applied to the target satellite. Thus

τo = 0 and r̈o = 0, (21)

where ro is the location of the center of mass of the target

satellite. Assume that x = col (qo,ωo, ro, ṙo) represent the

states of the target satellite. Then, state equations (19), (20)

and (21) can be written collectively in the following compact

form

ẋ = f(x) (22)

A short-term prediction of the states can be obtained by

integrating (22), i.e.,

x(t) = x(t0) +

∫ t

t0

f(x)dτ.

Now, denoting the position of the grapple fixture mounted

on the target satellite with rc and assuming that the vector

is expressed in {A}, we have

rc(x) = ro +R(qo)ρ. (23)

Here the rotation matrix R(q) from {B} to {A} can be

obtained from the quaternion q as

R(q) = (2q2

s − 1)14 + 2qs[qv×] + 2qvq
T
v . (24)

Furthermore, knowing that, in {B}, Ṙ = R[ωo×], we can

calculate the velocity ṙc from the states as:

ṙc(x) = R(q)(ωo × ρ). (25)

Let us represent the position of the end-effector in {A} as

rh(t). The end-effector and the grasping point are expected

to arrive at a rendezvous-point simultaneously with the same

velocity. Therefore, our objective is to bring the end-effector

from its initial position to a grasping location, i.e., rh(tf1
) =

rc(tf1
) and ṙh(tf1

) = ṙc(tf1
), while satisfying some opti-

mality criteria. Let’s assume that the optimal trajectory is

generated by

r̈∗h = v. (26)

Then, denoting the augmented states by χ = col(x, rh, ṙh)
and combining the deterministic part of systems (22) and

(26), we get the following autonomous system

χ̇(χ,v) =





f(x)
ṙh

v



 . (27)

Here, an optimal solution to input v is sought to drive the

robot from the initial position to the final position while

minimizing the following performance index (PI)

J =

∫ tf1

0

(

1 + w1‖ṙh‖2 + w2‖v‖2
)

dτ, (28)

with w1, w2 > 0 and the final time tf1
free. Note that due

to the term tf1
arising from the integral, the interception

must be accomplished within a short time period. Thus,

if the weights w1 and w2 are selected to be small, the

term tf1
dominates the PI yielding a time-optimal solution.

On the other hand, since weights w1 and w2 penalize the

PI by the magnitudes of the velocity and the acceleration

during the travel, the latter quantities can be minimized

if the corresponding weights are selected with relatively

large values. Now, consider plant (27) and the performance

objective of minimizing (28) with the following terminal

state constraints:

ψ1(χ(tf1
)) = 0 where ψ1(χ) =

[

rc(x) − rh

ṙc(x) − ṙh

]

∈ R
6.

(29)

In the following, we will solve the above design equations

explicitly for the optimal input v(t). Splitting the vector

of costates λ as λ = col (λs,λm), where λs ∈ R
12 and

λh = col (λh1
,λh2

) with λh1
,λh2

∈ R
3, we can write the

Hamiltonian of the system (27) and (28) as

H(χ,v,λ1) = 1 + w1‖ṙh‖2 + w2‖v‖2 + λT
s f(x)

+ λT
h1
ṙh + λT

h2
v. (30)

Since the Hessian of the Hamiltonian is positive-definite,

i.e., Huu = 2w213 > 0, the sufficient condition for local

minimality is satisfied. According to the optimal control

theory [20], optimal costate, λ∗, and the optimal input, v∗,

must satisfy the following partial derivatives:

λ̇1 = −∂H1

∂χ
,

∂H1

∂v
= 0. (31)

Applying (31) to our Hamiltonian (30), we obtain the equa-

tions of motion of the costate

λ̇s = −(
∂f

∂x
)Tλs (32a)

λ̇h1
= 0 (32b)

λ̇h2
= −2w1ṙh − λh1

. (32c)

and the optimal input

v = r̈h = −λh2

2w2

. (33)

Equation (32b) implies that λh1
is a constant vector, and

hence it is eliminated from the time-derivative of (32c), i.e.,

λ̈h2
= −2w1r̈h. (34)

Therefore, substituting the acceleration from (33) into (34)

gives

λ̈h2
− σ2λh2

= 0, (35)

where σ =
√

w1/w2. Finally, from (33) and (35), we can

obtain the differential equation of the optimal trajectory as

d2

dt2
(

r̈h − σ2rh

)

= 0, (36)

the solution of which takes the following form

r∗h(t) = κ0 + κ1tf1
+ κ2e

σtf1 + κ3e
−σtf1 . (37)
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Coefficients κ0,κ1,κ2,κ3 ∈ R
3 can be obtained by impos-

ing the initial and terminal conditions (29). That is,








13 0 13 13

0 13 σ13 −σ13

13 tf1
13 eσtf113 e−σtf113

0 13 σeσtf113 −σeσtf1 13

















κ0

κ1

κ2

κ3









=









rh(0)
ṙh(0)
rc(tf1

)
ṙc(tf1

)









.

The above system has 12 independent equations with 12

unknowns, and hence a unique solution is expected.

B. Optimal Rendezvous Point

The optimal Hamiltonian H∗ = H(χ∗,v∗,λ∗) calculated

at optimal point v∗ and λ∗ corresponding to (32) and (33)

must satisfy H∗(tf1
) = 0, i.e.,

H∗(tf1
) = 1 + w1‖ṙh(tf1

)‖2 − w2‖r̈h(tf1
)‖2

+ λT
h1
ṙh(tf1

) + λT
s (tf1

)f(tf1
) = 0. (38)

This gives the extra equation required to determine the

optimal terminal time. The final values of the costate in

(38) can be obtained from the end point constraint equation

referred to as the transversality condition:

λ(tf1
) =

(∂ψ1

∂χ

)T

tf1

α (39)

where α ∈ R
6 is the Lagrangian multiplier owing to

the constraint (29). Upon substituting equations (29), the

transversality condition (39) yields

α = −λh(tf1
)

λs(tf1
) = −

(∂rc

∂x

)T

tf1

λh1
−

(∂ṙc

∂x

)T

tf1

λh2
(tf1

). (40)

Moreover, from the following identities

ṙc =
∂rc

∂x
f(x) and r̈c =

∂ṙc

∂x
f(x),

and (40), we obtain

λT
s f(tf1

) = −λT
h1
ṙc(tf1

) + 2w2r̈h(tf1
)T r̈c(tf1

). (41)

Now, substituting (41) into (38), we arrive at

H(tf1
) = 1 + w1‖ṙh(tf1

)‖2

+ w2r̈
T
h (tf1

)
(

2r̈c(tf1
) − r̈h(tf1

)
)

= 0. (42)

Finally, computing the final value of the trajectories in terms

of the coefficients κi from (37), we obtain the following

implicit function of tf1

H∗

1(tf1
) = 1 + w1‖κ1‖2 − 4

w1

w3

κT
2 κ3 (43)

+ 2w1σ
(

κT
2 eσtf1 − κT

3 e−σtf1

)

κ1

− 2w2σ
2
(

κT
2 eσtf1 + κT

3 e−σtf1

)

r̈c(tf1
) = 0.

Note that the predicted acceleration, r̈c(tf1
), as required in

(43) can be obtained from the states. To this end, the time

derivative of (25) yields

r̈c = R(qo)
(

ωo × (ωo × ρ) + φ(ωo) × ρ
)

. (44)

Therefore, in the pre-capture phase, the optimal trajectory

r∗h(t) and its time derivatives obtained from (37) can be sub-

stituted in the control law (14), while the desired orientation

trajectories are obtained from ω∗

h = ωo. It should be pointed

out that since the target satellite has not yet been grasped

in this phase, the controller should not take its inertia into

account, i.e., one must set Mo ≡ 0 and co ≡ 0 in the

controller.

IV. OPTIMAL MANEUVERS FOR POS-CAPTURE PHASE

In the pose-capture phase, we assume that the target

satellite and the robot hand have arrived at the interception

point with zero relative velocity. Without loss of generality,

we assume that the linear velocity of the target satellite is

zero, i.e., ṙo = 0. Thus, we can say

τh = τo and ωh = ωo ∀t ≥ tf1
.

The time-optimal control problem being considered here is

how to drive the spacecraft from the given initial angular

velocity ωo(0) to rest in minimum time while the Euclidean

norm of the torque input is restricted to be below a prescribed

value τmax. To avoid introducing new variables, we keep the

same variables J , H, and λ that are used in the pervious

section. Therefore, the following cost function

J =

∫ tf2

tf1

1 dt

is minimized subject to terminal condition ωh(tf2
) =

ωh(tf2
) = 0 while the input torque trajectory should satisfy

‖τh‖ ≤ τmax. (45)

Denoting vector λ ∈ R
3 as the costates, we can write the

system Hamiltonian as

H = 1 + λTφ(ωh) + (I−1

c λ)Tτh. (46)

Then, the theory of optimal control [20], [21] dictates that

the time-derivative of the costates must satisfy

λ̇ = − ∂H

∂ωh

= −∂φT

∂ωh

λ (47)

where
∂φT

∂ωh

= Ic[ωh×]I−1

c − [Icωh×]I−1

c , (48)

and skew-symmetric matrix [a×] represents the cross-

product, i.e., [a×]b = a × b. If τ ∗

h is the time-optimal

torque history and ω∗

h, λ∗ represent the solutions of (19) and

(47) for τh = τ ∗

h then, according to Pontryagin’s Minimum

Principle, optimal torque τ ∗

h satisfies the equation

H(ω∗

h,λ∗, τ ∗

h ) ≤ H(ω∗

h,λ∗, τh), ∀τh ∈ R
3 ∋ ‖τh‖ ≤ τmax

(49)

for every t ∈ [tf1
, tf2

). Equations (46) and (49) together

imply that

τ ∗

h = − I−1
c λ∗

∥

∥I−1
c λ∗

∥

∥

τmax. (50)
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Therefore, the dynamics of the closed-loop system becomes

ω̇∗

h = φ(ω∗

h) − I−2
c λ∗

∥

∥I−1
c λ∗

∥

∥

τmax (51)

The structure of the optimal controller is determined by

(47) and (50) together. However, to determine the control

input, the initial values of the costates, λ(0), should be also

obtained. In fact, by choosing different initial values for the

costates, we obtain a family of optimal solutions, each of

which corresponds to a particular final angular velocity. In

general, the two-point boundary value problem for nonlinear

systems is challenging. However, as it will be shown in the

following, the structure of our particular system (47) and

(51) lead to an easy solution when the final velocity is zero.

In such a case, it will be shown that the costates and states

are related via the following function:

λ∗(t) =
I2

cω
∗

h

‖Icω
∗

h‖ τmax

∀t ∈ [tf1
, tf2

), (52)

despite the fact that the evolutions of the optimal trajectories

of the states and costates are governed by two different

differential equations (51) and (47). In other words, (52)

is a solution to equations (51) and (47). Note that since

ω∗

h(t) = ωh(t) ∀t ∈ [tf1
, tf2

), ω∗

h(tf2
) is not defined,

but is assumed nonzero. In such a case, on substitution of

(52) into (51), we arrive at the following autonomous system:

ω̇∗

h = φ(ω∗

h) − ω∗

h

‖Icω
∗

h‖
τmax ∀t ∈ [tf1

, tf2
). (53)

To prove the above claim, we need to show that (52) and

(53) satisfy the optimality condition (47). Using (53) in the

time-derivative of right-hand side (RHS) of (52) yields

d

dt
λ∗ =

I2

cφ

‖Icω
∗

h‖ τmax

. (54)

On the other hand, using (48) and (52) in the RHS of (47)

yields

−∂φT

∂ωh

λ∗ =
I2

cφ

‖Icω
∗

h‖ τmax

. (55)

A comparison between (54) and (55) clearly proves that (52)

is indeed a solution to the differential equation (47). Further-

more, the Hamiltonian on the optimal trajectory becomes

H∗ = λ∗Tφ(ω∗

h) = − (Icω
∗

h)T [ω∗

h×](Icω
∗

h)

‖Icω
∗

h‖ τmax

= 0

Therefore, the condition for optimality with open end time is

also satisfied [21, pp. 213]. Thus, equation (53) generates the

optimal angular rate trajectories, and hence the orientation of

the robot hand can be obtained from

q̇∗h =
1

2
ω∗

h ⊗ q∗h (56)

Finally, one can use the kinematic relations (25) and (44) to

derive the desired trajectories of the translational motion.
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SARAH hand
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@R

Grasping handle

Fig. 2. The experimental setup

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, experimental results are reported that show

the performance of a vision-guided system based on the

optimal trajectory descried in Section III for autonomous

interception of a tumbling satellite. Fig. 2 illustrates the ex-

perimental setup, where two manipulator arms are employed

to simulate the motions of the target and the chaser satellites.

A mockup of the target satellite is moved by a manipulator

according to dynamics of a free-floating rigid body. The other

arm, equipped with a robotic hand known as SARAH [22],

is used to autonomously approach the mockup and capture

its grasping handle. Neptec’s laser camera system is used to

obtain pose measurements at a rate of 0.5 Hz.
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Fig. 3. Estimated translational and angular velocities

The inertia parameters of the target satellite are selected

as Ixx = 4 kgm2, Iyy = 8 kgm2, Iyy = 5 kgm2, and

ρ = col (−0.15, 0, 0) m. These values are used to determine

the manipulator-driven motion of the mockup target. The

objective is to capture the grasping handle of the tumbling
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mockup smoothly using the robotic arm despite the noisy

pose data provided by the laser camera.

During the learning phase, an extended Kalman filer

receives the vision data and subsequently estimates the sets

of inertial parameters and the states of the tumbling satellite,

both of which are required for path planning, see for more

details [13], [23].

Figs 3 shows the trajectories of the estimated velocities

of the target satellite. Fig. 4 shows the velocity and accel-

eration trajectories of the grasping handle calculated from

the estimated states. Based on these data and the estimated

parameters and states at t0 and weights 1/
√

w1 = 0.06 m/s

and 1/
√

w2 = 0.016 m/s2, the Hamiltonian is computed

from (42). The zero-crossing of the Hamiltonian is then

found to occur at t∗f1
= 148.5 s; see Fig. 5. Note that

t∗f1
corresponds to the optimal interception point. Fig. 6

shows trajectories of the robot end-effector and those of the

grasping-handle. It is evident that the robot intercepts the

handle at the designated time. Note that the post-grasping

operation is not emulated, as both manipulators are stopped

upon arriving at the interception point.

Fig. 7 shows the distance between the end-effector and the

grasping handle, ‖rc − rh‖, as well as the magnitude of the

relative velocity, ‖ṙc− ṙh‖. Apparently, at time t = tf1
both

relative distance and velocity vanish.
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The detumbling phase of the satellite is demonstrated by

simulation. To this end, we assume that the allowable torque

140 145 150 155 160 165 170

−4

−2

0

2

H
(t

f
1
)

optimal tf1
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that can be applied to the tumbling satellite is restricted by

‖τh‖ ≤ 0.1 Nm, (57)

while the spacecraft angular velocity at the instant of cap-

turing is

ωh(tf1
) =





0.3
0.2
0.1



 (rad/s).

Fig. 8 illustrates the minimum-time detumbling maneuvers,

while trajectories of the optimal torque applied to the satellite

is illustrated in Fig. 9.

VI. CONCLUSIONS

A method for the guidance of a robotic manipulator to first

intercept and then detumble a non-cooperative target satellite

has been presented. First, a coordination control for the

combined system of the space robot and the target satellite

has been developed so that the space robot not only provides

the optimal maneuvers dictated by the motion planners but

also keeps the attitude of its base undisturbed. Subsequently,
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two optimal trajectories for the pre-capture and post-capture

phases have been developed.

For the pre-capture phase, an optimal intercept trajectory

was defined so as to minimize the time of travel along

with the weighted norms of the velocity and acceleration

of the robot end-effector. The optimization is subject to

the constraint that relative-velocity at the rendezvous point

becomes zero. For the post-capture phase, i.e., detumbling,

a closed-form solution to the time-optimal maneuvers of a

spacecraft to bring it to rest subject to the constraint that

the magnitude of the torques applied by the robot is below

a prescribed value has been found. Finally, experimental

results illustrating the autonomous guidance of a robotic

manipulator for the capture of a tumbling mockup satellite

were reported. In this experiment, another robotic arm was

used to move the mockup according to orbital mechanics

while a laser vision system was used to obtain pose data.

The ability of the detumbling controller was demonstrated

by simulation.
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