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Abstract—This paper describes an algorithm to
estimate tremor and voluntary motion from measured
motion data. Estimation is performed by means of
an extended Kalman filter (EKF), which also esti-
mates tremor parameters. Comparison of the pro-
posed method with techniques described in the lit-
erature are conducted with two experimental data
sets from tremor patients performing the same task,
drawing a spiral. The presented algorithm may be
directly applied in real-time pathological tremor com-
pensation systems.

I. Introduction

Tremor may be defined as an involuntary, approx-
imately rhythmic and roughly sinusoidal movement
[1]. Although pathological tremor itself is not life-
threatening, it may decrease considerably the person’s
quality of life, since the ability to perform simple daily
tasks is reduced. It is the most common movement
disorder found in human pathology.

An absolutely effective treatment for pathological
tremor is not yet available. Although pharmacological
and surgical therapies are available, they still present lim-
itations with reference to cost, risks, and effectiveness. In
this scenario, one alternative is the use of assistive devices
to reduce the effects of the abnormal motion. Among the
new technologies, upper limb robotic exoskeletons [2] and
the use of FES [3] have been proposed.

Within the context of assistive devices to attenuate
tremor, every candidate technology must continuously
estimate tremor during the device operation. This is due
to the fact that pathological tremor presents high vari-
ability throughout time, particularly in terms of tremor
amplitude. Our effort to address this problem has been
described in [4], where an algorithm to perform online
tremor characterization based on two distinct parametric
models was presented.

However, the sensors used to measure the current
tremor state are also sensitive to the voluntary motion
performed by the patient, which is normally executed
in lower frequencies, when compared to pathological
tremor frequencies. Hence, in order to correctly estimate
the tremor motion, the voluntary component must be
extracted from the total movement.

Some methods have already been proposed to address
this problem. [5] presented the application of digital
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filters to suppress tremor from computer input, but
the method is not feasible for a real-time compensation
system. Regarding methods applied to real-time com-
pensation problems, in [6] an adaptive filter was used
to estimate tremor modeled as an harmonic model. The
same algorithm was also applied in [2]. In that paper,
however, explicit estimation of voluntary motion was
added.

In the current paper, a new technique to perform
tremor and voluntary motion estimation is presented.
The algorithm was designed to improve the filter ro-
bustness to multiple motions and different sensors. To
accomplish that, models are assumed for both tremor and
intentional motion and an extended Kalman filter (EKF)
is used as the recursive estimation algorithm. The EKF
presents the advantage of explicitly considering the mea-
surement noise and concurrently performing estimation
of the tremor and voluntary motion.

The assumption of an explicit voluntary motion model
may also be important in the estimation of a particular
motion or task in order to trigger a compensation pat-
tern. It may also be an useful feature for other applica-
tions. For instance, a good estimation of intentional mo-
tion may be important in gesture recognition or different
rehabilitation therapies involving tremor patients.

The paper is organized as follows. In the following
section our EKF-based solution to the problem is de-
scribed, including description of tremor and voluntary
motion models, the estimation algorithm and parameters
selection. Section III presents the experimental evalu-
ation of the proposed method with two different data
sets. The experimental data was obtained from tremor
patients performing the same task, but measured with
different sensors. This section also presents a comparison
with the results provided by the techniques proposed in
[6], [2]. The last section presents the final remarks.

II. Estimating tremor and voluntary motion

It is considered in this paper that the motion per-
formed by the patient is composed by pathological
tremor and voluntary motion. Both signals are nonsta-
tionary. For the scalar case, the total motion is given by

s(k) = st(k) + si(k), (1)

where k is a multiple of T , the sampling period, st is the
tremor component, and si is the intentional motion. s is
measured by a motion sensor, which may be an inertial
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sensor, an optical tracking system, digitizing tablets or
similar devices. The sensor provides the measurement

s̃(k) = s(k) + νs(k), (2)

where νs is an additive white Gaussian noise, νs ∼
N(0, σ2

s), that represents sensor error.

Our goal in this work is to estimate online both tremor
and voluntary motion components from the noisy mea-
surements of a motion sensor. In the following subsection
we describe the models adopted for each separate motion.
Following, the recursive algorithm used to estimate the
referred signal and the tremor parameters is presented.

A. Models

Since we are estimating both voluntary and tremor
motions from the measured resultant motion, our knowl-
edge from these different motions must be employed to
separate them. We assume that voluntary motion lies
mainly within low frequencies (< 2 Hz), while tremor
frequencies are higher (roughly between 3 to 15 Hz).

In this scenario, one may simply choose to apply classic
linear filters, but this option was not considered due to
two main reasons. Firstly, the intrinsic delays added are
not desirable, since the estimated tremor motion will
be used by a closed-loop tremor compensation system.
Furthermore, since we are interested in estimating in
real-time the tremor model parameters, a model-based
estimation procedure must be applied in any case.

The other alternative is to describe the motions of
interest by general mathematical models, which then are
used in the estimation procedure. In [6], for instance, an
harmonic model is assumed for tremor, while no explicit
model for intentional motion is assumed. In [2], models
for both motions are assumed, which is also the chosen
approach in this work.

Regarding the tremor model, in [4], we have compared
the use of Auto-Regressive (AR) and harmonic models
to the problem of tremor online estimation only. The
cited paper did not discard the use of a particular model,
since both models presented good performance for tremor
estimation, including the estimation of power spectrum
and k-step ahead prediction. For the present case, how-
ever, since two motions are estimated simultaneously,
harmonic models were chosen as the tremor model.
This was mainly due to the fact that the parameters
that describe the frequency in harmonic models may be
explicitly bounded, while in AR models the frequency
behavior is described by the combination of the differ-
ent parameters. Hence, filter convergence to consistent
parameters become less robust.

An harmonic model may represent any periodic signal.
In the case of quasi-periodic signals, an approximation
may be achieved with harmonic models. Since a non-
stationary signal is considered, the following rectangular

model is adopted for unidimensional motion:

st(k) =
H
∑

h=1

[

ah(k) sin

(

h

k
∑

t=1

ω(t)

)

+ (3)

bh(k) cos

(

h

k
∑

t=1

ω(t)

)]

+ νst
(k),

where ω is the fundamental frequency, ah and bh are
the coefficients and H is the number of harmonics, the
model order. νst, an additive white Gaussian noise, νst

∼
N(0, σ2

st
), represents modeling errors. For motions in ℜ2

or ℜ3, another advantage of harmonic models is that
coupling between each coordinate may be represented by
assuming that every tremor motion, modeled by (3), has
the same fundamental frequency ω.

In this model, it is assumed that tremor may be
described by harmonic frequencies, which is often the
case. For motions that do not present this feature, one
option is to adopt nonharmonic relations between the
frequencies, as in [7]. The algorithm presented in this
paper may be easily adapted to this nonharmonic model.

Concerning the voluntary motion, although it is a
slower movement, it does not present the regular features
of the tremor motion. Hence, in this work it was modeled
as low-pass filtered white noise:

si(k) =

F
∑

f=1

cfνsi
(k − f), (4)

where νst is a white Gaussian noise, νsi
∼ N(0, σ2

si
), and

F is the model order. cf , the filter parameters, are fixed
parameters tuned to represent the frequency behavior
assumed for voluntary motion, i.e., a low-pass filter with
cutoff frequency around 2 Hz.

B. EKF

Some algorithms were already proposed to perform
the separation of tremor and voluntary motion. The
Weighted Fourier Linear Combined (WFLC), described
in [6], is an algorithm designed to estimate an harmonic
tremor model, but may be also used to separate tremor
and voluntary motion. The estimation problem is solved
in two steps: the tremor frequency is estimated from
the bandwidth filtered signal and the other parameters
are estimated from the raw signal, s̃. A constant term
is added in the harmonic model in order to represent
voluntary motion. This solution is highly dependent on
the chosen gains of the recursive estimation algorithm for
different voluntary motions and sensor noises.

In order to address these problems, in [2] another solu-
tion was proposed. Voluntary motion is firstly estimated
from the original signal by a Benedict-Bordner filter
(BBF), which provides ŝi. After, the WFLC algorithm
is applied to the signal s̃ − ŝi. The BBF is equivalent
to the Kalman filter steady-state solution to a linear
first-order system, but with fixed restrictions between the
filter parameters. In this case, considering that voluntary
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motion generally does not behave as the assumed model
and that the correction is given by the total measured
motion, the result is similar to apply a low-pass filter
to estimate ŝi, and then apply the WFLC algorithm to
estimate ŝt.

In our approach, we tried to address the disadvantages
of previous solutions. Hence, not only models for both
motions are assumed, but also the models uncertainties
are explicitly considered. Furthermore, measurement er-
ror is represented, resulting in a more robust solution.
The optimal estimator for such problems is the Kalman
filter (KF) for the linear case. Since the present problem
is nonlinear, one alternative is to use a modification of
the KF for nonlinear systems, the EKF, where Kalman
equations are applied to the first-order linearization of
the nonlinear system [8].

The applied filter simultaneously estimates both re-
ferred motions. The filter states are composed by those
states related to tremor, xt, which are composed by
the estimated motion and the tremor model recursively
identified parameters,
[

st(k) a1(k) · · · aH(k) b1(k) · · · bH(k) ω(k)
]T

and the states related to voluntary motion, xi, which are
organized accordingly,
[

si(k) · · · si(k − f) νsi
(k − 1) · · · νsi

(k − f)
]T

.

To obtain the full state vector, we combine the states
regarding tremor and voluntary motion:

x(k) =

[

xt(k)
xi(k)

]

. (5)

The total number of states will be defined by the orders
chosen for both motion models:

n = 1 + (2H + 1) + 2F. (6)

In the KF framework, estimation is organized in pre-
diction and correction phases. In the prediction phase,
x̂−(k), the initial a priori estimate is computed according
to

x̂−(k) = f(x̂(k − 1)), (7)

where f(x) is composed by Eqs. (3) and (4) and the pa-
rameters models. All parameters are modeled as random
walk processes, particularly since they do present fast
dynamics. For instance, the evolution of parameter ω is
given by

ω(k) = ω(k − 1) + νω(k), (8)

where νω is a white Gaussian noise, νω ∼ N(0, σ2
ω).

The error covariance matrix, P, is propagated accord-
ing to

P−(k) = AP(k − 1)AT + Q, (9)

where A is the jacobian matrix of f(x̂(k−1)) with respect
to x̂(k − 1) and Q, the process covariance matrix, is a

diagonal matrix whose components are the variances of
each filter state.

In the correction phase, the available measurement,

y(k) = g(x(k)), (10)

where g(x(k)) is given by Eqs. (1) and (2), is used to
correct the initial estimate, providing x̂+(k), the final
a posteriori estimate. The Kalman gain, K, scales the
correction applied in the correction phase:

K(k) = P−(k)CT
(

CP−(k)CT + r
)

−1
, (11)

where C is the jacobian matrix of g(x̂−(k)) with respect
to x̂−(k). Once it is computed, the final estimate is
computed according to

x̂+(k) = x̂−(k) + K(k)
(

y(k) − g(x̂−(k))
)

(12)

and the corresponding error covariance matrix is given
by

P(k) = (I − K(k)C)P−(k), (13)

where I is the identity matrix.
Regarding the parameters that may be tuned in the

algorithm, another advantage of the EKF is that the filter
parameters have a direct physical meaning. They are
related to the associated uncertainties and to the initial
conditions. The process covariance matrix, Q, represents
the uncertainties related to the motion models and the
models parameters. Variances related to the models are
lower for imprecise models, while variances related to
parameters are proportional to the time-varying nature
of those parameters. As to the measurement variance r,
it is considered equal to the variance σ2

s .
Concerning the initial conditions, the initial frequency

estimate is critical. Fortunately, to obtain a good es-
timate is not an unusual procedure, being normally
conducted in clinical settings. The other parameters are
initialized as zero. The initial error covariance matrix, P,
have similar values of corresponding states variances.

Angular
rate

sensor

Digitizing tablet

Fig. 1. Graphical representation of the experimental procedure.
While the patient performed the task, both the hand motion and
the resulted writing were recorder.
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Fig. 2. PSD of both data sets used in this work. For the tablet
data, position and velocity in X are shown.

III. Experimental evaluation

In this section, we present an experimental evaluation
of the proposed algorithm. The task of drawing a spiral
was chosen. It is one of the common methods to evaluate
tremor severity [1], particularly because loosing his/her
writing ability is one of the most serious functional
disabilities associated with pathological tremor.

Figure 1 illustrates the experimental setup, where both
hand tremor motion and writing data were measured.
Commercial sensors were used for both acquisitions. For
the inertial measurements, we employed the IDG300, an
analog device from Invensense. To record writing data,
the Intuos3, a digitizing tablet with 5, 080 lpi resolution
from Wacom, was used.

Two different data sets from two patients are analyzed
in this paper. In order to evaluate the algorithms per-
formance under different conditions, while in one case
the signal from a angular rate sensor was used, in the
other data from a digitizing tablet was employed. In
figure 2 the power spectrum densities (PSD) of both
data sets are shown, which illustrates the assumptions
made about the motions frequency ranges. In the analysis
conducted within the current section, both data sets were
normalized by initial estimates of signal offset. For the
presented results, though, the data is de-normalized.

The obtained results are briefly compared with the
results provided by the two other cited techniques, the
WFLC and the combination of BBF+WFLC. Since a
perfect reference voluntary motion is difficult to measure,
if not impossible, a quantitative comparison of the meth-
ods is difficult to be performed. Hence, the comparison
between evaluated methods was made on a visual basis.

Concerning the parameters applied in the algorithms,
the same parameters were used for both data sets. The
parameters used for the EKF-based algorithm proposed
in this paper are shown in the Table I. Voluntary motion
has been modeled as a digital low-pass filter with cutoff
frequency on 2 Hz. The coefficients are not listed on the
table, since they depend on the sampling frequency.

Regarding the method proposed in [6], the same pub-
lished parameters were used. Parameters used in [2]
were not found. Hence, an effort was made to find the
parameter g (in [2]) that fitted both data sets, since

TABLE I

Parameters used for our EKF-based algorithm.

H σ
2
st

σ
2
ω σ

2

ah,bh
F σ

2
si

1 5.10−8 5.10−4 5.10−3 2 5.10−2

the algorithm performance was highly dependent on the
data. The value chosen for g was 0.015 and the WFLC
parameters were the same taken from [6].

A. Angular rate sensor

Using a low-cost angular rate sensor attached to a
patient’s hand, tremor angular velocity was measured
while the referred task was performed by the patient. The
patient was diagnosed with Parkinson’s Disease (PD)
and presented variable tremor with unstable amplitude.
The sensor was used to measure flexion/extension of
the wrist, which was the most severe tremor direction.
Tremor frequency was around 7.5 Hz.

Figure 3 shows the acquired data and the estimated
voluntary motions. The results provided by the WFLC
and the EKF are similar, although the voluntary motion
estimated by the WFLC is more noisy, since it is com-
puted directly by s̃ − ŝt. The algorithm proposed in [2]
was not able to filter effectively the tremor from inten-
tional motion with the gains applied in our work. Smaller
g provided better results, but introducing considerable
delay if too small gains were applied.

B. Digitizing tablet

A digitizing tablet is a device commonly used in the
clinical evaluation of pathological tremor. It provides
two-dimensional measurements of an electronic pen. In
this experiment, the patient was told to draw a spiral fol-
lowing a reference drawing. However, we did not assume
that the reference spiral could be used as the ground
truth for voluntary motion. The data presented here is
from a patient diagnosed with essential tremor (ET), who

−10

0

10

−10

0

10

[d
eg

/s
]

7 8 9 10 11 12 13

−10

0

10

Time [s]

E
K

F
B

B
F

 +
 W

F
L

C
W

F
L

C

Fig. 3. Angular velocity data (black) and the voluntary motion
estimated by our method (green) and the two other evaluated
algorithms.
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Fig. 4. Spiral drawn by the patient (black) and estimated spiral
after filtering trembling motion. The two upper curves results refer
to the WFLC and the BBF+WFLC, while the lower graph shows
the drawing estimated by the proposed EKF-based method.

had an almost disabling tremor on the dominant hand.
Tremor frequency was around 6.8 Hz.

Figure 4 shows both estimated voluntary motions on
coordinates X and Y . In this case, the differences in per-
formance were greater if compared to results presented
on the previous subsection. The WFLC algorithm was
not able to correctly estimate tremor, as illustrated by
Fig. 5, and the error was propagated to voluntary motion
estimation. Better results were obtained with smaller
gains to the FLC phase of the algorithm. With respect
to the method BBF+WFLC, the voluntary motion is
obtained first from the original signal, s̃. From Fig. 4,
it is shown that the result was excessively smoothed and
delayed. Better performance was found with higher val-
ues for the g parameter. Regarding the results obtained
from our EKF-based algorithm, it is illustrated on Fig.
4, that the correct drawing without tremor components
is obtained, and on Fig. 5 that voluntary motion was
correctly filtered.

C. Discussion

In order to analyze the obtained results, it is of great
importance to remember that the purpose of this algo-
rithm is to estimate both tremor and voluntary motion
from a signal that contains both components. Hence, the
algorithm robustness to different motions is an essential
feature. In addition, its robustness to signals obtained
from different sensors is desirable. In order to compare

those features, in both experiments all algorithm pa-
rameters in all methods were kept unchanged. The only
exception to this rule is the frequency initial estimate.

Within this evaluation framework, while the perfor-
mance of the EKF-based algorithm was accurate and
insensitive to different data sets, this was not the case for
the WFLC and BBF+WFLC methods. The same task
was executed in the two experiments, but with different
sensors sampled with different frequencies. For a partic-
ular data set, the parameters of each algorithm could be
tuned to provide better results than those presented on
Sections III-A and III-B, but it would also decrease the
performance in the other experiment, revealing the low
robustness of those algorithms. The insensitiveness of the
proposed algorithm was greatly due to the assumption of
Eq. (4), as the voluntary motion model, and the explicit
consideration of process and measurement uncertainties.
As for the WFLC and the BBF+WFLC, it was noted
that they are not only sensitive to different voluntary
motion dynamics and amplitude ratio between tremor
and intentional motion, but also to different sampling
frequencies. In our comparison, however, care was taken
to adjust the algorithm for the right sampling frequency.
For the WFLC, for instance, the Butterworth filter ap-
plied during the processing was designed accordingly.

The performance of our algorithm with different pa-
rameters was not deeply evaluated. The goal was to
obtain a sufficiently good performance and compare it
with the other methods. Whenever possible, parameters
were of the same order from those used in the other
methods. H, for instance, was set to 1, since it was the
value used in [6]. Also, the algorithms performance in
tracking tremor frequency was not compared, since this
problem has been mainly addressed in [4]. One possible
disadvantage of the presented algorithm is that it is more
complex than the other methods. However, considering
currently available computational units and the scalar
corrections are applied, it is a negligible issue.

Finally, it is important to point out the potential con-
sequences of errors in the estimated tremor and voluntary
motions. The applications of the provided estimated mo-
tions (outputs of the algorithm presented in this paper)
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Fig. 5. Tremor in coordinate X estimated by all three evaluated
methods.
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may be used in two classes of problems. Firstly, the
estimated intentional motion may be used in applications
such as filtering tremor from writing, gesture recognition.
In those cases, the overestimation of intentional motion
or the existence of high frequency components may pre-
vent the practical use of the measured data.

In a second scenario, the estimated tremor motion may
be used as an input to an active tremor compensation
system. In this case, a typical application uses an es-
timate of tremor frequency and amplitude to regulate
compensatory action. If tremor is modeled as a first-order
harmonic model, tremor amplitude may be given by

Pt =
‖b1 − ia1‖

2

4
.

Within this context, errors in tremor amplitude estima-
tion from tremor data such as those presented in Fig. 5
may also prevent the practical use of such systems.

IV. Conclusions

For pathological tremor compensation applications,
such as a FES-based system, estimation of both tremor
and voluntary motions from the resultant composed
measured motion is of great importance. In this paper, an
algorithm to address this problem is presented. Models
are assumed for both motions and the estimation is
performed with an EKF.

The performance of the proposed method was eval-
uated with two experimental data sets from tremor
patients performing the same task, drawing a spiral. The
motion was measured with two sensors (angular rate and

digitizing tablet) and the results were compared with
two other methods described in the literature [6], [2].
The proposed method presented a better performance,
particularly in terms of robustness to different data sets,
being a good candidate for application in real patholog-
ical tremor compensation systems.
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