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Abstract— This paper presents a nonlinear observer algo-
rithm for attitude estimation that improves the quality of
measures obtained by using low-cost inertial measurements
(IMU). It is based on sliding mode observer that provides
both the estimates of the gyro-bias and the actual attitude
of the rigid body. The algorithm was developed in order to
address the well-known problem of the weak dynamics of the tilt
sensors and magnetometers, which can be modeled by low pass
filters, and of the measurement bias of the gyros. In its design
the observer uses the real measurements given by the low-
cost attitude sensors (inclinometers and magnetometers) and
the gyros, the filters modeling the sensors and the kinematics
equation of the rigid body. The asymptotic convergence of the
estimation of the attitude and bias-gyros was proven using
Lyapunov stability method. The effectiveness of the algorithm
has been shown from experimental tests using a rotary platform
equipped with several sensors with axes of rotation coincide
with orientation of the rigid body. Also, tests for comparison
with a linear complementary filter are given.

I. INTRODUCTION

The attitude control problem of rigid bodies (Walking

Robots, Unmanned Aerial Vehicles, Autonomous Vehicles,

...) has been widely studied in literature (control, aerospace

and robotics), and several control strategies have been pro-

posed [4], [8], [14], [17]. The effectiveness of these controls

depends on the availability and reliability of measurements.

In most applications in this field, these measurements are

derived from sensors such as rate gyros, inclinometers,

accelerometers and magnetometers. These sensors are used

to perform the attitude estimation. If these sensors are of very

high quality, then on the one hand the use of information

from accelerometer or inclinometer and magnetometer can

provide very accurate estimation of attitude that is valid

only on low bandwidth. In the other hand, the rate gyros

can be used to derive attitude by integrating the kinematic

equations of the rigid body. Such high quality-sensors are

very expensive and not suitable for commercial applications.

Nowadays, the progress in micro electro-mechanical sys-

tem (MEMS) and technology of the anisotropic magneto-

resistive has enabled the development of low-cost inertial

measurement units (IMU). However, these low-cost sensors

(gyroscopes, accelerometers and magnetometers) are usually

noisy and provide a biased measurement. The multiplication

of the applications using low-quality sensors has lead to a

strong interest in attitude estimation algorithms in order to

improve the performance. Several authors in the literature
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proposed estimation algorithms providing an estimation of

the bias assuming that the attitude is well known [10], [16].

In case of small angles variation, a linear complementary

filtering technique can be used to provide relatively accurate

attitude estimation obtained through the fusion process [2],

[14]. A nonlinear complementary filtering approach with

gyro-bias estimation has been proposed in [10]. A Survey

of nonlinear attitude estimation methods is proposed in [5].

A high gain observer based on a low-pass sensors model

and Euler equations of a rigid body has been studied for

roll and pitch angles estimation by combining sensors data

from gyros and inclinometers [11]. In [12], the authors

show an experimental evaluation of this observer compared

with a standard extended Kalman filter. In [1], the authors

formulated the rigid body attitude control with state estima-

tion using Rodrigues parameters and assuming measurements

from gyros and low-pass inclinometers. In [15], a model with

quaternion parameterization using a first-order low-pass filter

on a ”virtual” angular velocity is used to design an observer

combined with complementary filter for providing estimates

for the gyro-bias and the actual attitude. Several other authors

in literature have used the Kalman filter or extended Kalman

filter to estimate the attitude of the rigid body with low-cost

sensors (see for example [9], [18]).

In this paper, we consider the problem of rigid body

attitude estimation with gyro-bias compensation based on

low-cost sensors. In fact, in order to improve the quality

of measurements, we combine the measurements derived

from inclinometers and magnetometers and rate-gyros with

an estimation algorithm based on a nonlinear observer for

providing estimates of the gyro-bias and the real attitude of

the rigid body. In practice the orientation of the rigid body is

obtained using low-pass sensors such as inclinometers (based

on accelerometers) and magnetometers. These sensors with

generally very close bandwidth provide relatively accurate

attitude measurements at low frequencies. On other hand,

the gyros have often large bandwidth but the angular velocity

measurement is biased.

To develop the algorithm for estimating the attitude that

covers a wide frequency range, we consider that the sensors

measuring the attitude at low frequencies can be modeled as

a low pass filter like as proposed in [11] and then using the

kinematics equation of a rigid body we propose a nonlinear

observer based on sliding mode technique (see [13]) to recon-

struct the true attitude and provide an estimate of the gyro-

bias. By using Lyapunov analysis stability of the observer,

we show the asymptotic convergence of the estimation of

the attitude and gyro-bias. This one is considered constant
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but varies at each use. To evaluate the effectiveness of the

algorithm we have performed some experimental tests using

a rotary platform equipped with several sensors and whose

axes of rotation coincide with orientation of the rigid body.

Also, tests for comparison with a linear complementary

filter have been performed to show the effectiveness of the

proposed algorithm in case of large angle variations.

II. RIGID-BODY ATTITUDE DESCRIPTION

The attitude control problems of rigid bodies such as the

stabilization and navigation require the transformation of

measured and computed quantities between various frames

of references. The position and the attitude of a rigid-body

is based on measurements from sensors attached to a rigid-

body. Indeed, inertial sensors (accelerometer, gyro,. . . ) are

attached to the body-platform and provide inertial measure-

ments expressed relative to the instrument axes. In most

systems, the instrument axes are nominally aligned with the

body-platform axes. Since the measurements are performed

in the body frame we describe in Fig. 1 the orientation

of the body-fixed frame B(xm, ym, zm) with respect to the

inertial reference frame RI (xa, ya, za). Various mathematical

representation can be used to define the attitude of the rigid-

body with respect to coordinate inertial reference frame. In

this paper, we consider the Euler angles representation in

which a transformation from one coordinate frame to another

is defined by three successive rotations about different axes

taken in turn. The Euler rotation angles used here corre-

sponds to the following rotation sequence: yaw(ψ)-pitch(θ)-

roll (φ).

Fig. 1. Coordinate system of a rigid body

In this case, the coordinate transformation relating body

frame B to the inertial reference frame RI is given by the

rotation matrix R and expressed as a function of the attitude:

R =





cθcψ −cφsψ + sθcψsφ sφsψ + cφsθcψ

cθsψ cφcψ + sθsφsψ −cψsφ+ cφsθsψ

−sθ cθsφ cθcφ





(1)

where c(·) and s(·) denote functions cos(·) and sin(·),
respectively.

The rotation matrix R ∈ SO(3) satisfies the following

rigid body kinematic differential equation:

Ṙ = S(Ω)R (2)

where S(Ω) is a skew-symmetric matrix such that

S(Ω)V = Ω × V for any vector V ∈ R
3, where × is the

vector cross product. Ω is the angular velocity vector of the

body expressed in the body-fixed frame B. The roll, pitch

and yaw angular rates (p, q, r) measured by gyros are the

components of the angular velocity vector Ω.

From the matrix equation (2) we can derive expression

which relates the Euler angle rates (φ̇, θ̇, ψ̇) to the equivalent

angular velocity (p, q, r) as follows:





φ̇

θ̇

ψ̇



 =





1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ

0 sin φ
cos θ

cos φ
cos θ









p

q

r



 (3)

III. PROBLEM STATEMENT

In this paper, our objective is to design a high-quality

inertial measurement unit (IMU) based on low-cost sensors

and using an algorithm estimation that is based on the

kinematics equation of the rigid body. In fact, in order to

improve the performance of measures provided by the IMU,

we take into account in the estimation algorithm the sensors

dynamics combined with the kinematics of the rigid body

(see Fig. 2).

Fig. 2. Scheme of the estimation algorithm

The low-cost sensors used to measure the orientation of

the rigid body are generally characterized by close bandwidth

and can provide a relatively accurate measure of attitude

only at low frequencies. This measure can also be corrupted

by noise. In this case, we assume that the attitude mea-

sure (φm, θm, ψm) is related to the actual attitude (φ, θ, ψ)

through the following first low order filters in matrix form:





φ̇m

θ̇m

ψ̇m



 =







1
τφ

0 0

0 1
τθ

0

0 0 1
τψ











φ− φm

θ − θm

ψ − ψm



 (4)

These equations define the dynamics of the low-cost sensors

used in IMU. The positive constants τi describe the time

constants of the sensors.

The gyros used to obtain the angular velocities are often

large bandwidth but the measurements are biased. Then, we
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consider the real angular velocity vector Ω written as:

Ω = Ωm − b (5)

where Ωm is a measurement provided by the gyros, b is the

unknown gyro-bias.

Now we consider that the state vectors Θ = (φ, θ, ψ)T and

Θm = (φm, θm, ψm)T respectively represent the real and the

measured attitude of the rigid-body. The equation (4) can be

rewritten as:

Θ̇m = Π(Θ − Θm) (6)

where matrix Π = diag( 1
τφ
, 1

τθ
, 1

τψ
).

By using kinematics equation (3) and relationship (5) we

can write:

Θ̇ = M(Θ)(Ωm − b) (7)

where :

M(Θ) =





1 tan θ sinφ tan θ cosφ
0 cosφ − sinφ

0 sin φ
cos θ

cos φ
cos θ



 (8)

Then given (6) and (7), we can propose a nonlinear observer

that provide estimates of both the real attitude Θ and the

gyro-bias b.

IV. DESIGN OF THE NONLINEAR OBSERVER FOR

ESTIMATING ATTITUDE AND GYRO-BIAS

In this section, we aim to design a nonlinear observer

scheme for the attitude and gyro-bias estimation. We will

show how the measurement data provided by IMU sensors

can be used in the observer design and how to find stability

conditions of the observer to have an asymptotic convergence

of the estimate errors to zero.

As described previously, we can write the following sys-

tem:
{

Θ̇m = Π(Θ − Θm)

Θ̇ = M(Θ)(Ωm − b)
(9)

The sliding mode observer can be designed by using

system (9) with choice of a sliding manifold based on

the error observation measurement. Then, we propose the

following observer:











˙̂
Θm = Π(Θ̂ − Θm) + L1sign(Θ̃m)
˙̂
Θ = M(Θ̂)(Ωm − b̂) + L2sign(Θ̃m)
˙̂
b = −MT (Θ̂)Π−1L1sign(Θ̃m)

(10)

where Θ̃m = Θm − Θ̂m, Li (i = 1, 2) are diagonal

positive definite matrix gains and sign represents the usual

function sign(·), understanding the components of the vector

((φm − φ̂m), (θm − θ̂m), (ψm − ψ̂m))T

Let define Θ̃m = Θm − Θ̂m, Θ̃ = Θ − Θ̂ and b̃ = b − b̂

to be the observation errors. Then, the error dynamics of the

observer can be obtained by subtracting (9) and (10), it is

given by:
˙̃Θm = ΠΘ̃ − L1sign(Θ̃m) (11)

˙̃Θ = ∆f −M(Θ̂)b̃− L2sign(Θ̃m) (12)

˙̃
b = MT (Θ̂)Π−1L1sign(Θ̃m) (13)

where ∆f = f(Θ) − f(Θ̂) is obtained by defining the

function f : D ⊂ R
3 → R

3 as f(Θ) = M(Θ)Ω.

In order to analyze the stability of the observer we first

consider the following assumptions.

A1 : Assume that the real angular velocity Ω and its first

derivative Ω̇ are bounded.

A2 : The pitch angle θ is assumed bounded as

|θ| 6
π
2 (1 − δ) , with 0 < δ < 1.

A3 : The nonlinear function f verify the inequality con-

dition as ‖∆f‖ 6 K

∥

∥

∥Θ̃
∥

∥

∥ for all Θ, Θ̂ ∈ D ⊂ R
3

and constant K > 0

The assumption A2 can be justified by the fact that

in many applications such as walking robot, autonomous

vehicle, stabilized aero-vehicle, the control algorithms would

keep the pitch angle in the range very less then ±π
2 .

The assumption A3 can be verified by showing that f is a

Lipschitz function. So, we deal with vector function defined

by f of a variable Θ = (φ, θ, ψ) witch is continuously

differentiable on a bounded set D ⊂ R
3.

f =





p+ r tan θ cosφ+ q tan θ sinφ
q cosφ− r sinφ

r
cos θ

cosφ+ q
cos θ

sinφ



 (14)

By the mean-value theorem, we can have:
∥

∥

∥f(Θ) − f(Θ̂)
∥

∥

∥ 6 sup
0<α<1

∥

∥

∥Jf (Θ + α(Θ − Θ̂))
∥

∥

∥

∥

∥

∥Θ − Θ̂
∥

∥

∥

(15)

where Jf (·) is the Jacobian matrix.

By use of the vector norm ‖·‖∞, we can write:

‖∆f‖∞ 6 (q̆ + r̆)

(

∣

∣

∣tan(θ + αθ̃)
∣

∣

∣ +
1

cos2(θ + αθ̃)

)

∥

∥

∥Θ̃
∥

∥

∥

∞

(16)

where θ̃ = θ− θ̂ and q̆ and r̆ correspond to the maximum

of the angular velocity Ω.

Then if

∣

∣

∣θ̃

∣

∣

∣ is bounded such that

∣

∣

∣θ + αθ̃

∣

∣

∣ < π
2 − ε with ε

is a positive constant < π
2 , thus we can obtain:

‖∆f‖∞ 6 (q̆ + r̆)

(

∣

∣

∣
tan(

π

2
− ε)

∣

∣

∣
+

1

cos2(π
2 − ε)

)

∥

∥

∥
Θ̃

∥

∥

∥

∞

(17)

and so we can take:

K = (q̆ + r̆)

(

∣

∣

∣
tan(

π

2
− ε)

∣

∣

∣
+

1

cos2(π
2 − ε)

)

<∞ (18)

Theorem 1: Under assumptions A2 and A3 and by appro-

priate choice of the observer gains L1 and L2, the observer

(10) for the system (9) ensure, in finite time, the convergence

to zero of the estimation errors Θ̃m and thereafter the asymp-

totic convergence to zero of the actual attitude estimation

errors Θ̃ and the bias errors b̃.

Proof: The stability analysis of the observer can be

made in two steps. In the first step, we show the convergence

to zero in finite time of Θ̃m, and then after we prove the

asymptotic convergence to zero of Θ̃ and b̃.
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For the first step, the following candidate Lyapunov func-

tion is chosen as:

V1 =
1

2
Θ̃T

mΘ̃m (19)

Using (11) in the expression of the time derivative of the

Lyapunov function (19) we obtain:

V̇1 = Θ̃T
m

˙̃Θm = Θ̃T
m(ΠΘ̃ − L1sign(Θ̃m)) (20)

If we choose the observer gains of the matrix L1 suffi-

ciently large, then when we have

∥

∥

∥Θ̃
∥

∥

∥ <
λmin(L1)

‖Π‖ the sliding

occurs in finite time along the sliding manifold Θ̃m = 0, see

[13] for more details. As shown in [7] and according to the

equivalent control method, in sliding mode (Θ̃m = 0 and
˙̃Θm = 0) the system behaves as if the discontinuous term

L1sign(Θ̃m) is replaced by its equivalent value which can

be deduced from (11) as:

(L1sign(Θ̃m))eq = ΠΘ̃ (21)

Now, substituting (21) into (12) and (13), we obtain the

reduced system:
{

˙̃Θ = ∆f −M(Θ̂)b̃− L2L
−1
1 ΠΘ̃

˙̃
b = MT (Θ̂)Θ̃

(22)

In this step, the following candidate Lyapunov function is

chosen as:

V2 =
1

2
Θ̃T

mΘ̃m +
1

2
Θ̃T Θ̃ +

1

2
b̃T b̃ (23)

If the condition obtained in the first step holds for all

t > t1, then we have Θ̃m = 0 and the time derivative of the

Lyapunov function (23) gives:

V̇2 = Θ̃T ˙̃Θ+b̃T
˙̃
b

= Θ̃T (∆f −M(Θ̂)b̃− L2L
−1
1 ΠΘ̃)+b̃TMT (Θ)Θ̃

= Θ̃T (∆f−L2L
−1
1 ΠΘ̃)−b̃TMT (Θ)Θ̃+b̃TMT (Θ)Θ̃

The time derivative of the Lyapunov function V2 becomes:

V̇2 = Θ̃T (∆f−L2L
−1
1 ΠΘ̃) (24)

However based on assumption A2, the function f is

bounded Lipschitz if

∣

∣

∣
θ̃

∣

∣

∣
< π

2 δ. Then if the gains matrix L1 is

such λmax(L1) <
π
2 δ ‖Π‖, the condition of the assumption is

guaranteed. So, the time derivative of the Lyapunov function

V2 given in (24) can be upper bounded as follows:

V̇2 6 −(
λmin(L2) ‖Π‖

λmax(L1)
−K)

∥

∥

∥Θ̃
∥

∥

∥

2

(25)

Thus, by appropriate choice of the matrix gain L2 such

as λmin(L2) >
λmax(L1)K

‖Π‖ , we obtain the asymptotic conver-

gence of the attitude observation Θ̃ to zero and b̃ is bounded.

However by using Barbalat’s Lemma we can show according

to first equation of the system (22) and assumption A1,

lim
t→∞

˙̃Θ(t)= 0, so we can conclude to lim
t→∞

b̃(t)= 0.

The result shows that it is possible to improve the quality

of measurements derived from low-cost sensors using the

nonlinear observer described in (10). In the next section, we

present the experimental validation of this observer.

V. EXPERIMENTAL SETUP

For the experimental validation of the proposed observer,

we have designed a rotational platform (see Fig. 3) for

generating a known motion in order to have the possibility

to compare the attitude estimation to the true attitude of the

platform. Yaw, pitch and roll angles are the three degrees of

freedom of this platform. Each degree of freedom coincides

with a rotational axis of the platform and all rotational

joints are equipped with potentiometer sensors. Then to

Fig. 3. Experimental platform: three rotational axis

evaluate the estimation algorithm, we have mounted onto

the platform a low-cost gyros IDG300 Gyro and ADXL330

Accelerometer ICs. All sensors of the platform are connected

to a PC Pentium, equipped with a dSpace DS1103 PPC real-

time controller board using Matlab and Simulink software.

The sampling frequency has been fixed to 1 kHz.

VI. EXPERIMENTAL RESULTS

To implement the estimation algorithm, first we performed

some tests to identify the static and dynamic characteristics

of sensors. The data analysis shows that these senores can

be modeled by low pass filters with a transfer function given

by:

H(s) =
k

1 + τs
(26)

where k is the gain and τ is the time constant. The identified

parameters are given in the following table I

TABLE I

PARAMETERS OF THE LOW-PASS SENSORS

Rotational axis k τ

Roll angle φ 0.995 0.04
Pitch angle θ 1.01 0.045
Y aw angles ψ 0.99 0.05

Also, the gyros-bias are identified in order to be able to

compare them with those estimated by the algorithm. The

table II gives the identified gyros-bias:

To implement the estimation algorithm defined by the

observer (10), we have used the parameters of transfer

functions identified previously (see table I) to write the

matrix Π and we have take δ = 0.5 in assumption A2. To
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TABLE II

GYROS-BIAS

Gyro− bias b

Roll rate (p) −0.59
Pitch rate (q) 1.91
Y aw rate (r) −0.62

ensure the condition of the bounded Lipschitz of f , the

initial condition of the pitch angle is θ(0) and by taking

ε = 0.3, then the matrix gains L1 = diag(10, 10, 10) and

L2 = diag(100, 100, 100) satisfy the stability conditions of

the observer. To perform the test, we manually operated

platform, by combining the movements of roll, pitch and

yaw for coupling between the different dynamics. We have

also made slow and fast movements combining small and

large angle variations.

The obtained results are shown in the following figures. In

Fig.4, we compare the real attitude Θ given by potentiome-

ters and that provided by tilt sensors Θm. We can observe

a phase delay of the tilt sensors responses. This explain the

use of the model (6).
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Fig. 4. Real attitude Θ given by potentiometers and its measure Θm

provided by tilt sensors.

Fig. 5 presents the result of observation of the measure-

ment of attitude and shows the establishment of the sliding

mode and the convergence of the observation error to zero
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Fig. 5. Measured attitude and its observation

In Fig. 6, we present the result of estimation of the real

attitude. In this figure, we show that the attitude estimation

Θ̂ obtained from observer (10) converges to the real attitude

Θ based on the Θm data measure derived from IMU sensors.
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Fig. 6. The estimate of the attitude obtained from observer

In the Fig. 7, we present the estimation of the gyro-bias.

These results show that the gyro-bias estimates converge to

the values given in the table (II).
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Fig. 7. Estimation of the gyro-bias

These results show the effectiveness of the observer to

improve the quality of measurements provided by low-cost

sensors.

In the following we will compare the performance of

the proposed observer with estimation obtained from known

linear complementary filter [2]. The complementary filter is

designed as shown in Fig. 8.

Fig. 8. Linear complementary filter.

The transfer functions are written as:

H1(s) =
b11s+ 1

a21s2 + a11s+ 1

H2(p) =
s(b12s+ b22)

a32s3 + a22s2 + a12s+ 1
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TABLE III

PARAMETERS OF THE COMPLEMENTARY FILTER

parameters Roll P itch Y aw

b11 0.842 0.966 1.05
b12 0.0067 0.0097 0.0125
b22 0.1936 0.2539 0.3
a11 0.8 0.92 1
a21 0.16 0.21 0.25
a12 0.842 0.966 1.05
a22 0.1936 0.2539 0.3
a32 0.0067 0.0097 0.0125

The parameters aij and bij are given in the table III of each

rotational dynamics.

In Fig. 9 and Fig. 10, we present the result of this

comparison. For the complementary filter the gyro-bias has

been compensated manually. These results show that the

complementary filter is not suitable for estimating the attitude

in the case of combined movement with large variations in

angles. As against, the proposed observer is very effective

for the reconstruction of the real attitude in this case.
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Fig. 9. Estimation of the roll angle: observer vs complementary filter
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Fig. 10. Estimation of the pitch angle: observer vs complementary filter

VII. CONCLUSIONS

In this paper we have presented a nonlinear observer

algorithm to estimate both the attitude and the gyro-bias

in order to improve the quality of measures obtained by

using low-cost inertial measurements (IMU). The algorithm

was developed by assuming that the sensors measuring the

attitude at low frequencies can be modeled as a low pass

filter and using the kinematics equation of a rigid body. The

observer is designed based on the sliding-mode approach

known to be robust with respect to parametric uncertainties

and modeling errors

The asymptotic convergence of the estimation of the

attitude and gyro-bias was proven using Lyapunov stability

method. The effectiveness of the algorithm has been shown

from experimental tests using a rotary platform equipped

with several sensors with axes of rotation coincide with

orientation of the rigid body. Also, we have compared the

results of the proposed observer with a linear complementary

filter.
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