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Abstract— This paper describes a model-based probabilistic
framework for tracking a fleet of laboratory-scale underwater
vehicles using multiple fixed cameras. We model the target
motion as a steered particle whose dynamics evolve on the
special Euclidean group. We provide a likelihood function
that extracts three-dimensional position and pose measurements
from monocular images using projective geometry. The tracking
algorithm uses particle filtering with selective resampling based
on a threshold and nearest neighbor data association for
multiple targets. We describe results obtained from two tracking
experiments: first with one vehicle and a second experiment

with two targets. The tracking algorithm for single target
experiment is validated using data denial.

I. INTRODUCTION

Autonomous underwater vehicles have a wide number of

applications [11]. Teams of such vehicles can be controlled

to cover a large space or perform complicated tasks [22],

[18]. In order to validate control strategies we have de-

signed a multi-submarine testbed for use in the University

of Maryland Neutral Buoyancy Research Facility (NBRF)

[1]. The subs are 1 m long and have a single rear propeller

and rear-situated rudder and dive-planes. Because the subs

lack the ability to measure or record absolute position, we

would like to externally track the position and orientation of

each vehicle in three dimensions. In this paper we present

a probabilistic tracking framework that uses a body-frame-

based motion model and a simple yet robust approximation

of target shape to track multiple laboratory-scale underwater

vehicles.

An underwater test environment presents several chal-

lenges to target tracking not commonly seen on land-based

systems, such as changing light conditions, clutter, and

internal reflections from the surface. With the availability of

small underwater cameras, faster computer processors, and

advancement in the field of computer vision, it has become

increasingly popular to perform vision-based tracking of

underwater vehicles [13], [3], [23]. Alternatives such as GPS

and acoustics are less attractive, because GPS signals do not

propagate well under water [15] and acoustic sensing is noisy

due to scattering in a steel-reinforced test facility [26].

The challenges we seek to address with our tracking

system are nonlinear measurement and motion models. A

good motion model can improve performance in tracking a

maneuvering target [20]. An example of a motion model for

S. Butail is a graduate student in the Department of Aerospace
Engineering, University of Maryland, College Park, MD 20742, USA
sbutail@umd.edu

D. A. Paley is an Assistant Professor in the Department of Aerospace
Engineering, University of Maryland, College Park, MD 20742, USA
dpaley@umd.edu

a maneuvering target is to model control input as a random

process with variance adjustment based on estimation error

in measurement space [4]. Another method is to choose

between several motion models at each step [4].

Related work on vision-based underwater tracking systems

includes using optical flow and disparity measurements in a

stereo system [13] and an extended kalman filter (EKF) based

vision positioning system [23] that tracks a slow moving

target with maximum speed 0.2 m/s.

The contributions of this paper are:

• Selection of a motion model that approximates the 3D

dynamics of a self-propelled underwater vehicle

• Apply a method to extract target position and pose from

a monocular image

• Implement a probabilistic framework for assimilating

visual information from multiple cameras

To model target motion we use a dynamic model for a vehicle

subject to steering control [9]. Control inputs (expressed in

body frame) are yaw, pitch and roll moments. This model

has two advantages: Firstly, by packaging the dynamics into

a class of rigid-body transformations we preserve target-

state validity despite noisy inputs. Secondly, by making an

assumption of low angle of attack we can predict the pose

of our target using state estimates.

Target geometry is modeled as a single quadric — a

quadratic surface in 3D — and we use results from projective

geometry to define measurement models for location and

pose. For estimation we use particle filtering on the spe-

cial Euclidean group which preserves state validity during

prediction.

We experimentally validate the estimation algorithm using

an asynchronous multi-view camera system. We establish

a ground-truth dataset for a single target by performing a

least-squares fit on data from all cameras. We characterize

the performance of the tracking algorithm by running it

on a sequence of measurements from a subset of cameras

(data denial). We describe the results of tracking two subs

using a nearest-neighbor standard filter [4] to associate

measurements to targets.

The paper is outlined as follows: Section II provides a

theoretical background for motion model of a steered parti-

cle, particle filtering on SE(3), and model-based tracking.

Section III presents the measurement model in the form of

likelihood functions and the tracking algorithm. Section IV

describes experimental results. Section V provides conclu-

sions and summarizes ongoing work.
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Fig. 1. The University of Maryland Neutral Buoyancy Research Facility is
7.6 m deep and 15 m wide. The inertial frame I , body frame B, and camera
frame C for a single target and a single camera respectively are shown.

II. PROBABILISTIC DATA ASSIMILATION AND TRACKING

In this section we discuss the motion model of a steered

target, particle filtering on the special Euclidean group, and

model-based tracking.

A. Modeling the motion of a steered target

A self-propelled particle moving with constant speed s
under steering control v can be modelled as [22]

ṙ = sx, ẋ = v × x, (1)

where r is the position of the target in inertial frame I (see

Fig. 1) and x is the unit velocity vector of the target with

respect to I. The components of the control vector v are

[w,−h, q]T , where q and h are curvature controls on yaw

and pitch and w is the control on roll motion. In a curve-

framing setting [9], under the assumption that r(t) is twice

differentiable, an alternate way to represent (1) is to express

it in components of a body frame B = (S, x, y, z) fixed to

the target. The dynamics are [9], [22]

ṙ = sx

ẋ = yq + zh

ẏ = −xq + zw

ż = −xh − yw.

(2)

By attaching a body frame to each target we can relate

the dynamics (2) to rigid-body kinematics. The system (2)

describes rigid-body motion in four degrees of freedom

(translation along x, and rotation about x, y, z). It represents

a subset of a group of rigid-body transformations called

the special Euclidean group, SE(3). The special Euclidean

group includes all real rotations and translations of a rigid

body [17]. One way to represent an element g of SE(3) is

by a 4×4 matrix g =

[

x y z r

0 0 0 1

]

. The system dynamics

in (2) can be represented as [22]

ġ = gξ, (3)

where ξ =

[

v̂ s
0

T
0

]

∈ se(3), the Lie algebra of SE(3).

v̂, a 3 × 3 skew-symmetric matrix, is the linear operator

representing cross product by v. 0 denotes [0, 0, 0]T .

For probabilistic model-based tracking it is common to

model unknown inputs as random processes [20]. The

stochastic equivalent of (3) can be written as dg = gdW
where dW is a standard Wiener process on se(3) [10]. In

the context of rigid-body motion, dW is a disturbance input

on each degree of freedom of a target. Let Ei, i = {1, 2...6},

be the basis elements of se(3) [27] and εi be a zero-mean

Gaussian random variable representing the corresponding

variance. For our purposes ε1 = N(0, σ2
w), ε2 = N(0, σ2

h),
and ε3 = N(0, σ2

q), and ε4 = ε5 = ε6 ≈ 0. These values

signify the disturbance input in each degree of freedom

(i = 1, 2, 3 represent motion along roll, pitch, and yaw

directions, while i = 4, 5, 6 represent translational motion

in x, y, and z directions). A first-order Euler discretization

of the stochastic differential equation dg = gdW with time-

step ∆ is [10]

g[k] = g[k − 1] exp(

6
∑

i=1

Ei

√
∆εi[k − 1]) (4)

Note that (4) assumes that the motion along each degree of

freedom is independent. Writing (2) in this form forces the

rigid body to stay on SE(3) at all times despite varying

inputs and first-order approximation. In other words, the

orthonormality of the body-fixed frame is preserved at every

time step.

B. Particle filtering on the special Euclidean group

Particle filtering is a sequential Monte Carlo method used

extensively since the early nineties [7]. Its attractiveness

over alternative approaches like the extended kalman filter is

due to the ability of a particle filter to easily accommodate

nonlinearities in measurement and state space. A particle

filter can handle non-Gaussian, multi-modal distributions [2].

For example, particle filters have been shown to perform

better than EKF for a large class of nonlinear problems [2].

Within a particle filter we use a likelihood function to

encode our confidence in the information we receive. In

its simplest form a likelihood function is a conditional

probability P (Z|X) of a measurement Z given state X .

A particle filter can easily incorporate additional knowledge

about target environment and behavior. For instance, the fact

that an underwater vehicle cannot go above the surface of

water can be encoded in the likelihood function.

In order to find the output of our particle filter we need

to compute averages on the special Euclidean group. An

algebraic mean of 4×4 matrices may not itself lie on SE(3).
A method of calculating estimates is to compute a mean of

multiple rotations based on distance metrics on SO(3) [16]

and augment that value with an algebraic mean of location

estimates [10]. For a multimodal distribution on SO(3) we

need to compute modes on a group of rotations. This can

be accomplished by using mean shift algorithm [25] which

involves computing matrix exponentials for each data point.

However, our target rolls only a few degrees about its center

line. We compute the mode by calculating a simple mode
¯̄x of the velocity vectors. We then compute a cross product

of the vertical axis in the inertial frame with ¯̄x to get the ¯̄y
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Fig. 2. Projection of a 3D ellipse onto two image planes. Notice that the
projection on an image plane depends on the position of the camera and
the position and orientation of the object.

direction in the body frame. The orthogonal body frame is

completed by setting ¯̄z = ¯̄x × ¯̄y.

C. Model-based tracking using target geometry

Using projective geometry, the 3D position of a target

can be estimated by ray-tracing the target centroid without

knowing details about the target geometry. Prior knowledge

about a target can aid in pose estimation. A common and

relatively accurate approach involves tracking feature points

in successive frames [14], but it is difficult to track features

in noisy images of fast-moving targets. A simple yet robust

method is to model the target as a series of connected

quadratic surfaces or quadrics [24]. A quadric is a 2D

surface defined by the equation r̃T Qr̃ = 0, where Q is

a 4 × 4 symmetric matrix and r̃ , [r1, r2, r3, 1]T is the

homogeneous coordinate of a point on the surface of the

quadric. The following properties of a quadric surface are

relevant [8]:

1) A quadric has 10 degrees of freedom, three each for

position, orientation, and shape and one for scale.

2) The intersection of a plane with a quadric is a set of

points satisfying ũT Cũ = 0 where C is a 3 × 3 sym-

metric matrix, and ũ , [u, v, 1]T is the homogeneous

coordinate of a point on the plane.

We represent the matrix Q as

[

Q3×3 Q4

QT
4

Q44

]

where

Q3×3 ∈ R
3×3, Q4 ∈ R

3 and Q44 ∈ R. Let there be a

vector l = [l1, l2, l3]
T in the camera centered frame such

that a line L(t) = lt that passes through the quadric surface

will intersect the surface at all points satisfying [5]

[

L(t)T 1
]

[

Q3×3 Q4

QT
4

Q44

] [

L(t)
1

]

= 0. (5)

If L(t) is tangent to the quadric surface, then (5) will have

a single solution for t. In this case, the discriminant of (5)

satisfies

lT [Q4Q
T
4 − Q44Q3×3]l = 0. (6)

Equation (6) defines a conic on a plane. Using it to solve

(5) gives a single value of t as −lT Q4(l
T Q3×3l)

−1 at which

L(t) touches the quadric. Normalizing l with respect to l3 in

equation (6), we get a conic on an image plane at unit focal

length [6], [5]

ũT [Q4Q
T
4
− Q44Q3×3]ũ = 0. (7)

We use the measured conic to estimate pose in a particle-

filtering framework, described next.

III. VISION-BASED ESTIMATION OF POSITION AND POSE

In this section we describe the likelihood functions and

particle-filtering algorithm for our tracking system.

A. Likelihood function for a monocular image

Consider a monocular image of a target where u = [u, v]T

are coordinates of centroid of the target in the image plane.

Let r =
[

r1, r2, r3

]T
be the position of a point in the inertial

frame. Any point in the inertial frame can be transformed to

camera frame coordinates by a transformation matrix
[

R t
]

as r̃C =
[

R t
]

r̃. Without loss of generality, we assume that

the camera frame is aligned with the inertial frame so that
[

R t
]

=
[

I 0
]

.

Position estimate: The centroid measurement on a camera

image plane with focal length f (in pixels) as a function of

target center position r is
[

u
v

]

= f

[

r1/r3

r2/r3

]

+ Dη (8)

where η is a two dimensional Gaussian noise vector for

u and v and D =

[

1 0
0 1

]

. The estimates of r1 and r2

depend on r3, the distance of a point along the optical

axis. This uncertainty is inherent to monocular images and,

given a noise covariance matrix in measurements, impacts

the uncertainty in r1 and r2. We also include the information

that our target cannot go outside the test environment in the

position likelihood function.

The likelihood function for location of a single measure-

ment u = u(r) is

Ploc(u(r)|r) =

{

N(u(r); u, Σ)Utank if detected

Utank otherwise.
(9)

N(u(r); u, Σ) denotes a normal distribution function over

the image plane with mean u and noise covariance matrix

Σ. Utank denotes a uniform distribution within the tank. For

example, consider the inertial frame I shown in Fig. 1. Given

a polar representation of a 3D point r = [r, ϕ, z]T , we have

Utank = U(r; 0, Td/2)U(z; 0, Th)U(ϕ;−π, π)

Td and Th are the tank diameter and tank height respectively.

Pose estimate: We make the following assumptions about

the shape and motion of each submarine:

• We model the sub as an ellipsoid with semi-major, -

medium and -minor axes of length 0.4889 m, 0.0665

m, 0.0635 m, respectively.

• The sub motion has a low angle of attack which implies

that the pose is aligned with the body frame (x, y, z).

• The image used to estimate pose has no occlusions.

These assumptions allow us to estimate the pose of a sub

using a quadric surface and its conic image projection.
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We use MATLABTM image processing toolbox to fit an

ellipse around the target region and extract the following

measurement parameters: (1) Image-plane coordinates of the

target centroid, u; (2) The orientation of the bounding ellipse,

θ; (3) Eccentricity of the bounding ellipse, ǫ.

If the length of the ellipsoid axes in orthogonal directions

are denoted as 2a, 2b, 2c, the equation of an ellipsoid in the

body-frame B is given by (rB
1
)2/a2+(rB

2
)2/b2+(rB

3
)2/c2 =

1. In matrix form, the quadric equation is

r̃B
T

QBr̃B = 0, QB =









1/a2 0 0 0
0 1/b2 0 0
0 0 1/c2 0
0 0 0 −1









. (10)

Assuming the y and z vectors lie on the semi-medium and

semi-minor axes of the ellipsoid, the pose of the sub can

be represented as R =
[

x, y, z
]

. For any rB and r, given

T =

[

R S

0
T 1

]

, and T−1 =

[

RT −RT S

0
T 1

]

we have r̃B =

T−1r̃. Using (10), we have

r̃T QC r̃ = 0, QC = (T−1)T QBT−1. (11)

The matrix QC represents an ellipsoid in the camera

frame and projects an ellipse onto the image plane up

to a scale factor. The orientation and eccentricity of the

ellipse that is projected onto the image plane is compared

to the eccentricity and orientation of the measured elliptical

contour. Assuming a normal distribution in measurement, a

likelihood function is computed for the estimated values.

As per (7), ũT Cũ = 0 where C = K[QC
4QC

4

T−QC
44Q

C
3×3]

and K makes C2×2, the upper left 2×2 matrix in C, positive

definite. C2×2 represents an ellipse with eccentricity and

orientation as follows

ǫm =

√

1 − λmin

λmax

, θm = atan(v2/v1), (12)

where λmin and λmax are the eigenvalues of C2×2 and v =
[

v1 v2

]T
is the eigenvector for λmin.

We compare ǫm, θm to our measurements of the bound-

ing ellipse and build a likelihood function. The likelihood

function for pose is Ppose = PǫPθ , where

Pǫ(ǫ|r, x, y, z) = N(ǫm; ǫ, σ2

ǫ )

Pθ(θ|r, x, y, z) = N(θm; θ, σ2

θ).

The uncertainty in our measurements, (σǫ, σθ), is due

to the position measurement of each pixel projected as a

subsurface on the image. We assume Gaussian noise with

covariances determined experimentally (see Table I). Note

that the pose likelihood function has a forward-backward

ambiguity since we do not have information of where the sub

is pointing. This results in a bimodal distribution function,

which is why we use the mode, and not mean, on rotations.

B. Particle filter tracking algorithm

We use a generic particle filter [2] to fuse the vision-based

likelihood function with self-propelled motion model. For a

target, our state vector X consists of position and orientation,

described by g ∈ SE(3), and speed s, which is assumed

constant. The particle filtering algorithm is as follows:

i. Initialize: Generate N uniformly distributed samples on

SE(3) according to

g = exp(U(−π, π)E1 + U(−π, π)E2 + U(−π, π)E3+

U(−Td, Td)E4 + U(−Td, Td)E5 + U(0, Th)E6)

and set the state variable to X =
[

rT xT yT zT s
]T

.

ii. For each time step k:

a) Propagate: Evolve each sample according to (4),

using normal random variables as inputs with standard

deviations σq, σh, and σw. These values are based on

how the target moves and satisfy σq > σh ≫ σw > 0
(The sub turns more than it pitches or rolls). The

speed s is propagated as s[k] = s[k − 1] + ds, where

ds = N(0, σ2
s).

b) Predict: For each sample j compute the weights using

the product of likelihood functions for location (9) and

pose (13), and normalize

w̃j = PlocPpose, wj = w̃j [
N

∑

i=1

w̃i]
−1

iii. Resample: Estimate effective sample size Neff =

(
∑N

j=1
w̃j)

−1. If this value is less than a threshold NT ,

resample using normalized weights wj . The value for

NT was set to N/2 in our algorithm.

iv. Estimate: Compute the sample estimate by augmenting

the algebraic mean of position with mode on rotations

(see Section II-B)

IV. EXPERIMENTAL METHODS AND RESULTS

A. Experimental setup

We describe tracking results from two deployments of

remote-controlled submarines in the University of Maryland

Neutral Buoyancy Research Facility, which is 7.6 m deep

and 15 m wide. Five high-resolution ZC-YHW701N GANZ

cameras, each with an approximate wide viewing angle of

36 degrees and vertical viewing angle of 32 degrees were

used. All cameras are mounted on the inside wall of the

tank with three cameras at mid-level depth of 3.81 m spaced

at 90 degree intervals looking straight into the center of the

tank. The remaining two cameras are at 45 degrees interval

to the mid-level ones just below the surface of water at 0.61

m looking down at an angle of approximately 15 degrees.

The image acquisition was carried out using FlashBusTM

framegrabbers on three separate computers. The acquisition

was not synchronous and the time delay between successive

frames depended on which cameras were used for measure-

ments. With all five cameras the time delay was an average

70 ms, while with three cameras the time delay was 120

ms. The tracker was fed measurements as they came and

sampling time interval ∆ was computed at each iteration.

Calibration of cameras was done using a non-coplanar

arrangement of balls [23] and the Tsai camera-calibration
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TABLE I

PARAMETER VALUES USED FOR TRACKING

Parameter Avg. value Value used Parameter Value used

σu(pixels) 0.1 4.0 σq(rad/s) 1.00
σv(pixels) 0.05 4.0 σh(rad/s) 0.30

σǫ 1.0 × 10
−5 0.15 σw(rad/s) 0.08

σθ(radians) 0.08 0.25 σs 0.02

software [28]. To mitigate the effect of bubbles and changing

lighting conditions, the background was updated as a running

average [19], G[k + 1] = αT [k] + (1 − α)G[k], where T [k]
is the current image, G[k] is the background image, and the

value used for α is 0.05. G[0] is an image without any targets

taken just before the experiment is started.

Measurement-noise parameters for each camera were cal-

culated by computing variance in values of centroid position,

eccentricity, and orientation of a still sub in water over 300

images. These static values, however, only give a lower

bound to our error variances. Different parts of tank have

different lighting conditions, and bubbles from propeller as

the sub moves through water creates clutter. The actual

values used in tracker, therefore, were much larger (see Table

I). The submarine speed was set 0.5 m/s.

Single target: To establish ground truth in the single sub

trial we use a least squares estimate to minimize the pixel

error in all five cameras treating 3 successive measurements

as synchronous. We project the least squares estimate back

on to the image planes and verify that it also lies on the sub.

We then smooth the estimate using moving averages with

a span of five data points. Note that any errors inherent in

the camera measurement system will not be detected by this

method. An alternate way would be to verify the estimates

using a different sensor that is not part of the measurement

system.

Multi-target: In the multi-target tracking experiment we

deployed two subs in the NBRF. The subs are tracked for ten

seconds using three cameras. Data association is performed

at each time-step using the nearest neighbor filter [4]. The

measurement that minimizes the weighted distance between

a measurement and a projected estimate of a target on the

image plane is assigned to that target.

B. Experimental results

Single target: For a single sub we use a ground truth

dataset to characterize tracker performance. Measurements

are taken from three cameras such that the sub is at least

viewed in two cameras. All three cameras (two top-level and

one mid-level) span an angle of 135 degrees. A comparison

with the ground-truth is shown in Fig. 3. The error in

each orthogonal direction is less than a meter. For pose

estimates we compare the orientation and eccentricity of our

estimate projected back on to the image plane with the actual

measurement taken at that time step (Fig. 4). Orientation and

eccentricity are only used for weighting the samples if the

sub is detected well within the frame and not at it’s edges.

Error in eccentricity is generally high compared to that in

orientation. This is primarily due to clutter that prevents a
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Fig. 3. Position estimates for a single target. The ground truth was
created using measurements from five cameras. The tracker was run on
measurements from three cameras.
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Fig. 4. Pose estimates. The plots on top show orientation and eccentricity
values for time-steps when the sub was completely visible in the camera.
The measured values are compared with the projected values of the estimate
on the image plane of the same camera. Also shown are nine frames with
isolated target overlaid with a scaled ellipse with the same eccentricity and
orientation as the estimate projected on to the image plane.

tight ellipse fit around the sub contour. We also show frames

with the projected ellipse overlaid on the sub.

Multi-target: For multi-target tracking we do a visual

comparison of measurements against estimates projected

back onto the image plane on all three cameras where the

subs were seen. Two of those cameras ar shown (See Fig. 5).

Tracks of individual targets are maintained during occlusions.

Direction of motion in the last frame shown is computed

using pose estimates.

C. Discussion

Single target: For the single target tracking case, we

obtain estimates within the body length of the target (1 m).

The difference in eccentricity and orientation measurements

is due to the sensitivity of these values to clutter in the

image. There were several instances when the sub appeared

as a disconnected region in the image after background
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Fig. 5. Image frames from two cameras are shown. Estimates are projected
back on to the frame along with measurements. Black arrows representing
estimated direction of motion at the time step for the frame are also shown.
The cameras are orthogonal to each other. The second camera had only one
sub in view.

subtraction. Furthermore a tight bound around the sub is

required for precise measurements. In the case of noisy

images this was not the case. In addition, pose estimate is

based on low angle-of-attack assumption which is violated

when the sub looses RF communication and automatically

cuts off the propeller, floating to the surface.

Multi-target: The multi-target test contained challenges

that we seek to address in ongoing work including occlu-

sions and reflections. One way to handle reflections is to

track every object that is detected after a mild background

subtraction and then probabilistically identify the target [21].

Data association using nearest-neighbor distance is sensitive

to clutter and affected the estimate at instances when there

were bubbles in the tank.

V. CONCLUSION

We describe a model-based probabilistic framework to

track multiple underwater vehicles in a test environment. The

framework combines a three-dimensional motion model for

steered vehicles with a likelihood function that assimilates

monocular image data based on target geometry and behav-

ior. We model the target shape as an ellipsoid to augment our

estimates of pose and velocity. Results are described from an

experiment using multiple targets in the university Neutral

Buoyancy Research Facility.

There are at least three research directions to improve

tracking performance. Firstly, to make it robust to a variety

of maneuvers a stack of motion models inheriting from the

same dynamics can be used [4]. Secondly, we can model

the input variances as part of the state vector and perform

combined parameter estimation [12]. Thirdly in order to track

more targets within clutter a data association scheme such as

Joint Probabilistic Data Association Filter (JPDAF) [4] may

be used.
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